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INTRODUCTION 

The brand new paradigm in physics, which emerged 

at the beginning of the final century and is now 

commonly called Schrodinger equation that describes 

the wave function of a quantum mechanical machine 

changed into stimulated by two sorts of experimental 

observations Planck could effectively calculate the 

spectrum of black-frame radiation in 1900 via 

postulating that an electromagnetic field can change 

electricity with atoms only in quanta which can be 

the made from the radiation frequency and the 

famous constant, which become later named after 

him (David and  Sabine, 2006).While for Planck 

himself, the introduction of his constant turned into 

an act of desperation, entirely justified via the 

settlement of the calculated with the measured 

spectrum, Albert Einstein took the idea critical. In 

his clarification of the photoelectric impact in 1905, 

he considered light itself as composed of particles 

carrying a discrete energy. This formidable view 

became in blatant contradiction with the through 

then installed belief of mild as an electromagnetic 

wave. Newton's 2nd law reads, the net pressure 

performing on a body is same to the overall time by-

product of the whole momentum of that body was 

used to make a mathematical prediction as to what 

path a given bodily machine would take through the 

years following a hard and fast of recognized initial 

conditions. Fixing this equation offers the physical 

gadget's position and momentum as a feature of the 

outside pressure at the machine. Those two 

parameters are enough to explain its country at on 

every occasion on the spot.  

In quantum mechanics, the analogue of Newton's 

regulation is Schrödinger's equation (Schrödinger, 

1926). The Schrödinger equation is a linear partial 

differential equation (PDE) that describes the wave 

characteristic of a quantum-mechanical system 

(David, 2004). It is a key to bringing about quantum 

mechanics, and its discovery become a sizeable 

landmark in developing the concern. The equation is 

named after Erwin Schrödinger, who postulated the 

equation in 1925, and posted it in 1926, forming the 

basis for the paintings that resulted in his nobel prize 

in Physics in 1933. Several studies have been 

conducted on Schrodinger equation. Akaninyeye, 

Christian and Louis (2019) studied the Schrodinger 

equation in the cylindrical basis with a harmonic 

oscillator using a Nikiforov-Uvarov method. The 

energy eigenvalues and the normalized wave 

characteristic in cylindrical basis z,, in the form 

( ) ( )22
2

2
, 


 += zzV  where 


is the frequency 

Correspondence:  Hassan B. Department of Mathematics, Nigerian Army University Biu, Borno State, Nigeria 

  bukar.hassan@naub.edu.ng; Phone: 07031521372 

How to cite: Alhaji Tahir, Bukar Hassan. (2023).  Approximate Solution of Schrodinger Equation to Diatomic 

Molecule for Harmonic Oscillator. UMYU Scientifica, 2(2), 28 – 36. https://doi.org/10.56919/usci.2223.005  

 

ISSN: 2955 – 1145 (print); 2955 – 1153 (online) 

https://doi.org/10.56919/usci.2223.005 

A periodical of the Faculty of Natural and Applied Sciences, UMYU, Katsina 

ABSTRACT 
This study has described the approximate solution of Schrodinger equation to 

diatomic molecule for harmonic oscillator. The solution procedure is developed by 

the Power series method and Newton’s second law. It  consider an approximate 

solution of harmonic oscillator using Schrödinger equation in one dimension only 

because other analytical approaches are limited to the widely known method and 

consider two to five dimensions with various iteration method to obtain their results 

but here the solutions to be obtained and their efficiency will help other research to 

comprehend how the solution of this harmonic oscillator has been done over the 

years and also to use the most efficient approximate solution. 

 

 
 

ARTICLE HISTORY  

Received April 30, 2023  

Accepted June 15, 2023  

Published June 30, 2023  

KEYWORDS  

Schrodinger equation, Diatomic 

molecule, Harmonic oscillator, 

Newton’s law 

 

 

 © The authors. This is an Open 

Access article distributed under 

the terms of the Creative 

Commons Attribution 4.0 

License 

(http://creativecommons.org/ 

licenses/by/4.0) 

 

 

https://scientifica.umyu.edu.ng/
https://orchid.org/0000-0001-9848-9075
https://orcid.org/0000-0003-3213-2107
mailto:bukar.hassan@naub.edu.ng
https://doi.org/10.56919/usci.2223.005
https://doi.org/10.56919/usci.2223.005


 
 

