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INTRODUCTION
Computers can now learn from data and make predictions 
or judgments without explicit programming thanks to the 
interesting topic of machine learning (ML), which sits at 
the nexus of computer science and statistics. Imagine 
teaching a computer to identify handwriting, offer movie 
recommendations, spot fraud, or even operate a vehicle 
on its own. ML uses algorithms to examine huge datasets 
for patterns and correlations. These algorithms 
continuously enhance their performance using the 
knowledge they learn from the data. 

Natural language processing, picture identification, 
healthcare, finance, marketing, and entertainment are just 
a few of the industries where machine learning (ML) finds 
use. Artificial intelligence is currently being advanced by 
it, allowing computers to comprehend and communicate 
with their environment. ML is a fascinating field of 
research and invention. It holds the key to opening up a 

number of opportunities in an area that is still developing 
and influencing our digital world.  

On the other hand, quantum machine learning (QML) is 
a young area that combines classical machine learning 
(ML) methods with the concepts of quantum computing 
(QC). In contrast to classical computers, which employ 
bits (0s and 1s), quantum computers use quantum bits, or 
qubits. Qubits may be entangled, which means their states 
are reliant on one another even if they are separated by a 
considerable distance, and they can exist in numerous 
states at once according to the idea of superposition. 
Quantum computers are significantly more powerful for 
certain tasks thanks to these special characteristics.  

QML investigates how ML algorithms might be improved 
and accelerated using quantum computers. Due to their 
high processing needs, complicated problems that are 
now difficult or intractable for conventional computers 
may eventually be solved by it. For instance, by processing 
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ABSTRACT 
Variational Quantum-Classical Algorithm (VQCA) is a potential tool for machine learning 
(ML) prediction tasks, but its efficacy, adaptability to big datasets, and optimization for noise 
reduction on quantum hardware are not clear. We aim to accomplish three study goals in this 
literature review. We begin by reviewing the justifications for ML practitioners' use of VQCA. 
Second, we compare the accuracy and effectiveness of VQCA in diverse domains to see 
whether it has a performance advantage over other ML methods. Finally, we evaluate VQCA's 
immediate and long-term effects on quantum ML and how well it performs compared to ML 
techniques for prediction tasks across various applications or domains. Our findings show 
that VQCA can be significantly more accurate and efficient than conventional algorithms. 
We also compare traditional ML algorithms with VQCA on various datasets and examine 
their theoretical guarantees. We equally look into how VQCA might be used practically to 
address problems in a variety of industries, including banking, healthcare, and energy. In 
various datasets, we assess the performance and efficacy of VQCA for unsupervised learning 
tasks. Finally, we go through ways to improve VQCA, particularly for big and complicated 
problems, to lessen the effect of noise and other sources of error in quantum hardware. 
Overall, we looked at VQCA’s advantages and disadvantages for ML prediction tasks, 
including possible directions for future study. Our findings show that VQCA has the potential 
to completely transform the ML industry, particularly in this emerging era of quantum 
computing. 
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enormous information and carrying out computations at 
unmatched speeds, quantum computers have the 
potential to revolutionize jobs like optimization, 
cryptography, and data analysis. Although QML is still in 
its infancy, IT behemoths and scholars are aggressively 
investigating its potential. The environment of machine 
learning (ML) is expected to change as quantum 
technology develops, bringing up new horizons of 
potential and pushing the boundaries of what is possible 
with computer intelligence. 

In recent years, the field of quantum machine learning has 
seen significant progress, and one of the most promising 
approaches is the variational quantum-classical algorithm 
(VQCA). VQCA is a hybrid quantum-classical algorithm 
that utilizes the power of quantum computing to enhance 
classical machine learning tasks, such as prediction, 
classification, and clustering. It has shown tremendous 
potential for achieving state-of-the-art results in various 
applications, including finance, healthcare, and energy. 

However, many research gaps and challenges still need to 
be addressed before VQCA can be widely adopted in real-
world settings. These include a lack of comprehensive 
analysis of the theoretical guarantees of VQCA for 
prediction tasks and how they compare to classical 
machine learning algorithms, as well as a need for more 
research on the practical implementation and application 
of VQCA to solve real-world problems in different 
domains. VQCA is a popular approach for near-term 
quantum devices. 

In this review paper, we aim to address these research 
gaps by providing a comprehensive overview of the 
current state-of-the-art in VQCA research. We first 
discuss the theoretical foundations of VQCA and its 
relationship to other quantum machine learning 
approaches. We then evaluate the strengths and 
weaknesses of VQCA and its potential applications in 
various industries. Next, we identify the research gaps and 
challenges in the field of VQCA, including the need for 
more efficient and effective algorithms to handle large 
datasets and the need for more exploration of 
unsupervised learning tasks such as clustering and 
dimensionality reduction. 

