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INTRODUCTION 

Efficient sampling of thermodynamic systems is a key 

area of research in many fields, as it provides insights 

into the behavior of complex systems that are 

difficult to observe experimentally (Hylton, 2020; 

Nicoli et al., 2021a, 2021b; Wang et al., 2019). 

Sampling methods are essential for designing new 

materials, optimizing chemical reactions, and 

increasingly in understanding biological processes 

(Husic et al., 2020; Lee et al., 2021; Sultan et al., 2018). 

Monte Carlo simulation is a powerful tool for 

modeling complex systems and analyzing the 

associated risks (Barzegar et al., 2018; Blöte & Deng, 

2002). However, Monte Carlo simulations can be 

computationally expensive and time-consuming, 

especially for large-scale problems (Anderson et al., 

2018; Shapiro, 2011). To speed up the process, many 

techniques were developed over the years. 

One of the widely employed method for speeding up 

Monte Carlo simulations is Importance sampling 

(Bayrakci et al., 2010; Elvira et al., 2015). This 

method is variance reduction technique that involves 

sampling from a distribution that is better suited to 

the problem being solved. The idea is to sample the 

configurations more frequently from the regions of 

the distribution that contribute the most to the 

solution, reducing the overall variance of the 

simulation. 

A recent trend is the application of machine learning 

models to classify phases of matter (Broecker et al., 

2017) and solve partial differential equations 

modeling physical phenomena (Cai et al., 2021; 

Shukla et al., 2021). The latter is known as Physics-

Informed Neural Networks. The machine learning 

approach have also been successfully to learning 

probability distributions in statistics (Kosmatopoulos 

& Christodoulou, 1994; MacKay, 1995). The question 

then arise that: can we learn statistical physics  

probability distributions to speed up simulations and 

inference of physical investigations? 

In this article, I provide evidence that indeed the 

Boltzmann equilibrium can be learned by a neural 
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ABSTRACT 
Traditional sampling methods such as the Monte Carlo method are computationally 

expensive and not feasible for studying large and complex systems. These methods are 

essential for developing new materials, optimizing chemical reactions, and 

understanding biological processes. However, simulating thermodynamic systems for 

physically relevant system sizes is computationally challenging. This is partly due to 

the exponential growth of the configuration space with the system size. With the 

current Monte Carlo methods, studying the same system for different investigation of 

its properties means repeating the expensive computation multiple times. In this 

article, I showed that thermodynamic systems can be sampled using a surrogate neural 

network model thereby avoiding the computationally expensive proposal Monte 

Carlo methods for subsequent investigations. To demonstrate the method, I trained a 

feed-forward neural network surrogate for the Boltzmann distribution of the Ising 

model. This approach would potentially help accelerate Monte Carlo simulations 

towards understanding the physics of novel materials and some biological processes. 
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network efficiently. I demonstrate application of the 

neural network surrogate technique to 

approximation of the canonical 2D Ising probability 

distribution. The paper is organized as follows: in the 

next section, I present the methodology used to 

conduct this study (including model definitions), 

thereafter discuss the results and then conclude. 

 

 

Figure 1:  Feed-forward neural network as a surrogate for the Boltzmann distribution. 

 

MATERIALS AND METHODS 

The methodology for training a neural network 

surrogate using exact computation of probability 

distribution data involves two main steps. First, 

configuration data is generated from the Boltzmann 

distribution for a system with 16 spins (see a sketch 

for 3 spins in Figure 1). This data represents a set of 

configurations of the system at different energy 

levels, with a higher probability of sampling 

configurations with lower energy levels. 

 

Next, the generated data is used to train the neural 

network surrogate. The neural network is 

implemented with two hidden layers and a sigmoid 

output layer using the Tensorflow 2 framework. The 

sigmoid output layer is chosen to model the 

probability distribution of the system, as it outputs a 

value between 0 and 1, which can be interpreted as 

the probability of sampling a particular 

configuration. 

 

During training, the neural network is adjusted to 

minimize the difference between its predicted 

probability distribution and the exact computation of 

the probability distribution from the Boltzmann 

distribution. This is done using a loss function, which 

measures the difference between the predicted 

probability distribution and the exact computation of 

the probability distribution. The training is  

 

performed using stochastic gradient descent, which 

iteratively adjusts the weights and biases of the neural 

network to improve its predictions. 

 

Once the neural network has been trained, it can be 

used as a surrogate to efficiently sample from the 

probability distribution of the system. This involves 

generating new configurations by sampling from the 

neural network’s learned probability distribution, 

which is much faster than performing exact 

computations of the probability distribution. The 

neural network surrogate can be used to explore the 

phase space of the system and obtain thermodynamic 

properties of interest. 