UMYU Scientifica, Vol. 2 NO. 2, June 2023, Pp 28 – 36 

 29 

 

https://scientifica.umyu.edu.ng/                      Tahir and Bukar /USci, 2(2): 28 – 36, June 2023  
 

of the oscillator obtained, Which suggests that the 

oscillator propagated along the axis of symmetry of 

harmonic oscillator potential. Harko and Liang 

(2018) investigated the connection between the linear 

harmonic oscillator equation and a few lessons of 

second order non-linear ordinary differential 

equations of generalized lienard type, which 

physically describe crucial oscillator structures the 

usage of a way in quantum mechanics that 

incorporate the deformation of the segment area 

coordinate of the harmonic oscillator. They 

generalized the equation of motion of the classical 

linear harmonic oscillator to several training of 

intensely non-linear differential equations. The 

devised technique may be similarly generalized to 

derive explicit widespread solution of non-linear 

second order differential equation unrelated to the 

harmonic oscillator. The real existence applications of 

the acquired results are used for the touring wave 

answer of the reaction-convection-diffusion equations 

and the huge amplitude loose vibrations of a uniform 

cantilever beam. Bonilla and Rosas (2017) investigated 

the harmonic oscillator within the framework of 

scale fantastically where the dynamic regulation 

obeyed with the aid of the only-dimensional physical 

structures inside the scale extraordinarily technique 

which reduced to a Riccati non-linear differential 

equation.      

( )v
h

iv
m

W .
22

2 −+=
 

Riccati nonlinear differential equation is 

implemented to the harmonic oscillator potential, 

which ends up to the calculation of the answers of 

the scale exceptionally problem in phrases of the 

well-known solution of the Schrödinger equation for 

the harmonic oscillator.  

Several studies have been conducted on Schrodinger 

equation. Alharbey, et.al (2019) investigated chirped 

Gaussian pulse excitation of a harmonic oscillator 

and stated the basic problem of the interplay of a 

single quantized mode of the radiation field, modelled 

as quantized harmonic oscillator with a laser pulse of 

chirped Gaussian line-shape. The average photo wide 

variety and the brief emitted spectrum are calculated 

analytically in phrases of the error feature of 

complicated argument. The spectral peaks of the line 

shape of the emitted radiation are tested for exclusive 

system parameters and preliminary states of the 

harmonic oscillator. Richard (2018) worked on 

solutions of the fractional Schrödinger equation via 

diagonalization - a plea for the harmonic oscillator 

basis. A covariant non-neighbourhood extension of 

the desk bound Schrödinger equation was provided 

and its solution in terms of Heisenberg’s matrix 

quantum mechanics became proposed. For the special 

case of the Riesz fractional derivative, the calculation 

of corresponding matrix factors for the non-local 

kinetic energy term turned was carried out 

completely analytically inside the harmonic oscillator 

foundation and led to a new interpretation of non-

nearby operators in terms of generalized Glauber 

states. As a first application, the capability power 

matrix factors are calculated for the fractional 

harmonic oscillator and the corresponding 

Schrödinger equation become diagonalized. For the 

special case of invariance of the non-nearby wave 

equation under Fourier-transforms, a new symmetry 

became deduced, which can be interpreted as an 

extension of the standard parity-symmetry. Lawson, 

Gabriel and Laure (2018) studied Lewis-Riesenfeld 

quantization and SU (1,1) coherent states for 2D 

damped harmonic oscillator where in the classical 

level, they solved the equations of motion for a 

specific case of the time-dependent coefficient of 

friction and at the quantum level, they used the 

Lewis-Riesenfeld technique of invariants to construct 

exact solutions for the corresponding time-based 

Schrodinger equations. The eigenfeatures obtained 

are in phrases of the generalized Laguerre 

polynomials solutions which result in generalization 

version of Heisenberg’s uncertainty relation and the 

generators of the su(1,1) lie algebra. Chang (2019) 

studied responses to frequency modulation in a 

quantum harmonic oscillator and considered the 

frequency modulation reaction in terms of the time 

dependence of quasi energies and the deviation from 

the quantum virial theorem. Four modulation kinds 

are considered: linear, quadratic, exponential, and 

sinusoidal. Alakesh et al. (2019) worked on an 

experimental demonstration of force driven quantum 

harmonic oscillator in an IBM quantum computer 

and tested a quantum simulation of QHO within the 

presence of both time-varying and constant force field 

for each one and dimensional case. New quantum 

circuits are advanced to simulate each the one and 

two-dimensional QHO and are applied at the real 

quantum chip “ibmqx4”. Experimental information, 

really illustrating the dynamics of QHO in the 

presence of time-established force field, is presented 

in graphs for exclusive frequency parameters within 

the Hamiltonian picture and quantum simulation of 

many bodily structures can be understood from the 

simulation of the quantum harmonic oscillator.  

