ORIGINAL RESEARCH ARTICLE

Graph Coloring with inversion in the Γ_{1} non-Deranged Permutations

Muhammad Ibrahim ${ }^{(D)}$ and Kazeem Olalekan Aremu
Department of Mathematics, Usmanu Danfodiyo University, Sokoto State, Nigeria

ARTICLE HISTORY

Received November 30, 2022
Accepted December 12, 2022
Published December 30, 2022

ABSTRACT

In this paper, we investigate graph coloring with inversion in Γ_{1} non-deranged permutations, the permutation which fixes the first element in the permutations. This was first accomplished by performing some calculations on this strategy using prime numbers. $p \geq 5$. As a result, We observed that the chromatic number of any $\chi\left(G\left(\omega_{P-I}\right)\right)$ in $G_{p}^{\Gamma_{1}}$ is equal to $\mathrm{p}-1$ and any $\chi\left(G\left(\omega_{I}\right)\right)_{\text {in }} G_{p}^{\Gamma_{1}}$ is equal to one. Similarly, the chromatic index of any $\chi^{\prime}\left(G\left(\omega_{P-I}\right)\right)_{\text {in }} G_{p}^{\Gamma_{1}}$ is equal to $\mathrm{p}-2$ and any $\chi^{\prime}\left(G\left(\omega_{I}\right)\right)_{\text {in }} G_{p}^{\Gamma_{1}}$ is equal to zero. Results for this investigation established that chromatic number and chromatic index are related.

KEYWORDS

Graph coloring, $\boldsymbol{\Gamma}_{1}$-non-
deranged permutations, Inversion, chromatic number and chromatic index

(C) The authors. This is an Open Access article distributed under the terms of the Creative
Commons Attribution 4.0 License (http:// creativecommons.org/ licenses/by/4.0)

INTRODUCTION

An inversion of the permutation f is a pair (i, j) such that $i<j$ and $f_{i}>f_{j}$ which is denoted as $\operatorname{Inv}\left(\omega_{i}\right)$ and the number of inversion f denoted by $\operatorname{inv}\left(\omega_{i}\right)=\left|\operatorname{Inv}\left(\omega_{i}\right)\right|$.Also a basic graph is colored when each vertex is given a different color, ensuring that no two neighboring vertices have the same color. Aunu permutation pattern first arose, out of attempts to provide some combinatorial interpretations of some succession scheme and today series of results ranging from its avoiding class to its properties which have also been studied. Garba and Ibrahim (2010) developed a strategy for the prime numbers $p \geq 5$ and $\Omega \subseteq N$ employing the catalan numbers as well. This scheme creates a cycle of permutation patterns that is utilized to decide the arrangements. Researchers have over time looked also at permutation group with certain properties; one that comes to mind is the permutation patterns that have any of the element fixed or the one that has no fixed element, here the idea of deranged and non-deranged permutation surface. It is in line with this understanding that Ibrahim et al.,(2016) modified the scheme of Garba and Ibrahim (2010) to two linenotation and the scheme generated a set of permutations with a fix at 1 (which generated the natural
permutation groupcalledthe Γ_{1} non -deranged permutation group and is denoted as $G_{p}^{\Gamma_{1}}$.Ibrahim et al., (2017) outline the theoretical characteristics of the Ascent set in regard to the Γ_{1} non- deranged permutation and demonstrate that the union of the Ascent set equals the identity. They also note that the difference between $\operatorname{Asc}\left(\omega_{i}\right)$ and $\operatorname{Asc}\left(\omega_{p-1}\right)$ is one.Aremu et al., (2018) utilized the direct and skew sum operation on the components of the Γ_{1} non- deranged permutation group and showed the relationships and schemes on the structures and fixed point of the permutations generated from these operations

