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INTRODUCTION 
In this paper, we shall be concerned with order and 
convergence properties of the method developed in 

(Musa, et al., 2022) which has been derived to be of the 
form:  
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The method (1) has been developed for approximate 
numerical solution of stiff systems in ordinary differential 
equations of the form 

 𝑦′ = 𝑓(𝑥, 𝑦),          𝑦(𝑥0) = 𝑦0,         𝑎 ≤ 𝑥 ≤ 𝑏       (2) 

where the function 𝑓(𝑥, 𝑦) is assumed to satisfy the 
Lipschitz conditions for the existence and uniqueness 
of solutions which guarantees that the ordinary 
differential equation (2) has a uniquely continuous 
differentiable solutions (Lambert, 1991). The solution 

of such equation is characterized by the presence of 
transient and steady state terms which restricts the step 
length of many numerical integration schemes except 
those numerical methods with A-stability properties 
(Suleiman et al., 2014). 

The system of ordinary differential equation (2) is said to 
be “stiff” when an extremely small step size is required to 
obtain correct numerical approximation. In other word, 
stiff problems are equations where certain implicit
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numerical methods, in particular backward differentiation 
formula (BDF) perform better than explicit numerical 
schemes (Curtiss and Hirschfelder, 1952). Most 
interesting and physically relevant real world stiff 
problems are difficult to solve analytically rather an 
alternative numerical methods are used in determining 
approximate solutions to the problems. However, in 
dealing with stiff ODEs, the stiffness property restricts 
the conventional explicit numerical integration methods 
from handling the problems efficiently. The stiff IVPs 
occur in many fields of science, engineering and 
technology, they are particularly found in chemical 
kinetics, thermodynamics and heat flow, control systems, 
vibration of the strings, electrical circuits, nuclear 
radioactive decay, weather prediction and forecasting 
(Bala and Musa, 2022). 

Implicit linear multistep methods are known to be best 
and suitable for the treatment of stiff ODEs, the 
backward differentiation formula was developed by 
Curtiss and Hirschfelder, (1952), since then most of the 
improvements in the class of linear multistep methods 
are based on BDF, this is due to its special properties 
and better stability characteristics. The development of a 
most reliable and efficient numerical schemes for the 

integration of stiff systems of ordinary differential 
equations in terms of accuracy, stability requirements, 
convergence and computational expense has been a 
major challenged in the study of modern numerical 
analysis (Ibrahim et al, 2003). Although a few block 
numerical methods for the numerical integration of (2) 
have been proposed, there has remained a strong interest 
in developing standard fully and diagonally implicit block 
methods for solving stiff ODEs such as those found in 
(Suleiman, et al., 2014; Musa and Bala, 2019; Ibrahim, et 
al., 2007; Musa et al., 2022; Abasi, et al., 2014) and so on. 
However, this research will contribute to the existing 
literature as this paper focuses on the convergence 
properties such as the order, consistency and zero-
stability of the 2-point diagonally implicit block backward 
differentiation formula with two off-step points 
presented in Musa et al., (2022).  The method 
approximates two solution values with two off-step 
points which are chosen when the step length is halved. 
Details on the derivations, stability analysis, 
implementation and performance of the method can be 
found in (Musa et al., (2022). In the remaining sections of 
this paper, we shall derive the order and error constant of 
the method followed by consistency and zero-stability of 
the method. 

ORDER AND ERROR OF THE METHOD 
To derive the order of the method, we rearrange and rewrite the formula (1) in the following form: 
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The matrix associated with equation (3) is 
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Definition 1:  The order of the block method (1) and its associated linear operator given by 
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Therefore, by the definition 1, we conclude that the order of the 2-point diagonally implicit block backward 
differentiation formula with two off-step points is 5 with error constant given by 
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CONVERGENCE OF THE METHOD 

A linear multistep method (LMM) must be convergent 
before it can be accepted and used for the numerical 
approximation of any stiff system due to the fact that any 
numerical method which does not converge has no 
practical importance. This section focuses on establishing 
the necessary and sufficient conditions for the method 
(1) to converge. According to Lambert, (1991), 
consistency and zero stability are the necessary and 
sufficient conditions for any numerical

 

scheme to 
converge. We shall begin to show that the method (1) is 
consistent and zero stable by first presenting the 
following definitions and theorem related to the 
convergence of a linear multistep method.

