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INTRODUCTION
Due to human activities, environmental contaminants 
have been released widely, leading to the pollution of soil, 
water, and air environments (Malik et al., 2023; Huda et al., 
2023). Among these contaminants are heavy metals, 
considered some of the most ubiquitous pollutants 
affecting both the environment and biota. Recent research 
has linked environmental contamination by these heavy 
metals to rising ecological and global public health risks 
(Chen et al., 2022). Human exposure has also increased 
significantly due to the exponential surge in their use in 
various industrial, agricultural, household, and technical 
applications. Several sources, including geogenic, 

industrial, agricultural, pharmaceutical, domestic effluent, 
and atmospheric sources, have reportedly contributed to 
the presence of heavy metals in the environment. Mining, 
foundries, smelters, and other metal-based industrial 
processes serve as significant point sources of heavy metal 
pollution (Alsafran et al., 2022). Although heavy metals can 
biologically change into less harmful forms, their 
contamination remains a serious hazard to human life and 
a major global problem (Priya et al., 2022). High 
concentrations of heavy metals can damage plant 
metabolism, affecting both the quality and quantity of 
food produced (Alsherif et al., 2022). Heavy metals are also 
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ABSTRACT 
In this study, we investigated the heavy metal absorption of Alcaligenes faecalis strain U.B.I., a 
bacteria isolated from a mining site, under different environmental conditions. We utilized 
both conventional and molecular techniques to identify the bacteria and employed response 
surface methodology (R.S.M.) to determine optimal environmental conditions for heavy 
metal absorption. Our analysis revealed that the heavy metal-tolerant bacteria belong to the 
Proteobacteria, specifically the Betaproteobacteria order in the Burkholderiales family. 
Additionally, the bacteria’s phylogenetic characteristics indicated a close relationship between 
the Aeromonas sp. cluster and members of the Aeromonadaceae family. Our results showed 
that the biomass A. faecalis strain U.B.I. had an optimal potential for chromium (Cr+) 
absorption at 93.0%. We also conducted tests on the biomass under optimized conditions for 
lead (Pb2+) absorption using R.S.M., resulting in a mean heavy metal uptake of 89.99%. 
Furthermore, we analyzed the surface functional groups after interaction with heavy metals 
and observed a significant shift in position of the functional groups. The O-H stretch and H-
bonded at the 3268 cm1 position, while C=C stretch and N-O asymmetrical stretch/C-O 
stretch occurred at positions 2195 cm-1 and 1629 cm-1 of the spectra, respectively. Our 
findings suggest that the biomass of A. faecalis strain U.B.I. has potential for heavy metal 
bioremediation and can be used for heavy metal biosorption under various environmental 
conditions. 
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considered powerful mutagens and carcinogens that 
impact human health and well-being (Saravanan et al., 
2021). 

Heavy metals are regarded as priority pollutants by the 
United States Environmental Protection Agency 
(USEPA), with lead (Pb) being the most dangerous 
element, followed by mercury (Hg), arsenic (As), and 
cadmium (Cd) as the sixth most poisonous metal, 
according to the U.S. Agency for Toxic Substances and 
Disease Registry (ATSDR) (Yuan and Wang, 2022). A 
major concern is the high concentration of heavy metals 
in terrestrial and aquatic environments, acting as 
ecological toxins (Budianta, 2021). Industrial discharge, 
automobiles, and roads are the main causes of heavy metal 
pollution as the emissions contain heavy metals such as 
Cd, Pb, and As (Nogueira et al., 2013). Fields can become 
contaminated with sewage sludge, leading to the 
accumulation of heavy metals in the soil and on plants. 
Each year, millions of metric tons of heavy metals, 
including 1 million metric tons of nickel (Ni) and 5 million 
metric tons of lead (Pb), are discharged into the soil (Onat 
et al., 2013; Jaspal et al., 2023; Fan et al., 2023). Similarly, 
leachates from solid waste disposal, mining, and industrial 
waste directly contaminate groundwater with various toxic 
elements (Essien et al., 2022). A significant problem is the 
transport of hazardous metals through the food chain. 
Research indicates that heavy metals with no known 
biological function, such as Cd and As, are hazardous even 
at low concentrations (Bharti and Sharma, 2022), while 
heavy metals that operate as co-factors may be necessary 
in small quantities but become poisonous at higher doses 
(Lucia et al., 2023). Some heavy metals, like zinc (Zn), iron 
(Fe), copper (Cu), cobalt (Co), and molybdenum (Mo), are 
needed by humans in trace amounts but can be harmful in 
higher concentrations (Balali-Mood et al., 2021). Toxic 
heavy metals like As, Pb, Cd, and Hg, which are not 
needed by the human body, can cause cancer if they 
accumulate over time (Balali-Mood et al., 2021). The 
buildup of toxic metals in the body can impair the function 
of the kidney, bones, liver, heart, brain, and other organs, 
as they displace essential minerals, interfering with 
biological processes (Rai et al., 2019). 