Additionally, if π isthe direct sum of these Γ_{1} nonderanged permutations, then the collection of permutations in the form of π is an abelian group, designated as $G_{p}^{\Gamma_{m \oplus}}$. According to Aremu et al., (2019), the $\operatorname{Re} s\left(\omega_{i}\right)$ and $\operatorname{Re} s\left(\omega_{p-1}\right)$ of Γ_{1} non-deranged permutations are equally distributed between the right and left embracing numbers, respectively. Additionally, it notices that the height of the weighted motzkin path of ω_{i} is the same height as the height of $\omega_{p-\operatorname{des}\left(\omega_{i}\right)}$ motzkin identity). This obtained set of permutations form
Correspondence: Ibrahim, M. Department of Mathematics, Usmanu Danfodiyo University, Sokoto State, Nigeria. \boxtimes muhammad.ibrahim@udusok.edu.ng
How to cite: Muhammad Ibrahim and Kazeem Olalekan Aremu (2022). Graph Coloring with inversion in the Γ_{1} nonDeranged Permutations. UMYU Scientifica, 1(2), 107 - 106. https://doi.org/10.56919/usci.1222.016
path. Ibrahim and Garba (2019) studied ascent and descent blocks of Γ_{1} - non deranged permutations. moreover, it defined the mapping $\Psi_{A I}: G_{p}^{\Gamma_{m}} \rightarrow \Omega_{p}$ which converts the permutation from the weighted Motzkin path in the Ω_{p} with respect to the ascent and descent blocks from the Γ_{1} non- deranged permutations group $G_{p}^{\Gamma_{m}}$. Inversion number and major index are not equally distributed in Γ_{1} non- deranged permutations, as demonstrated by Garba and Ibrahim (2019), who also established that the difference between the sums of the major index and the inversion numbers is equal to the sum of the descent numbers in these permutations. Ibrahim and Muhammad (2019) produced recursion formulas for the maximum and lowest block counts in Γ_{1} - non deranged permutations. They also noted that $\operatorname{arc}\left(\omega_{i}\right)$ and $\operatorname{asc}\left(\omega_{i}\right)$ are equally distributed in Γ_{1} non- deranged permutations. Using the membership function that was built for the fuzzy set on G_{p}^{\prime}, Ibrahim et al., (2021) investigated some algebraic theoretic properties of the fuzzy set on G_{p}^{\prime} and established the results for the algebraic operators of the fuzzy set on G_{p}^{\prime}, which are the algebraic sum, algebraic product, bounded sum, and bounded difference. They also built a relationship between the operators and the fuzzy set on $\mathcal{G}_{\mathrm{p}}{ }^{\prime}$. More recentlyIbrahim et al.,(2022) proved that the right embracing sum $\operatorname{Re} s\left(\omega_{i}\right)$ is equal to the right embracing sum $\operatorname{Re} s\left(\omega_{p-i}\right) \quad$ where $\quad 1 \leq i \leq p-1 \quad$ and $\operatorname{Re} s\left(\omega_{i}\right)=\frac{(p-3)(p-1)}{8}$ where $i=\frac{p-1}{2}, \frac{p+1}{2}$. It also observed that the left embracing sum L e $s\left(\omega_{i}\right)$ is equal to the right embracing sum $\operatorname{Re} s\left(\omega_{i}\right)$ and $\operatorname{Le} s\left(\omega_{\frac{p+1}{2}}\right)=\frac{p^{2}-1}{8}$ where $p \geq 5$.

In order to prevent neighboring vertices from having the same color, a graph is colored by giving a different color to each of its vertices. To produce a suitable color that can be employed in relation to inversion statistics in chromatic index and chromatic number is the goal of this study.

MATERIALS AND METHODS

In this section before we outline the main results in this research paper, we attempt to define some basic concept that will help in further understanding of this work.

Γ_{1} non-deranged permutations

Let Γ be a non-empty set of prime cardinality $p \geq 5$ such that $\Gamma \subset N$. A bijection ω on Γ
of the following kind.
$\omega_{i}=\left(\begin{array}{cccccc}1 & 2 & 3 & . & . & p \\ 1 & (1+i)_{\text {mop }} & (1+2 i)_{\text {mop }} & . & . & (1+(p-1) i)_{\text {mop }}\end{array}\right)$
Also known as Γ_{1} non- deranged permutations. The set of all regular, Γ_{1}-non deranged permutations is designated as \boldsymbol{G}_{p}.

Γ_{1} non- deranged permutations group

The group $G_{p}^{\Gamma_{1}}$ is formed from the pair G_{p} and the composition of natural permutations. This unique permutation group fixes the initial component of Γ.