Finally, we propose potential avenues for future research 
in VQCA, such as optimizing VQCA to mitigate the 
impact of noise and other sources of error in quantum 
hardware and adapting VQCA to handle larger and more 
complex datasets. By providing a comprehensive 
overview of the current state-of-the-art in VQCA 
research and identifying key research gaps and challenges, 
we hope to stimulate further research and development in 
this exciting field. 

REVIEW OF RELATED WORKS 

Quantum computing may now be used for practical tasks 
like machine learning. When compared to their traditional 
counterparts, QML approaches provide a performance 
boost. This piqued interest in developing machine 

learning algorithms that rely heavily on quantum 
phenomena to improve performance. For the time being, 
quantum computers remain in their infancy, and due to 
hardware restrictions and other hurdles, they may not be 
able to accomplish much. However, it is important to 
remember that all sophisticated technology begins with 
proof-of-concept demonstrations, and there is a chance 
that quantum computers, and by extension, quantum 
machine learning, will become ubiquitous in the future 
(Stephens, 2019). 

Theory  

Finding the lowest or maximum of certain objective 
functions is a challenging optimization issue that may be 
solved using the Variational Quantum-Classical 
Algorithm (VQCA), a hybrid quantum-classical 
computing technique. The variational concept is used to 
iteratively change the quantum parameters and get closer 
to the ideal outcome. VQCA possibly achieves solutions 
more quickly than classical approaches alone by fusing 
aspects of classical and quantum computing. Here is a 
quick summary of the VQCA's underlying theory: 

Objective Function: VQCA is frequently used to solve 
optimization issues involving the minimization or 
maximization of an objective function, such as when 
adjusting the parameters of machine learning models. 

Quantum Circuit: In VQCA, a quantum circuit is used 
to encode the problem's parameters and objective 
function. 

Variational Principle: The core idea behind VQCA is 
based on the variational principle from quantum 
mechanics. 

Classical Optimization: VQCA combines the quantum 
circuit with classical optimization algorithms. 

Iterative Process: The VQCA procedure is iterative. It 
begins with a first-pass estimation of the ansatz 
parameters. A quantum state is created by the quantum 
circuit, and its expectation value is calculated. Based on 
this knowledge, the classical optimizer modifies the 
parameters to lower the anticipated value. Until 
convergence or a predetermined stopping threshold is 
satisfied, this process iterates. 

Quantum Advantage: The possible quantum parallelism 
in VQCA is the source of the quantum advantage. For 
some optimization issues, quantum circuits' simultaneous 
exploration of several parameter combinations might be 
helpful. The use of this benefit, however, is dependent on 
the particular issue, the caliber of the quantum hardware, 
and the efficiency of the conventional optimization 
technique. 

The major goal of QML, according to (Kashif, 2021), is 
to investigate and examine the potential benefits of 
quantum processing over traditional ML techniques. A 
quantum algorithm uses quantum mechanics to deliver 
speedups and a quantum advantage. Quantum algorithms 
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are implemented using quantum circuits (Adebayo et al., 
2022). A VQCA is a hybrid algorithm that combines 
quantum and classical algorithms to create Variational 
Quantum Classifier Circuits. 

 

Figure 1. A model of Variational Quantum-Classical 
Algorithm 

Figure 1 above shows a variational quantum-classical 
model based on a PQC. The pre-processed data point is 
mapped to the parameters of an encoder circuit Uφ(x). A 
variational circuit Uθ then implements the core operation 
of the model. This is followed by estimating a set of 
expectation values {(MK) x,θ}kk=1 from measurements. 
A post-processing function f is then applied to this set to 
provide a suitable output. 

In an attempt to properly dive into the understanding of 
this algorithm, we present some research questions which 
would be necessary to, as it were, query the performance 
of the variational quantum-classical algorithm. The 
research questions are as follows: 

RQ1. What advantage does the variational quantum-
classical algorithm offer over the classical machine 
learning methods for prediction tasks in terms of 
performance? 

RQ2. What are the theoretical guarantees of the 
variational quantum-classical algorithm for prediction 
tasks, and how do they compare to classical machine 
learning algorithms? 

RQ3. What are some real-world applications of the 
variational quantum-classical algorithm? 

RQ4. Can the variational quantum-classical algorithm be 
adapted to handle large datasets with high-dimensional 
feature spaces? 

RQ5. How can the variational quantum-classical 
algorithm be used for unsupervised learning tasks such as 
clustering and dimensionality reduction? 

RQ6. Can variational quantum-classical algorithms be 
optimized to reduce the impact of noise and other sources 
of error in the quantum hardware? 