 

Definition 2: A general k-step linear multistep method 
(LMM) has the form: 

 ∑ 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ∑ 𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0                          (7) 

where 𝛼𝑗 and 𝛽𝑗 are constants and  𝛼𝑘 ≠ 0, since 𝛼0  

and  𝛽0 cannot both be zero at the same time. For any 

linear k-step method,  𝛼𝑘 is normalized to 1. 

Theorem 1: The necessary and sufficient conditions for 
the linear multistep method (7) to be convergent are that 
it be consistent and zero-stable. 

To show that the 2-point diagonally implicit block BDF 
with two off-step points (DI2OBBDF) converge, we 
begin by showing that the method is consistent. 

CONSISTENCY OF THE 2-POINT 
DIOBBDF METHOD 

Definition 3: A linear multistep method (7) is said be 

consistent if it has order 𝑝 ≥ 1. It follows from (6) that 
the method (7) is said to be consistent if and only if the 
following conditions are satisfied: 

∑ 𝐷𝑗 = 0
𝑘
𝑗=𝑜

∑ 𝑗𝐷𝑗 = 2∑ 𝐺𝑗
𝑘
𝑗=𝑜

𝑘
𝑗=𝑜

}                                (8) 

Based on these definitions, from section 2, we deduced 
that the order of the DI2OBBDF method is 5 which is 
greater than 1. Hence, by definition, the method is 
consistent. 

Let 𝐷0, 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7 and 𝐺0, 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5, 𝐺6, 𝐺7 be as previously defined. Then 
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Hence, the first condition in (8) is satisfied. 
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Hence,  ∑ 𝑗𝐷𝑗 = 2∑ 𝐺𝑗
7
𝑗=0

7
𝑗=0  

Thus, the second condition in (8) is also satisfied. The consistency conditions are therefore met. Hence, the method is 
consistent. Next, we investigate the zero stability associated with method (1). 

ZERO STABILITY OF THE 2-POINT DIOBBDF METHOD 

Definition 4: A linear multi-step method (7) is said to be zero stable if all the roots of first characteristics polynomial 
have modulus less than or equal to unity and those roots with modulus unity are simple (Abasi et al, 2014). 

To show that the method (1) is zero-stable, we present the stability polynomial of the method (1) as in Musa et al., 
(2022). 

        𝑅(𝑡, ℎ̅) = −
11

1281
𝑡2 −

121

30744
𝑡2ℎ̅ −

1

1464
𝑡2ℎ̅2 −

13595

15372
𝑡3ℎ̅ −

3127

15372
𝑡3ℎ̅2 −

10

1281
𝑡3ℎ̅3                              

                          −
34705

30744
𝑡4ℎ̅ +

2069

4393
𝑡4ℎ̅2 −

221

2562
𝑡4ℎ̅3 +

5

854
𝑡4ℎ̅4 + 𝑡4 −

1270

1281
𝑡3 = 0                     (12)                                                                                             

we substitute ℎ̅ = 0 in equation (12) to obtain the first characteristics polynomial as: 

                                       𝑅(𝑡, 0) = −
11

1281
𝑡2 −

1270

1281
𝑡3 + 𝑡4 = 0.                                         (13)                                                                                         

Solving equation (13) for t, we obtain the following roots as:   

                                        𝑡 = 0, 𝑡 = 0, 𝑡 = 1, 𝑡 = −
11

1281
   

Therefore, by the definition 5, the values of 𝑡 above indicate that the method is zero-stable since no magnitude of the 

root is greater than one and the root 𝑡 = 1 is simple. 
The method satisfies the requirements of consistency and zero stability as stated in the above theorem, therefore the 
method converges. 
 

CONCLUSION 
In this paper, we established the convergence of the 2-
point diagonally implicit block backward differentiation 
formula with two off-step points proposed by Musa et al 
(2022). It was also established that the method is of order 
5. It has thus been shown that the method is zero stable  

 
and satisfied the consistency conditions. Having these 
two conditions, consistency and zero stability, the 
diagonally implicit 2-point block BDF with two off-step 
points is convergent. 
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