In the past other methods have been used to solve the 

harmonic oscillator including Dirac Equation, 

Nikiforov-Uvarov method, perturbation theory, 

vibrational method and shooting method. Use of 

Schrodinger’s equation in solving the harmonic 

https://scientifica.umyu.edu.ng/
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oscillator have been on the rise, power series and 

Newton’s second law are incorporated with 

Schrodinger so as to converge to a solution faster and 

give an accurate error free solution. Thus, there has 

been a need to obtain approximate solution of one-

dimension problem to harmonic oscillator by testing 

the result accuracy which in this study using 

Schrodinger’s equation method.  

 

 

METHOD OF SOLUTION FOR HARMONIC 

OSCILLATOR 

Here we present the technique utilized in organising 

the approach to the Schrödinger equation for the 

harmonic oscillator. We consider the figure below, 

which describes the vibration of a diatomic molecule 

LCH , to be a one-dimensional problem in that the 

two atoms only move toward or away from one 

another in a single direction x . 

 

Figure 1: Vibration of diatomic molecule (HCL) 

Using Figure 1, we let 1x  be the position of the 

hydrogen atom from the centre of mass of the 

molecule and also let 2x  the position of the chlorine 

from the centre of mass of the molecule. The 

separation between the atoms is defined as 

12 xxr −=  and 

r
mm

m
x

21

2
1

+
=  and r

mm

m
x

21

1
2

+
=   (1) 

During harmonic vibration, the atoms oscillate about 

an equilibrium separation, er , where we can define 

x  as the deviation from that equilibrium separation, 

i.e., errx −= . The motion is constrained by a force 

that, to a good approximation, is proportional to the 

deviation from equilibrium, x , and operates in the 

opposite direction to the motion, i.e., a restoring 

force, such that 

xkF −=      (Hooke's law)   (2) 

The proportionality of constant, k , is called the force 

constant. 

The nature of the oscillating motion can be realized 

by equating force to mass times acceleration for each 

atom, 

xk
dt

xd
mamf −===

2

1

2

111  and 

xk
dt

xd
mamf −===

2

2

2

222    (3) 

Replacing 1x  and 2x  in (2) from (3) for both 1f  and 

2f , we find 

xk
dt

rd

mm

mm
f −=

+
=

2

2

21

21
   (4) 

Recognizing 

21

21

mm

mm

+
 as the reduced mass,  , and  

erxr += , where er  is a constant; (4) becomes  
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xk
dt

xd
f −==

2

2


    

(5)
 

Thus, the problem of an oscillating diatomic is 

reduced to the departure of a single mass,  , from its 

equilibrium separation from a fixed reference, er . 

The solution to (5) yields x  as a sinusoidal function 

of t  

















+







= bt

k
Ax

2

1

sin


       (6) 

where b is a phase constant and 

2

1












k
 has units of 

reciprocal time or frequency,  2=  

Conservation of energy requires that any work done 

moving the reduced mass against the restoring force,

xdf= , must be countered an opposing change 

in the potential energy. 

( )xdxdf  −==     (7) 

or 

( )

xd

xd
xkf


−=−=     (8) 

Integrating (8), we find the functional dependence of 

( )xV  on x  

( ) cxkxV +=
2

2

1
    (9) 

where C is a constant of integration.  

SCHRODINGER EQUATION 

We can apply this potential energy in (9) to the 

Schrödinger equation, to find any quantization of 

energies of the harmonic oscillator. Doing so, while 

replacing m  with the reduced mass,  , yields 

( ) ( ) ( )txEtxkxtx
x

h
nnnn ,,

2

1
,

2

2

2

22




=−



−  (10) 

Rearranging (10) 

( ) ( ) ( ) 0,,,
22

2

2

2

=+−



tx

h

E
tx

h

kx
tx

x
n

n
nn 





   (11) 

simplifying by letting 2

2

h

k
 = , such that the 

Schrödinger equation becomes 

( ) ( ) 0,
2

, 22

22

2

=







−+




txx

h

E
tx

x
n

n
n 


  (12) 

To obtain the basis set, ( ) ,,txn that satisfies this 

equation by first considering the asymptotic solution 

at large x . At large x , 2

22 2

h

E
x n

   , and (12) 

collapses to 

( ) ( ) 0,, 22

2

2

=−



txxtx

x
nn    (13) 

The solution to (13) are Gaussian, Hence 

 

But only satisfies the global constraint of 

quadratic integrality, with
2/2xe 
grows largely as 

→x
 

The general form of solution at all x ,  

( ) ( ) tx

nn
neexftx

 −= 2/2

,          (14)  

where  ( )xf n  represent the shape of the wave 

function because of the time-dependent part of the 

wave function,  in ( ) ( ) ( ),, tTxtxn  =  slides 

through the spatial operators in (12),we can simplify 

the process of finding ( )xf n  by first ignoring . 