Based on the research questions provided, a couple of 
research gaps were inferred: 

Research comparing the effectiveness of VQCA with 
traditional machine learning algorithms for prediction 
tasks in particular domains or applications is lacking. In 
order to better understand the benefits and drawbacks of 

VQCA, this evaluation compares the effectiveness of 
VQCA with traditional machine learning methods across 
a range of situations or datasets. Second, there is a dearth 
of thorough comparisons between standard machine 
learning methods and the theoretical assurances of VQCA 
for prediction tasks in various contexts or datasets. We 
examine the theoretical underpinnings of VQCA and gain 
a better grasp of how quantum effects affect its 
functionality. 

We, therefore, analyze the actual use of VQCA and how 
it has been used to address problems in various fields. We 
also offer improved algorithms or methods that VQCA 
must adopt to manage huge datasets with high-
dimensional feature spaces. We also describe how VQCA 
performs and works for unsupervised learning tasks like 
clustering and dimensionality reduction in various 
datasets or settings. Last but not least, we go through the 
methods needed to improve VQCA to reduce the 
influence of noise and other sources of error in quantum 
hardware, particularly for big and complicated tasks. 

We then set the following research objectives: 

1. To review why machine learning practitioners 
should jettison existing and efficient classical 
algorithms for VQCA algorithms. 

2. Review the performance edge of the VQCA 
algorithm over other machine learning 
algorithms. 

3. Evaluate the impact of the VQCA algorithm on 
quantum machine learning in the short term. 

To answer the forgoing RQs, we set out to review some 
sets of literature and came up with the following answers: 

RQ1. What advantage does the variational quantum-
classical algorithm offer over the classical machine 
learning methods for prediction tasks in terms of 
performance? 

Thompson (2020) was motivated by a desire to learn more 
about this problem by using qubits as neurons in an 
artificial neural network, with the goal of eventually 
building quantum artificial neural networks using 
interconnected qubits as the hardware. As a result, 
quantum dots were proposed as the first piece of 
hardware to study. They showed that machine learning 
can help with difficulties like factorization and 
Hamiltonian design. Despite being simulated and 
evaluated on a classical computer, the quantum model 
shows promise for efficient quantum device 
implementation in the near future. This has come to be 
known as Noisy Intermediate-Scale Quantum (NISQ). 

Although NISQ computers are intended to demonstrate 
the limitations of quantum computing, they are nowhere 
near being fully functional quantum computers. Quantum 
computing theoretically reduces classical systems' 
resource complexity tenfold due to superposition, 
resulting in quicker runtimes on larger data sets in 
machine learning (Kok, 2021). VQCAs have the potential 
to outperform classical machine learning algorithms for 
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certain prediction tasks, but the advantage of VQCAs 
over classical algorithms depends on the specific problem 
being solved and the quality of the quantum hardware 
used to implement the algorithm. 

A study by (Mitarai et al., 2018) compared the 
performance of a VQCA to a classical neural network for 
a binary classification task and found that the VQCA was 
able to achieve higher accuracy than the classical neural 
network for certain parameter settings. Another study by 
(Schuld et al., 2019) compared the performance of a 
VQCA to a support vector machine (SVM) for a 
regression task and found that the VQCA achieved lower 
prediction error than the SVM for certain parameter 
settings. 

However, it is important to note that the current state of 
quantum hardware is not yet advanced enough to fully 
exploit the potential advantages of VQCAs over classical 
machine learning algorithms. The noisy, error-prone 
nature of current quantum devices means that VQCAs 
may not always outperform classical algorithms in 
practice. Additionally, the size of the problems that can be 
solved with current quantum hardware is limited, making 
applying VQCAs to real-world prediction tasks difficult. 

RQ2. What are the theoretical guarantees of the 
variational quantum-classical algorithm for prediction 
tasks, and how do they compare to classical machine 
learning algorithms? 

The precise problem is handled, the presumptions made 
about the data, and the model being utilized all affect the 
theoretical guarantees of VQCAs for prediction tasks. 
The theoretical guarantees for VQCAs are not as well 
established as those for traditional machine learning 
algorithms because they are still being created and 
investigated.  

VQCA, a hybrid classical-quantum algorithm, and the 
methodology for using it in Quantum Circuit Learning 
were described by (Amogh et al., 2020). Unlike classical 
execution, which is iteratively executed to reduce the 
function's result and make it error tolerant, the behaviour 
of a Variational Quantum Classifier is determined by 
Quantum Circuits and output-dependent functions based 
on parameters. Gradient descent, a conventional 
technique of execution, sought for the local minima of a 
function. 