Inversion

An inversion in permutation $\omega_{i}=a_{1} a_{2} \ldots a_{n}$ is a pair (i, j) such that $i<j$ and $a_{i}>a_{j}$
which is denoted as $\operatorname{Inv}\left(\omega_{i}\right)$ and the number of inversion ω_{i} denoted by $\operatorname{inv}\left(\omega_{i}\right)=\left|\operatorname{Inv}\left(\omega_{i}\right)\right|$

Graph

A graph $G=(V, E)$ is a pair, where V denotes the set of vertices and E denotes the set of edges (not necessary non-empty)

Connected Graph

If a path connects any two vertices in a graph, then the graph is said to be connected. If not, the graph is not connected.

Complete Graph

A complete graph is one in which every set of unique vertices is adjacent.

Null Graph

If the edge set of a graph G is empty, it is referred to as a null graph and is indicated by the symbol N_{n}.

Matching

A group of edges in a graph that do not share any vertices is known as a matching or independent edgeset.

Matching Number

The number of edges in the maximal matching is known as the matching number.

Regular Graph

If every vertex in a graph G has an equal number of degrees, then the graph is considered regular.

Graph Coloring

A graph is colored by giving a different color to each of its vertices so that no two neighboring vertices have the same color

RESULTS AND DISCUSSION

In this section, we discuss the investigations' details and results obtained.

Proposition 1

Let $G_{\omega_{i}}$ be Γ_{1}-non deranged permutations of subgroup of ω_{i}, then every Γ_{1} non- deranged permutations of $G_{\omega_{i}}$ where $i \neq 1$ has to connected component, that is $c(G)=2$.

Proof:

Since all the permutation graph of Γ_{1} non- deranged permutations has an isolated vertex and a path exists between each vertex remaining in the graph, then this shows that every Γ_{1}-non deranged permutation graph has 2 connected component.

Proposition 2

Let $G_{\omega_{i}}$ and $G_{\omega_{p-i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} and ω_{p-i} respectively, then the permutation graph of ω_{i} and ω_{p-i} has no common edges.

Proof:

ω_{i} and ω_{p-i} of Γ_{1} non- deranged permutations are inverse of each other and it is immediate to see it in their permutation graph structure that they have no common edges.

Remark 3

Let $G_{\omega_{i}}$ and $G_{\omega_{p-i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} and $G_{\omega_{p-i}}$ respectively, then
I. $\quad G_{\omega_{i}}-\left\{v_{1}\right\}$, where $i \neq 1$ is connected graph
II. $\quad G_{\omega_{p-1}}-\left\{v_{1}\right\}$, is a complete connected regular graph
III. $\quad G_{\omega_{i}}$ is a null graph, if $i=1$.

Proposition 4

Let $G_{\omega_{i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} and $G_{\omega_{p-1}}-\left\{v_{1}\right\}$ denoted permutation induced sub graph of ω_{1} then

$$
G_{\omega_{p-1}}-\left\{v_{1}\right\} \cong K_{p-1}
$$

Proof:

A complete graph K_{n} has $\frac{n(n-1)}{2}$ edges and since $G_{\omega_{i}}$ has p vertices, then by Remark $3.3 G_{\omega_{p-1}}-\left\{v_{1}\right\}$ is a complete graph with $p-1$ vertices. The number of edges of $G_{\omega_{p-1}}-\left\{v_{1}\right\}$ is $\frac{(p-1)(p-2)}{2}$, then the permutation graph $G_{\omega_{p-1}}-\left\{v_{1}\right\}$ is isomorphic to K_{p-1}.

