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INTRODUCTION 
The study of spin glasses is a fascinating and highly 

interdisciplinary field that lies at the intersection of 

statistical mechanics, condensed matter physics, and 

computer science (Bapst et al., 2013; Georges et al., 2000; 

Hen et al., 2015; Kopeć & Usadel, 1997). Spin glasses are 
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Entanglement, on the other hand, refers to the 

correlations between different spins in the spin-glass 

(Côté & Kourtis, 2022; Koh, 2014; Koh & Kwek, 2014; 

Yatsuzuka et al., 2022). In a quantum spin-glass, the spins 

are described by quantum mechanical wavefunctions, and 

disordered magnetic materials that exhibit complex 

behaviour due to the presence of many competing and 

frustrated interactions between the magnetic moments or 

spins of the individual atoms or molecules (Kopeć & 

Usadel, 1997). 

Lattice connectivity and entanglement are both important 

concepts in the study of quantum spin-glasses. In a spin- 

glass, a large number of interacting spins are arranged on 

a lattice, and the interactions between the spins are 

random and frustrated, leading to the emergence of a 

complex and disordered ground state (Bapst et al., 2013; 

Grest et al., 1986; C. R. Laumann et al., 2010). 

Lattice connectivity refers to the way in which the spins 

are connected on the lattice. For example, a spin-glass 

may have a regular lattice structure, such as a square or 

triangular lattice, or it may have a more complex 

structure, such as a random graph or a fractal lattice. The 

connectivity of the lattice can have a significant impact 

on the properties of the spin-glass, such as its critical 

temperature and the nature of its ground state. This 

work considers three lattice connectivities: fully 

connected lattice, bi-partite graph, and a ring (see the 

sketch in Figure 1). 

the interactions between the spins can lead to 

entanglement between them. Entanglement is a 

fundamental feature of quantum mechanics, and it can 

have a significant impact on the properties of the spin- 

glass, such as its quantum criticality and the nature of its 

ground state. 

In this article, we study of the relationship between lattice 

connectivity and entanglement in quantum spin-glasses. 

This research has revealed that the connectivity of the 

lattice can have a significant impact on the degree of 

entanglement in the spin-glass, measured by the von 

Neumann entropy definition. This research has 

important implications for the design and optimization of 

quantum inspired machine learning models, as well as for 

the development of new theoretical tools and techniques 

for the study of complex quantum systems. 

METHODOLOGY 

In this section, we will outline the model definition for 

quantum spin-glass, describe the simulation procedure 

and data analysis. 
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ABSTRACT 
I have studied the role of lattice connectivity and coupling weights distribution on the en- 

tanglement of quantum spin-glasses. Its found in this work that the connectivity of the lat- 

tice weakly influence the degree of entanglement in the spin-glass compared to the distri- 

bution of the coupling constants between the spins. This suggest important implications for 

machine learning models such as Boltzmann machines and the study of complex quan-tum 

systems. 
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Figure 1: Sketch showing some graph connectivities and definition of symbols. 

The model 

The energy of the spin glass system with spin-spin 
interactions wij between σi and σj is: 

Entanglement entropy measure 

𝐻(𝜎) = − ∑𝑛 𝑤𝑖𝑗 𝜎
𝑧𝜎𝑧 − ∑𝑛

 ℎ𝑗 𝜎𝑥, (1) 
𝑖,𝑗=1 𝑖     𝑗 𝑗=1 𝑗 

Where 𝜎𝑥 = 1 ⊗ ⋯ ⊗ 𝜎𝑥 ⊗ ⋯ 1 and 𝜎𝑥 is at the 𝑗’th 

location, 𝑤𝑖,𝑗’s are the weights (or coupling constants), 

ℎ𝑗’s are external field (or bias). 