Creating quantum algorithms that can achieve a quantum 
speedup—that is, solve problems quicker than classical 
algorithms—is a crucial field of research for VQCAs. 
Most of the research done in this field has concentrated 
on certain problem classes, such as unstructured search, 
database search, and factoring. The maximum 
independent set (MIS) problem and the quadratic 
unconstrained binary optimization (QUBO) problem are 
two examples of optimization problems that can benefit 
from a quantum speedup, thanks to recent developments 
in VQCAs (Hadfield et al., 2019; Bravyi et al., 2020) 

Although there are presently no theoretical guarantees to 
back this, it has been shown that VQCAs may 
occasionally outperform traditional machine learning 
algorithms for prediction tasks. In a recent publication, 
(Tang et al., 2021) developed a theoretical framework for 
assessing the performance of VQCAs for supervised 
learning tasks. They showed that for a variety of problem 
classes, VQCAs can speedily outperform conventional 
techniques. However, their analysis placed unreasonably 
high criteria on two concepts that are now impractical: a 
noiseless quantum computer and faultless optimization. 

In general, work is now being done to develop the 
theoretical underpinnings of VQCAs for prediction tasks. 
There have been some interesting results in terms of 
achieving a quantum speedup for specific problem 
classes, but the guarantees for outperforming classical 
algorithms are still not as well-established as they are for 
traditional machine-learning techniques. 

RQ3. What are the real-world applications of variational 
quantum-classical algorithms? 

Although variational quantum-classical algorithms 
(VQCAs) offer a promising method for resolving 
practical problems, their use is currently constrained by 
the size and caliber of available quantum hardware. 
However, there are a number of ways that VQCAs can be 
applied to resolve real-world problems: 

i. VQCAs may be used for data classification to 
divide data into several groups by leveraging the 
power of quantum computing to efficiently 
process large amounts of data and the classical 
algorithms to perform the final classification. For 
instance, VQCAs have been applied to identify 
fraud in financial transactions (Liu et al., 2020). 
(Schuld et al., 2018) also used VQCA for 
categorizing molecular data. (Farhi and Neven, 
2018) used VQCA for image recognition. The 
process involves encoding the input data into a 
quantum state and then performing a quantum 
computation to process the data. The output of 
the quantum computation is then used as input 
for a classical machine learning algorithm that 
performs the final classification. The key 
advantage of this approach is that the quantum 
computation can be performed in parallel, 
leading to potentially significant speedup over 
classical methods for large datasets. 

ii. VQCAs may be utilized to address optimization 
problems, including the maximum cut problem, 
the knapsack problem, and the traveling 
salesperson problem (Cerezo et al., 2020). These 
types of problems arise in many real-world 
applications, such as logistics and scheduling. 
VQCA can be utilized to address optimization 
problems by employing the technique of 
quantum optimization, which is based on 
quantum annealing. Quantum annealing is a type 
of quantum computation that seeks to find the 
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global minimum of an objective function by 
annealing a quantum system from a high-energy 
state to a low-energy state, following a specific 
evolution schedule. VQCA can also address 
other optimization problems such as financial 
portfolio optimization, logistics optimization, 
and molecular structure optimization (Benedetti 
et al., 2019). 

iii. VQCAs can be used in quantum chemistry to 
simulate the behaviour of molecules and 
materials, which has applications in drug 
discovery, materials science, and other fields 
(McArdle et al., 2020). It can be used to map the 
electronic structure problem of a molecule onto 
a quantum circuit. This circuit is then executed 
on a quantum computer, and the result is an 
estimate of the molecule's electronic energy (Cao 
et al., 2019). This energy estimate can be used to 
compute various molecular properties, such as 
bond lengths, vibrational frequencies, and 
reaction energies. The VQCA used in quantum 
chemistry is called a variational quantum eigen 
solver (VQE), which is a hybrid quantum-
classical algorithm. VQCAs have also been used 
to calculate the ground-state energy of small 
molecules (Peruzzo et al., 2014) and to optimize 
chemical reactions (McClean et al., 2016). 

iv. Portfolio optimization: By leveraging quantum 
hardware to solve the classical optimization 
problems involved in portfolio optimization, 
VQCAs may be utilized to optimize investment 
portfolios. Generally speaking, portfolio 
optimization aims to arrange investments to 
optimize returns while lowering risk.  

Encoding the investment portfolio as a Hamiltonian and 
then using a VQCA to determine the Hamiltonian's 
lowest eigenvalue, which corresponds to the ideal 
portfolio allocation—is one method of employing 
VQCAs for portfolio optimization. Since Vatan and 
Williams first introduced this strategy in 2004, other 
scholars have improved and expanded it in various ways. 
The standard objective function that specifies the 
portfolio optimization problem may also be directly 
optimized using VQCAs. For instance, a VQCA-based 
approach for restricted polynomial optimization was 
proposed by (Rebentrost et al., 2018) and may be used to 
maximize the objective function in portfolio optimization 
problems subject to various restrictions. 