Proposition 5

Let $G_{\omega_{i}}$ and $G_{\omega_{p-i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} and ω_{p-i} respectively, then

$$
\left(G_{\omega_{i}} \cup G_{\omega_{p-i}}\right)-\left\{v_{1}\right\} \cong K_{p-1}
$$

Proof:
Suppose $G_{\omega_{i}}-\left\{v_{1}\right\}$ and $G_{\omega_{p-i}}-\left\{v_{1}\right\}$ denote the permutation induced sub graph of $G_{\omega_{i}}$ and $G_{\omega_{p-i}}$ respectively, such that

$$
\begin{aligned}
G_{o_{i}}-\left\{v_{1}\right\} \cup G_{\omega_{p i-}} & \left\{v_{1}\right\}=\left(G_{o_{i}} \cup G_{o_{p i t}}\right)-\left\{v_{1}\right\} \\
& =G_{\omega_{p-i}}-\left\{v_{1}\right\}
\end{aligned}
$$

$\cong K_{P-1}$

Proposition 6

Let $G_{\omega_{i}}$ and $G_{\omega_{p-i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} and ω_{p-i} respectively, then for every permutation graph of $G_{\omega_{i}}$ is spanning sub graph of the permutation graph $G_{\omega_{p-i}}$.

$$
\chi\left(G\left(\omega_{1}\right)\right)=1
$$

Proof:

The graph order $\left|V\left(G_{\omega_{i}}\right)\right|$ and $\left|V\left(G_{\omega_{p-i}}\right)\right|$ are equal and the graph size $\left|E\left(G_{\omega_{i}}\right)\right|$ is less than the graph size of $\left|E\left(G_{\omega_{p-i}}\right)\right|$ the result follows.

Proposition 7

Let $G_{\omega_{i}}$ be Γ_{1} non- deranged permutation graph of ω_{i} where $1 \leq i \leq p-1$ and α denoted the matching number of the permutation graph $G_{\omega_{i}}$ then
$\alpha^{\prime}\left(G_{\omega_{i}}\right)=\frac{(p-1)}{2}$

Proof:

Suppose $G_{\omega_{i}}$ be Γ_{1} non-deranged permutation graph of ω_{i} and $G_{\omega_{i}}-\left\{v_{1}\right\}$ denoted the permutation induced the permutation sub graph of $G_{\omega_{i}}$ since $G_{\omega_{i}}-\left\{v_{1}\right\}$ is connected graph, then the order will be $\left|G_{\omega_{i}}-\left\{v_{1}\right\}\right|=p-1$ and half of $p-1$ gives the matching number of the permutation graph $G_{\omega_{i}}$ for every i.

Proposition 8

Let $G_{\omega_{p-1}}$ be Γ_{1} non- deranged permutation graph of ω_{p-1} and $\chi\left(G\left(\omega_{p-1}\right)\right)$ denoted the chromatic number of the permutation graph $G_{\omega_{p-1}}$ then

$$
\chi\left(G\left(\omega_{p-1}\right)\right)=p-1
$$

Proof:

By Remark 3(ii) for any $\omega_{p-1} \in G_{p}^{\Gamma_{1}}$, the graph $G_{\omega_{p-1}}-\{1\}$ is complete. Therefore the chromatic number of the graph of ω_{p-1} is $p-1$.

Proposition 9

Let $G_{\omega_{1}}$ be Γ_{1} non- deranged permutation graph of ω_{1} and $\chi\left(G\left(\omega_{I}\right)\right)$ denoted the chromatic number of the permutation graph ω_{1} then

Proof:

By Remark 3(iii) for any $\omega_{1} \in G_{p}^{\Gamma_{1}}$, the graph $G_{\omega_{1}}$ is null/empty. Then thereis no edge in the graph (each vertex is isolated) and hence the chromatic number of the graph of $G_{p}^{\Gamma_{1}}$ is 1 .

Proposition 10

Let $G_{\omega_{p-1}}$ be Γ_{1} non- deranged permutation graph of ω_{p-1} and $\chi^{\prime}\left(G\left(\omega_{p-1}\right)\right)$ denoted the chromatic index of the permutation graph $G_{\omega_{p-1}}$ then
$\chi^{\prime}\left(G\left(\omega_{p-1}\right)\right)=p-2$

Proof:

By Remark 3(ii) for any $\omega_{p-1} \in G_{p}^{\Gamma_{1}}$, the graph $G_{\omega_{p-1}}-\{1\}$ is complete.Choose any edge ein the graph $G_{\omega_{p-1}}-\{1\}$, Supposethefirstcolorisassignedtotheedge e .Paintalltheedgesadjacentto $\quad e$ with second color.Next paint these edges adjacent to this using firstcolor. Continue this process till every edge in the graph $G_{\omega_{p-1}}-\{1\}$ has painted. Hence the chromatic index of the graph of ω_{p-1} is $p-2$.