Applying the spatial part of our trial basic set of 

function ( ) ( )
2 /2x

n nx f x e  −=  to (12). 

Beginning with the first derivative of ( )xn ,we find 

( ) ( )( ) ( )
2 2/2 /2x x

n n n

d
x f x x e e f x

x dx

   − −
= − +



( ) ( )( ) ( )
2 2/2 /2x x

n n n

d
x f x x e e f x

x dx

   − −
= − +


 (15) 

 

 

 

( ) tx

n
neetx

 −= 2/2

,

2/2xe −

( )tT

( )tT
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The second derivative is then 

 

(16) 

 

(16) 

Or simplifying  

( ) ( )( ) ( ) ( ) ( )











+




−−=



 − xf
x

xf
x

xxfxxfex
x

nnnn

x

n 2

2
222/

2

2

2 
 

( ) ( )( ) ( ) ( ) ( )











+




−−=



 − xf
x

xf
x

xxfxxfex
x

nnnn

x

n 2

2
222/

2

2

2   

                                                                             (17)   (17) 
 

Completing (12); (18) cancelling the term in  

and requiring the coefficient of 
2/2xe −

 to sum to 

zero, because no such term survives on the right side, 

we find an equation in ( )xfn   

( ) ( ) ( ) ( ) 0
2

2
22

2

=+−



−




xf

h

E
xfxf

x
xxf

x
n

n
nnn




(19) 

APPLICATION OF POWER SERIES TO 

SCHRODINGER EQUATION 

Having established (19) above, it is therefore 

considered here that power series can be applied to 

Schrödinger equation. However, since we know little 

about the nature of ( )xfn , we apply a general utility 

power series. 

( ) 


=

++++==
0

3

3

2

210 ...
n

n

nn xCxCxCCXCxf

      (20) 

Differentiating (20) again in a stepwise fashion 

( )  


=



=

−− +++===




1 0

2

321

11 ...32
n n

n

n

n

nn xCCCXnCXnCxf
x

 (21) 

Applying 

( )xf n
 again in a stepwise fashion to (19) 

with the second summation running from 
0=n

, 

because that term is zero. 

The second derivative then becomes 

( ) ( ) ( )( ) 


=



=

+

− ++=++=−=




2 0

322

2

2

2

...62121
n n

n

n

n

nn xCCXCnnXCnnxf
x

      (22) 

Plugging , its first and second derivative into 

(19), we find  

( )( )


=

+ =







+−−++

2
22 0

2
212

n

n

n
nn

n

n

n

n

n XC
h

E
XnCXnCXCnn




      (23) 

Since no powers of x survive on the RHS of (23), the 

coefficients of 
nX must sum to zero. i.e. 

( )( ) 0
2

212
22 =+−−++ + n

n
nnn C

h

E
nCnCCnn




                  (24) 

Rearranging (24) yields a recursion relation where 

2+nC   is related to nC   

( )( ) n

n

n C
nn

h

E
n

C
12

2
2

2

2
++









−+

=+




   (25) 

Truncating the series at a finite value of n  , say vn =

. Then the coefficients vC  is finite but coefficients’  

21, ++ vv CC , and higher vanish .if vC is finite and 

2+vC  is zero, then the coefficient of vC in (25) must 

be zero, i.e., 

0
2

2
2

=−+
h

E
n n

     (26)
 

Rearranging with substitutions for   and k , the 

allowed energies for the harmonic oscillator, is  









+=








+=








+=

2

1

2

1

2

12

vhvv
k

hv
h

Ev








 (27) 

With eigenvalues at 

hvE
2

1
0 =

 

hvE
2

3
1 =
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




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
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
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2
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
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
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xxfeexxf

dx

d
xxfx

x
nnn

xx

nnn 2

2
2/2/

2

2
22

 

( )22x
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hvE
2

5
2 =

 , etc. 

The Eigen functions are; 

( ) ( ) 2/

0

2/ 22 x
v

n

n

n

x

nn eXCexfx  −

=

− ==

  (28) 

The lowest energy wave function , contains no 

power of x in the polynomial, ( )xfn , and collapse to 

the Gaussian which is an even function of x , i.e. 