RQ4. Can a variational quantum-classical algorithm be 
adapted to handle large datasets with high-dimensional 
feature spaces? 

Naturally, there are a variety of situations in which 
VQCAs may be employed to handle challenging machine-
learning tasks. It may be modified to work with big 
datasets and multidimensional feature spaces. A strategy 
for training deep neural networks on quantum computers, 
including a VQCA for quantum-classical hybrid learning, 
is put forth by (Schuld et al., 2018). The authors 
demonstrate the method's capacity to handle high-

dimensional datasets with numerous characteristics. A 
VQCA-based technique for learning graphical models 
with arbitrary pairwise connection was also introduced by 
(Marcello et al., 2019). The capacity of the technique to 
handle sizable datasets with high-dimensional feature 
spaces was proven by the authors. Additionally, (Dunjko 
and Briegel, 2018) summarized recent developments in 
quantum machine learning, including a discussion of how 
VQCAs may be utilized to manage large-scale datasets 
with high-dimensional feature spaces. 

Variational quantum-classical algorithms (VQCAs) have a 
significant problem when dealing with huge datasets with 
high-dimensional feature spaces since the number of 
quantum gates needed to encode and analyze such data 
can easily become unmanageable. VQCA methods can be 
modified in the following ways to handle sizable datasets 
with high-dimensional feature spaces: 

One strategy is to employ classical machine learning 
methods, such as quantum-inspired neural networks or 
classical algorithms that use quantum-inspired feature 
maps inspired by quantum computing. These 
conventional methods can handle huge datasets while 
capturing some of the characteristics of quantum 
processing. Another strategy is to reduce the size of the 
high-dimensional feature space so that the VQCA can 
process it more quickly. Principal component analysis 
(PCA) and autoencoders are examples of classical 
approaches that may be used for this, as well as quantum-
inspired techniques like quantum feature maps. 

A hybrid classical-quantum algorithm that blends 
traditional machine learning methods with quantum 
computing offers an alternative strategy. The advantages 
of both conventional and quantum computers may be 
used in this method to process huge datasets quickly. For 
instance, the VQCA technique may be used to categorize 
the reduced-dimensional data after the traditional 
machine learning algorithm has pre-processed the data 
and decreased its dimensionality. 

The Variational Quantum singular value decomposition 
(VQSVD) technique, which is particularly made to handle 
huge datasets, is a more modern method. VQSVD is a 
hybrid technique that performs low-rank matrix 
factorization by combining the traditional SVD (singular 
value decomposition) with a VQCA algorithm. Using this, 
big datasets with high-dimensional feature spaces may be 
processed effectively (Shukla and Vedula, 2022). 

Kernel techniques, a collection of machine learning 
algorithms that may be used for classification, regression, 
and other tasks, are also worthy of notice. Since they 
implicitly translate the data into a higher-dimensional 
space using a kernel function, they are very helpful for 
handling high-dimensional feature spaces. Although 
computing this mapping can be costly, quantum 
computing allows for effective computation (Schuld et al., 
2020) proposed a technique for accelerating kernel 
approaches by applying VQCA. 
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The quantum approximate optimization method 
(QAOA) was described by (Hadfield et al., 2019; Barraza 
et al., 2022; Rieffel and Venturelli, 2019), a method that 
combines conventional and quantum principles to 
address combinatorial optimization problems. Encoding 
the data into a graph and utilizing the QAOA to identify 
a low-energy state of the graph may also be modified to 
handle huge datasets with high-dimensional feature 
spaces. Gradient descent training of quantum neural 
networks (QNNs) was proposed by (Farhi and Neven, 
2018). A group of machine learning algorithms known as 
QNNs employ quantum circuits as their fundamental 
building pieces. They can handle high-dimensional feature 
spaces by embedding the information into the quantum 
circuit. 

Wang et al. (2020) described a quantum principal 
component analysis (PCA), a traditional machine learning 
method that may be used to decrease the dimensionality 
of high-dimensional datasets. Using a VQCA technique, 
it may also be modified to manage huge datasets with 
high-dimensional feature spaces (Zhong et al., 2020). 

RQ5. How can a variational quantum-classical algorithm 
be used for unsupervised learning tasks such as clustering 
and dimensionality reduction? 

Quantum accelerated linear algebra-based machine 
learning techniques are the first generation of quantum 
machine learning algorithms that can be used to solve 
various supervised and unsupervised learning problems, 
including principal component analysis, k means 
clustering, support vector machines, and 
recommendation systems. The fact that the algorithms 
can solve some types of quantum data ten times faster 
than their classical counterparts has attracted much 
interest in the field. The information must first be 
encoded in quantum states before these methods may be 
used on quantum data. 