Proposition 11

Let $G_{\omega_{1}}$ be Γ_{1} non- deranged permutation graph of ω_{1} and $\chi^{\prime}\left(G\left(\omega_{1}\right)\right)$ denoted the chromatic index of the permutation graph ω_{1} then
$\chi^{\prime}\left(G\left(\omega_{1}\right)\right)=0$

Proof:

For any $\omega_{1} \in G_{p}^{\Gamma_{1}}$ by Remark 3.3(iii), the graph ω_{1} is empty or null. As a result, the graph has no edges, and as a result, its chromatic index is equal to zero.

CONCLUSION

In this paper, we compute the graph coloring using inversion on Γ_{1} non-deranged permutations.

We found that every $\quad \chi\left(G\left(\omega_{p-1}\right)\right)$ in $G_{p}^{\Gamma_{1}}$ has a chromatic number of $p-1$ and any $\chi\left(G\left(\omega_{1}\right)\right)$ in $G_{p}^{\Gamma_{1}}$ has a chromatic number of 1 . Similar any $\chi^{\prime}\left(G\left(\omega_{p-1}\right)\right)$
in $G_{p}^{\Gamma_{1}}$ has a chromatic index of $p-2$ and any $\chi^{\prime}\left(G\left(\omega_{1}\right)\right)$ in $G_{p}^{\Gamma_{1}}$ has a chromatic index of zero.In order to discover new graphic and combinatorial results, more research on Γ_{1} non- deranged permutations should be done in relation to other permutation statistics like fixed point, Record, Anti record, Cycle valley, and others.

ACKNOWLEDGEMENT

The authors are thankful to the editorial board for the excellent services which has improved the quality of the journal

REFERENCES

Aremu, K.O.,Buoro, S., Garba, A.I., and Ibrahim, A.H.(2018). On the Direct and Skew Sums Γ_{1-} non deranged permutations. Punjab Journal of Mathematics and Computer Research, 50(3): 43-51. [Crossref]

Aremu, K.O., Garba, A.I., Ibrahim, M. and Bouro, S. (2019). Restricted Bijections on the Γ_{1}-nonderanged permutation Group. Asian Journal of Mathematics and Computer Research,25(8),462-477. [Crossref]

Garba, A.I. and Ibrahim, A.A. (2010). A new method of constructing a variety of finite group Based on somesuccession scheme. International Journal of Pbysical Science 2(3), 2326

Garba,A.I.and Ibrahim,M.(2019).Inversion and Major index on $\Gamma_{1}-$ non deranged Permutations.

International Journal of Research and Innovationin Applied Science, 4(10),122-126. [Crossref]

Ibrahim, A.A., Ejima, O. and Aremu, K.O. (2016). On the representations of Γ_{1}-deranged Permutation group $G_{p}^{\Gamma_{1}}$, Advances in Pure Mathematics,6,608-614. [Crossref]

Ibrahim, A.A. Garba, A.I. Alhassan M.J. and Hassan. A. (2021)Some Algebraic theoretic properties on Γ_{1} - non deranged permutationsIQSR Journal of Mathematics17(3) 58-61. [Crossref].

Ibrahim, A.A., Ibrahim, M. and Ibrahim, B.A. (2022).Embracing sum using Ascent block of Γ_{1}-deranged Permutations. International Journal of Advances in Engineering and Management, 4(5),272-277 [Crossref].

Ibrahim,M.,Ibrahim,A.A.,Garba,A.I.andAremu,K.O.(2 01). Ascenton Γ_{1}-non Deranged permutation group $G_{p}^{\Gamma_{1}}$. International journal of science for global sustainability, 4(2), 27-32. [Crossref]

Ibrahim, M. and Garba, A.I.(2019). Motzkin Paths and Motzkin Polynomials of Γ_{1}-non Derangedpermutations. International Journal of Research and Innovation in Applied Science, 4(11),119-123. [Crossref]
brahim, M. and Muhammd, M. (2019). Standard Representation of set partition Of Γ_{1-} non deranged permutations. International Journal of ComputerScience And Engineering,7(11),79-84 [Crossref].