The quantum channel is therefore given by: 

𝑈(𝜎) = 𝑒−𝑖𝐻(𝜎)𝑡⁄ℏ, (2) 

where we consider ℏ is the Planck’s constant and 𝑡 is time 
(see Figure 2). Therefore, the density matrix describing the 
evolution of the system, which will be used to determine 
the von Neumann entropy in the next section, is: 

𝜌 = 𝑈†|0 ⋯ 0⟩⟨0 ⋯ 0|𝑈, (3) 

 

Figure 2: Quantum circuit showing the unitary gate U as 

grey box and the wires represent the individual quibits. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Entanglement entropy distribution for a 

normally distributed lattice weights. 

We can measure the degree of entanglement with the von 

Neumann entropy, 𝑆(𝜌), defined 

𝑆(𝜌) = −Tr(𝜌𝑙𝑜𝑔𝜌), (4) 

where ‘Tr’ is the trace operator. 

Numerical implementation 

These quantum channel in eqn. (2) is evolved for unit time 

(unit of ℏ). The results of the theoretical and numerical 
calculations are plotted in Figures. (3) and (4). We will next 
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discuss these results highlighting their implications. 
 

 

Figure 4: Entanglement entropy distribution for a 
uniformly distributed lattice weights. 

RESULTS AND DISCUSSION 

Analysis of the simulation data shown in Figure 3 and 

Figure 4 suggests the following: 

1.) the degree of entanglement in spin-glasses depends 

only weakly on the lattice connectivity 

2.) the system entanglement shows strong sensitivity to the 

distribution of the coupling constants. 

The two results above indicate that the behaviour of 

entanglement in spin-glasses is affect-ed by different 

factors to different degrees. The first result, which shows 

that the degree of entanglement in spin-glasses depends 

only weakly on the lattice connectivity, implies that the 

way the spins are connected in the lattice has a limited 

effect on the entanglement properties of the spin-glass 

(see Figures 3 and 4). Despite the difference in the lattice 

connectivity, from fully-connected to a ring, the 

information content distribution in the system dynamics 

remain almost identical. This result suggests that other 

factors such as the distribution of coupling constants, as 

indicated in the second result, may play a more significant 

role in determining the entanglement behavior of the 

system. 

The second result, which shows that the system 

entanglement is strongly sensitive to the distribution of the 

coupling constants, implies that the strength of the 

interactions between the spins is a crucial factor in 

determining the entanglement properties of the system. 

The coupling constants determine the strength and type 

of interaction between the spins, and a specific 

distribution of coupling constants can lead to the 

emergence of specific entanglement properties in the spin- 

glass. 

Taken together, these results highlight the complex 

interplay between different factors in determining the 

behavior of entanglement in spin-glasses. While the 

connectivity of the lattice may have some impact on the 

system’s entanglement, the distribution of coupling 

constants seems to be a more significant factor in 

determining the entanglement behaviour of the system. 

These findings could have important implications for the 

design and optimization of quantum-inspired machine 

learning models and the development of new theoretical 

tools and techniques for the study of complex quantum 

systems. 

Previous studies of quantum spin-glasses tends to focus 

extensively on Bethe lattices (Kopeć & Usadel, 1997; C. 

Laumann et al., 2008; Mossi et al., 2017), perhaps because 

of the successful analytical approximation technique of 

Bethe ansatz in solving these systems. While this is 

important to investigate, understanding general 

relationship between lattice connectivity and the system 

collective behaviour will require ensemble approach that 

we have adopted in this work. 

CONCLUSION 

We have studied the role of lattice connectivity in the 

entanglement of quantum spin-glasses. We have found 

that its the distribution of the coupling constants rather 

than the lattice connectivity that determines the degree of 

entanglement in a spin-glass system. The results suggests 

that for the vast majority of the set of coupling constants 

mediating the interactions between the spins, the spins are 

weakly entangled. The system shows strong sensitivity to 

distribution of the connectivity weights (or coupling 

constants) compared to underlying graph connectivity 

between the spins (see Figure 3 and 4). While we study 

small system sizes due to computational resources 

constraint, we are confident our results holds true in the 

large system size limit. Future work would focus on 

studying large sys-tem sizes and exploring large parameter 

space and phase transitions. 
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