In his thesis, Alessandro (2020) described how the context 
in machine learning might help quantum computers and 
quantum algorithms process and assess datasets and 
information more quickly. The research demonstrated 
how quantum processing could bring various 
computational improvements compared to regular 
computers. It went on to suggest a number of quantum 
algorithms that yield a machine learning model faster than 
the best classical alternatives, assuming the data is stored 
in a quantum memory, which is the quantum equivalent 
of conventional RAM. He then studied quantum 
algorithms for supervised and unsupervised learning, 
statistics, and dimensionality reduction, discovering that 
their runtime is poly-logarithmically proportional to the 
number of components. 

He suggested a quantum technique for supervised 
dimensionality reduction, a pre-processing step that 
improves a classifier's accuracy in high-dimensional 
datasets. He demonstrated a quantum classification 
technique that is particularly well adapted to quantum 
computers with limited qubits. He described various 

classical machine learning techniques that can be phrased 
as a generalized eigenvalue problem and evaluated the 
quantum methods' performance using a classical 
simulation. The simulation was performed using a 
collection of datasets considered the gold standard for 
new machine-learning techniques. The findings reveal 
that noise has no significant impact on data analysis 
accuracy or the impact of error parameters on runtime in 
quantum algorithms. 

Here are a few examples of how this can be done: 

Otterbach et al. (2017) propose a VQCA-based clustering 
algorithm, another common unsupervised learning task. 
The authors demonstrated the algorithm's ability to find 
clusters in a simulated dataset. (Rocchetto et al., 2018) 
introduce a general framework for VQA-based 
unsupervised learning, including clustering and 
dimensionality reduction. The authors demonstrated the 
algorithm's ability to perform unsupervised learning tasks 
on various datasets. 

VQCAs can be optimized to reduce the impact of noise 
and other sources of error in the quantum hardware. (Ralli 
et al., 2021) also proposes a method for mitigating the 
effects of noise and other sources of error in VQAs using 
error-correcting codes. The authors demonstrated the 
effectiveness of their approach on several quantum 
chemistry problems. 

Su et al. (2021) employed a probabilistic error cancellation 
to reduce measurement errors in VQCAs. Their method's 
efficacy was tested on a simulated optimization problem. 
A VQCA-based approach is suggested by (Kandala et al., 
2017) and is tuned to lessen the effect of noise and other 
sources of error in the quantum hardware. The authors 
use a number of tiny molecules and quantum magnets to 
show the efficacy of their method. 

RQ6. Can the variational quantum-classical algorithm be 
optimized to reduce the impact of noise and other sources 
of error in the quantum hardware? 

To improve VQCA and lessen the effects of noise and 
other sources of error in the quantum hardware, a number 
of methods have been put forth. These methods include 
hardware-efficient ansatzes, error mitigation, and 
rectification of errors.  

To fix faults that arise during the execution of quantum 
circuits, one method is to apply error mitigation strategies. 
These methods consist of measurement error reduction, 
randomized compilation, and zero-noise extrapolation. 
For various applications, researchers have shown that 
these strategies successfully reduce the effect of noise in 
VQCA (Huggins et al., 2019). 

Another strategy is to create noise- and error-resistant 
quantum circuits. This can be done by encoding the 
quantum state with error-correcting codes, which can 
shield it from faults (Antipov et al., 2019). To increase the 
accuracy of the findings, researchers have also suggested 
using variational quantum error correction, which 
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combines VQCA with quantum error correction (Endo et 
al., 2020; Shaib et al., 2021). Hardware-efficient ansatzes 
have been developed to design a quantum circuit with 
fewer gates and thereby lessen the influence of noise and 
other sources of error in the quantum hardware. The 
hardware-efficient ansatz put out by (Kandala et al., 2017), 
which uses parametrized layers of single-qubit and two-
qubit gates, is one illustration of a hardware-efficient 
ansatz. 

Finally, by reducing the number of quantum gates in the 
circuit, optimization approaches can lessen the effect of 
mistakes and noise. Techniques like gate reordering and 
circuit optimization can do this (Lin et al., 2021; Dadkhah 
et al., 2022). 

DISCUSSION 

For a variety of applications, the variational quantum-
classical method shows considerable potential. The 
potential for real-world applications, continuous research 
to better understand the theoretical underpinnings of the 
algorithm, and improved algorithm performance are some 
of the primary themes, difficulties, and developments in 
this discipline. The key potential in this subject involves 
partnerships between the quantum computing and 
machine learning fields, despite a few obstacles, such as 
scalability and practicality. 