 

( ) 2/

00

2xeCx  −=
    (29) 

Orthogonalization of the next higher energy wave 

function,  requires removal of any component 

of ( )x1  that is parallel to , i.e., the 0C in  

( ) 2/

1

2/

0

2/
1

0

1

222 xxx

n

n

n eCeCeXCx  −−−

=

+==

      (30) 

Must be zero, otherwise there would be a component 

of   along . 

Thus  

( ) 2/

11

2xeCx  −=
    (31) 

which are odd functions of x ; i.e. ( ) ( )xx −−= 11 
 

The wave function of the harmonic oscillator 

alternates in parity, even and odd, as the energy of 

the oscillator increases, with either only even or only 

odd powers of x  in each series. The coefficients, nC , 

can be found by normalizing, for example 
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  (32) 

yielding 

4

1

0 




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
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


C

 

The first four wave function for the harmonic 

oscillator are, 
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1

0
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


 −


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
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=

 

Considering a calculation of the most probable 

position for a harmonic oscillator with wave function 

( ).0 x We search for the maximum in 

, the probability density by finding 

where the slope is zero. 
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The roots of (34) lies at 0,=x .The root at

,=x  are minima, while the root at 0=x   is 

the maximum. Thus, the most probable position for 

an oscillator with wave function ( )x0  is at 

, or at the equilibrium separation 

between the nuclei and at the minimum in the 

potential energy. 

RESULTS 

This session presents the results used in establishing 

solution to the Schrödinger equation for harmonic 

oscillator. Consider figure 1 which described the 

vibration of a diatomic molecule of in one-

dimensional problem. It is shown that two atoms 

only move toward or away from one another along a 

( )x0

( ) ( )xx −= 00 

( )x1

( )x0

( )x0 ( )x1

( ) ( )xx 00  

0=−= errx

LCH

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 2 NO. 2, June 2023, Pp 28 – 36 

 34 

 

https://scientifica.umyu.edu.ng/                      Tahir and Bukar /USci, 2(2): 28 – 36, June 2023  
 

single direction resulting to masses assigned to each 

atomic molecule defined above and the equilibrium 

separation of the two atoms  which acted upon by 

a force in opposite direction as indicated in (2). 

Rearranging (8) to have 

        
(35)

 

Next is to integrate (35),  

 

 

Therefore, 

      (36)
 

which is the potential energy, and (10) can be written 

as  

           (37)  Multiplying (37) through by  we have 

     
(38)

 

This can further be expressed as 

     (39)  

     
(40)

 

Now substituting  for  in (39) result to (12) 

which describe the Schrodinger equation. However, 

the second derivation of the general form of solution 

obtained in (13) is given by 

 

 

 

 

    

      (41)
  

(26) can further be simplified as follows; 

 

 

The quantization of energies of the harmonic 

oscillator can be expressed as 

 

which is simplified as  

 

Hence, 

.            
(42)

 again, substituting for =  in (42) and rearranging the allowed energies for the harmonic oscillator, we have 

           
(43)

 

With the quantization of energies in (43), the 

eigenvalues are obtained as follows; 

 

 

 

,   

 
          

(44) 

The Eigen functions obtained from the general form 

of solution in (14) can be obtained as follows; 

  

(45)
 

Multiplying (45) twice and integrating both sides 

result to the wave function for the harmonic 

oscillator in (33). The maximum value in 

 when the slope is zero was obtain in 

(34). Considering Figure 2 below, it gives the 

Harmonic oscillator wave functions and probability 

densities.  
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Wave functions 

 

 

 

 

 

 

 

 

 

 

 

 

Plot of  and  for HCL 

 

 

Plot of  and  for HCL (using Mathlab 2015a) 

Figure 2: Harmonic oscillator wave functions and probability densities. 

 

DISCUSSION 
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increasing quantum number ( see the progression 

of from  to  in figure 2). At 

large quantum numbers the classical and quantum 

mechanical oscillators correspond. This is referred to 

as the Correspondence Principle. 

CONCLUSION 

A lot of methods have been used to obtain solution 

for the harmonic oscillator. In this paper the 

Schrodinger equation is used to obtain the solution 

for the harmonic oscillator when compared to 

Lambert (2001) which uses same method together 

with boundary conditions and solved numerically. 

The Schrodinger equation gives clear understanding 

on the efficient and accuracy of results obtained when 

compared to other methods used to obtain solution 

for harmonic oscillator. 

More researches should be done on the other 

methods of solution of harmonic oscillator such as 

numerical methods which involves computation with 

the use of software such as MATLAB etc.  
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