The model 

We consider the Ising model. The energy of the Ising 

model arranged in a lattice is given by the Boltzmann 

distribution 

𝐸(𝜎) = −⟨𝜎|𝑊|𝜎⟩ − ⟨ℎ||𝜎⟩          (1) 

where |𝜎⟩ = (𝜎1,⋯ , 𝜎𝑁)
𝑇
 is the spin vector and we 

have used the Dirac’s bra-ket notation. 𝑊 and |ℎ⟩ are 

the spin-spin (coupling) interaction matrix and 

external field bias respectively. The probability of 

finding the system in a configuration 𝜎 is given by 

the Boltzmann distribution 

𝑃(𝜎) =
1

𝑍
𝑒−𝛽𝐸(𝜎),          (2) 
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where 𝑍 is the partition function. This is a general 

formulation which allows us to compute the energy 

for both 1D and 2D easily using linear algebra 

packages. For example, for four spin system, the 

corresponding 1D coupling matrix is 

𝑊(1𝐷) = (

0 𝑤12 0 0
𝑤21 0 𝑤23 0
0 𝑤32 0 𝑤34

0 0 𝑤43 0

),               (3) 

 

 

Figure 2: 2D Final state of a simulated Ising Model with temperature T=0.2 (in units where k_B=1) and 

weights fluctuations of . (Left figure) external field  (right figure) 

while that of the 2D system allows for long range 

interaction is 

𝑊(2𝐷) = (

0 𝑤12 𝑤13 0
𝑤21 0 0 𝑤24

𝑤31 0 0 𝑤34

0 𝑤42 𝑤43 0

).  (4) 

 

Of course, the choice of 𝑊(2𝐷)
 is not unique. 

Another equally valid coupling for this system is 

𝑊(2𝐷) = (

0 𝑤12 0 𝑤14
𝑤21 0 𝑤23 0
0 𝑤32 0 𝑤34

𝑤41 0 𝑤43 0

).  (5) 

This implies we can study Ising model of different 

dimensions using the same formulation we have 

developed in this section. Two advantages can be 

drawn from this: first, it makes easier intuitively 

understanding the effects of long range interactions 

between the spins and the influence of the topology 

of the lattice on the statistics. Second, the 

configuration energies and hence the probabilities can 

be computed relatively efficiently using linear algebra 

software packages such as Python numpy or Jax. 

Some final state configuration of 2D spin lattice can 

be found in Figure 2. 

Neural network training 

Training the neural network seek to minimize the 

mean squared error loss function 

𝐿 =
1

𝑀
∑ (𝑃(𝜎) − 𝑃𝑛𝑛(𝜎))

2

𝜎 ,            (6) 

where 𝑃(𝜎) is the exact probability, 𝑃𝑛𝑛(𝜎) is the 

neural network and 𝑀 is the number of training 

samples. The neural network specification of the 

trained model can be found in Table 1 below. 

 

RESULTS AND DISCUSSION 

After the generating the training data from the 

Boltzmann distribution, the trained neural network 

surrogate was used to predict the probability 

distribution which is compared with the ground 

truth values in Figure 3. It is noteworthy that we can 

generate the probability distribution for 1𝐷 and 2𝐷 

Ising systems in a straightforward manner using 

optimized linear algebra (or machine learning) 

libraries (see eqns. 3, 4 and 5). 
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Table 1: Table of parameters specification of the 

neural network. 

Layer 

(type) 

Output Shape # of Parameters 

dense1 

(Dense) 

(None,25) 425 

dense2 

(Dense) 

(None,25) 650 

dense3 

(Dense) 

(None,25) 26 

 

Related works of applying neural networks to 

statistical physics tends to focus on finding more 

accurate force fields (Botu et al., 2017; Gkeka et al., 

2020; Poltavsky & Tkatchenko, 2021; Unke et al., 

2021), classification of phases of matter (Broecker et 

al., 2017), physics-informed solutions of partial 

differential equations (Cai et al., 2021; Laubscher, 

2021) and relatively weak attention has been given to 

the potential of the neural networks to speedup the 

ubiquitous Monte Carlo simulations (McNaughton et 

al., 2020; Wu et al., 2021). This work complements 

these efforts by demonstrating the first step in the 

direction of making the process of sampling from 

complex physics distributions efficient, focusing on 

building computationally cheap sampling distribution 

as a neural network surrogate. 

CONCLUSION 

I have studied an alternative approach to sampling of 

thermodynamic systems probability distribution 

functions. Ising model was used to demonstrate our 

proposed method of using neural network surrogate. 

This article main contribution is the demonstration 

that the thermodynamic probability distribution can 

be learned by a neural network and subsequent 

sampling of the distribution can be inexpensively 

sampled using the surrogate neural network. A 

particular drawback of this method is that system size 

is a fixed parameter of the training and therefore later 

sampling of the distribution can be restricting to 

similar system sizes without the need for re-training. 

Future work would focus on applying this method to 

simulating some of the challenging problems in 

materials research and living matter physics. 
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