The primary trend in this area is the steady rise in the 
effectiveness of variational quantum-classical algorithms 
for machine learning prediction tasks. (Schuld et al., 2019) 
showed that VQCA can produce cutting-edge outcomes 
in various applications, including classification and 
regression, and that they can occasionally beat traditional 
machine learning methods. The algorithm's scalability and 
practicality provide a significant difficulty in this industry. 
VQCA are computationally intensive, and scaling the 
techniques to accommodate big datasets with high-
dimensional feature spaces is challenging. Additionally, 
the accuracy and effectiveness of the algorithm can be 
severely impacted by noise and other sources of 
inaccuracy in existing quantum technology. 

Research is continuing to further understand the 
theoretical underpinnings of VQCAs and to examine how 
these algorithms relate to other quantum machine 
learning philosophies. This entails researching the 
relationships between quantum algorithms and 
conventional statistical learning theory and creating new 
theoretical frameworks for evaluating the performance of 
these algorithms. 

There are several applications of VQCA in real-world 
contexts, including banking, healthcare, and energy. 
Examples of applications for these algorithms include 
anticipating energy demand, illness diagnostics in 
healthcare, and portfolio optimization in finance. To 
advance the area of machine learning prediction utilizing 
VQCA, a collaboration between quantum computing and 
machine learning groups is essential. Collaboration 
between academic, industrial, and government 

researchers is a part of this, as is the creation of fresh 
multidisciplinary research projects and programs. 

Strengths and weaknesses of Variational Quantum-
Classical Algorithm 

A new machine learning method that mixes classical and 
quantum computing is called the variational quantum-
classical algorithm (VQCA). Although the algorithm has 
shown promise in several applications, it also has a 
number of flaws and potential uses across a range of 
sectors. 

The strengths of VQCA are outlined below: 

i. When compared to traditional machine learning 
methods, VQCA has the potential to be more 
effective in solving specific optimization and 
classification problems. 

ii. It is a versatile method that can be suited to 
different kinds of problems by modifying the 
configuration of the quantum circuit and the 
conventional optimization procedure. 

iii. Because VQCA is a hybrid algorithm, it may 
benefit from the advantages of both 
conventional and quantum computing methods. 

iv. It may be utilized for unsupervised learning tasks 
like dimensionality reduction and clustering. 

VQCA also has the following weaknesses: 

i. The amount of qubits that are now accessible in 
quantum hardware is what restricts VQCA. The 
magnitude of problems that VQCA can address 
is therefore constrained. 

ii. The performance of VQCA can be greatly 
impacted by noise and other causes of inaccuracy 
in quantum hardware. 

iii. Because VQCA's optimization step might be 
computationally costly, the algorithm's capacity 
to handle large-scale problems is constrained. 

iv. Accessibility of VQCA is constrained for 
academics and practitioners without specific 
knowledge of machine learning and quantum 
computing. 

Applications areas include: 

1. Finance: In the field of finance, VQCA may be 
applied to portfolio optimization and risk 
management to assist in finding the best 
investment strategies that maximize returns 
while lowering risks. 

2. Healthcare: VQCA may be used to diagnose 
diseases and uncover drug targets in the medical 
field, where it can aid in developing biomarkers 
and therapeutic targets linked to certain 
disorders. 

3. Energy: VQCA may be used to estimate and 
optimize energy demand in the energy sector, 
where it can support the identification of the best 
methods for energy generation and storage that 
reduce costs and carbon emissions. 
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4. Additional uses: VQCA may also be applied in a 
number of different scenarios, such as speech 
and image recognition, natural language 
processing, and recommendation systems. 

Theoretical Foundations of Variational Quantum-
Classical Algorithm 

To handle optimization and classification problems, the 
VQCA blends both conventional and quantum 
computing methods. The method comprises a quantum 
circuit that transforms the input data into a quantum state 
and a classical optimizer that modifies the quantum 
circuit's parameters to minimize an objective function. 
VQCA's theoretical underpinnings are built on the ideas 
of statistical learning theory and quantum physics. To 
maximize a quantum system's energy, VQCA employs 
variational principles, which are frequently employed in 
quantum mechanics. The objective function of a classical 
machine learning problem is mapped onto a quantum 
circuit in VQCA, where the variational principle is 
employed. The objective function is minimized by 
employing a classical optimizer to reduce the parameters 
of the quantum circuit. 

Other quantum machine learning techniques, such as 
quantum support vector machines (QSVM) and quantum 
neural networks (QNN), are connected to VQCA. While 
QNN is a quantum equivalent of conventional neural 
networks, QSVM is a quantum method that employs 
quantum interference to classify data into various groups. 
Pure quantum algorithms include QSVM and QNN, 
whereas hybrid algorithms like VQCA mix classical and 
quantum computing methods. VQCA provides a number 
of advantages over pure quantum algorithms, including 
improved stability and resilience against noise and other 
causes of error in quantum hardware. VQCA is more 
adaptable and useful for a wider range of issues since it 
can combine the advantages of both conventional and 
quantum computing methods. 

Statistical learning theory and the principles of quantum 
mechanics serve as the theoretical cornerstones of 
VQCA. The hybrid algorithm known as VQCA, which 
mixes conventional and quantum computing methods, is 
connected to other quantum machine learning strategies 
like QSVM and QNN. VQCA is a potential method for 
resolving machine learning problems on quantum 
computers and offers a number of benefits over pure 
quantum algorithms. 

Opportunities for applying variational quantum-
classical algorithms in real-world settings 

Due to its superior performance over traditional machine 
learning algorithms in classification and optimization, 
variational quantum-classical algorithms (VQCA) show 
promise for several practical applications. There are 
several real-world applications for VQCA in a variety of 
sectors, including drug development, financial modeling, 
energy optimization, supply chain optimization, climate 
modeling, and materials research. The potential for 
VQCA to significantly contribute to these sectors is 

anticipated to grow as quantum computing technology 
advances. 

Drug development: VQCA can be used to tweak the 
molecular makeup of medications to increase their 
effectiveness and lessen their negative effects. Drug 
development might become quicker and more affordable 
as a result. 

Financial Modeling: VQCA is a tool for financial 
modeling that may be used to evaluate risk, improve 
investment portfolios, and forecast financial market 
trends. This can assist financial firms in improving their 
investment choices and results. 

Energy: Production, storage, and distribution of energy 
may all be optimized with VQCA. This can improve the 
effectiveness of energy systems while lowering energy 
prices and carbon emissions. 

Supply chain optimization: Optimization of the supply 
chain's logistics, such as routing, scheduling, and 
inventory control, is possible using VQCA. This may 
result in the quicker and more affordable delivery of 
products and services. 

Climate modeling: Weather patterns and ocean currents 
are only two examples of complex climatic systems that 
may be predicted and simulated using VQCA. This can 
enhance our comprehension of climate change and 
provide information for policy actions that will lessen its 
consequences. 

Materials science: Creating novel materials with certain 
qualities, such as strength, conductivity, and magnetism, 
may be optimized using VQCA. This might result in the 
quicker and more affordable creation of novel materials 
for a range of applications. 

3.4. Potential avenues for future research in the field 
of machine learning prediction using a variational 
quantum-classical algorithm. 

Future research in the area of machine learning prediction 
utilizing variational quantum-classical algorithms (VQCA) 
has a number of potential directions. The following are 
some of the most promising research axes: 

Scaling up VQCA: The ability of quantum gear to scale 
is one of the major issues with VQCA. Developing new 
hardware architectures and algorithms that can handle 
larger and more complicated datasets may be the main 
focus of future research. 

Creating new quantum neural networks: While VQCA is 
a promising method for resolving optimization and 
classification problems, quantum neural network design 
still has potential for development. Research in the future 
could concentrate on creating new varieties of quantum 
neural networks that can manage more complicated data 
structures. 

Enhancing VQCA's accuracy: Although VQCA can be 
more effective than traditional machine learning 
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algorithms, it can still have accuracy problems owing to 
noise and other potential sources of inaccuracy in 
quantum technology. Future studies might concentrate on 
creating novel error correction strategies and other 
measures to raise VQCA's accuracy. 

Creating new hybrid classical-quantum algorithms: While 
the VQCA hybrid algorithm shows promise, there may be 
more effective ways to mix classical and quantum 
computing methods to address machine learning issues. 
Future work could concentrate on creating new hybrid 
algorithms that benefit from both conventional and 
quantum computing advantages. 

VQCA's potential applications are still being researched, 
even though it has already shown promise in several real-
world settings. Future studies could concentrate on 
discovering fresh VQCA applications and creating fresh 
algorithms to address issues in these fields. Although 
machine learning prediction employing variational 
quantum-classical algorithms is still in its infancy, there 
are several promising directions for further investigation. 

These include expanding the use of VQCA, creating new 
quantum neural networks, investigating novel VQCA 
applications, enhancing VQCA accuracy, and creating 
fresh hybrid classical-quantum algorithms. 

CONCLUSION 

In conclusion, there is a lack of comprehensive analysis of 
the theoretical guarantees of VQCA and a need for more 
comparisons with classical machine learning algorithms in 
specific domains in the field of machine learning 
prediction using variational quantum-classical algorithms. 
More efficient algorithms for handling large datasets, 
investigation of unsupervised learning tasks, and 
development of methods for optimizing VQCA in the 
presence of noise and other sources of error in quantum 
hardware are also required. Furthermore, there is a need 
for more realistic implementation and application of 
VQCA to real-world problems. These knowledge gaps 
demonstrate the potential for additional developments in 
VQCA and the necessity for further inquiry and study in 
this fascinating field.
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