In Nigeria, several studies have reported the impact of 
heavy metal pollution on soil (Ibrahim et al., 2021), water 
(Nwazue et al., 2022), air (Okoye and Ebiana, 2022), crops 
(Sagagi et al., 2022), and farmlands (Sagagi et al., 2022). 
Similarly, hazardous metals like Cr, Cu, Ni, Pb, and Co 
have been shown to contaminate most of Zambia's 
wastewater, crops, and soil (Kapungwe, 2013). When 
wastewater is used to irrigate crops in Egypt, there is an 
excessive buildup of heavy metals in the soil and plants 
(Nguyen et al., 2018). Monitoring heavy metal pollution is 
a significant concern in Southeast Asian nations, including 
Bangladesh, Pakistan, India, Indonesia, and Thailand 
(Shaji et al., 2021). According to the Central Pollution 
Control Board of India, Gujarat, Maharashtra, and Andhra 
Pradesh produce 80% of all hazardous waste in India, 
including toxic heavy metals (Ojha and Rahman, 2023). 
Although Cd is the most mobile metal and easily accessible 

to crops, several plants such as parsley (Petroselinum 
crispum), beet leaf (Beta vulgaris), coriander (Coriandrum 
sativum), radish leaf (Raphanus sativus), and basil 
(Ocimum basilicum) have been found to contain toxic 
heavy metals like Zn, Pb, Cd, As, and Cr in northeastern 
Iran (Sodhi et al., 2022). Industrial effluents damaging 
water quality and potentially affecting soil quality, 
combined with rapid modernization and industrialization, 
have negatively impacted air, soil, and water quality. 
Dissolved hazardous metals are released into water bodies 
through mineral processing, electroplating, and paint 
formulation, leading to an increased concentration of 
harmful metals in the water (Samanta et al., 2017). The 
consumption of heavy metals through drinking water can 
cause skin illnesses, respiratory, digestive, and renal 
problems (Munir et al., 2022). 

Heavy metal pollution is a significant environmental 
problem with serious health and ecological consequences. 
Addressing heavy metal pollution requires a combination 
of preventive measures, including the implementation of 
cleaner industrial techniques (Priya et al., 2023) and the use 
of sustainable remediation methods such as 
phytoremediation (Singh and Pant, 2023), bioremediation, 
soil amendments (Demarco et al., 2023), and other 
regulatory actions, such as transitioning to cleaner energy 
sources that can reduce the environmental impacts of 
mining and burning fossil fuels, which release heavy 
metals. Some key problems associated with heavy metal 
pollution include its toxicity to humans and wildlife, 
leading to acute and chronic health problems, including 
neurological disorders (Azar and Vajargar, 2023), kidney 
damage (Smereczański and Brzóska, 2023), cancer (Parida 
and Patel, 2023), and developmental issues in children 
(Zheng et al., 2023). Heavy metals can also negatively 
impact aquatic food chains, increasing the risk of toxicity 
for top predators (Li et al., 2023) and disrupting 
ecosystems by harming key species, reducing biodiversity, 
and altering nutrient cycling (Li et al., 2023). This can lead 
to the exposure of sensitive species, resulting in 
imbalances within ecosystems (Angon et al., 2023). 
Moreover, heavy metal contamination of soils can reduce 
soil fertility and impair plant growth, with negative 
implications for agriculture, as crops grown in 
contaminated soils may absorb heavy metals, posing a risk 
to food safety and security (Mbarki et al., 2022). Heavy 
metals can leach from contaminated soils and enter 
groundwater, making it challenging to remediate and 
posing a risk to drinking water supplies (Xie et al., 2023). 
Additionally, industrial processes and activities like 
mining, smelting, and combustion can release heavy 
metals into the atmosphere, leading to air pollution and 
potential respiratory health issues for nearby populations. 

To address these problems, it is crucial to adopt effective 
pollution prevention measures, enforce regulations, and 
implement remediation strategies to reduce heavy metal 
pollution and its associated risks to human health and the 
environment. The use of bacterial biomass in this study to 
absorb heavy metals aims to assess the potential of a bio-
based and cost-effective method for the removal of heavy 
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metal pollutants from environmental matrices. This 
approach, often referred to as bioremediation or 
biosorption, harnesses the unique abilities of certain 
species to accumulate heavy metals from their 
surroundings. The primary objective of using bacterial 
biomass to absorb heavy metals is to provide a sustainable, 
efficient, and environmentally friendly solution to mitigate 
the adverse effects of heavy metal pollution on both 
human health and the natural environment. The use of 
bacterial biomass may aid in assessing its potential for the 
remediation of contaminated sites and the restoration of 
ecosystems affected by heavy metal pollution. 

METHODOLOGY  

Characterization and Confirmation of Isolates using 
Conventional and Molecular Methods  

The morphological (Grams reaction and spore staining) 
and biochemical characteristics (catalase, coagulase, sugar 
production, starch hydrolysis, etc.) of isolated bacteria 
from soils of a local mining site in Bagega District 
(11.8648°N, 6.0024°E) of Anka Local Government in 
North-west Nigeria were confirmed using conventional 
techniques. The bacterial isolates were further 
characterized using molecular techniques. The isolates 
were cultured as single colonies in nutrient broth at 37ºC 
for 24 hours. After harvesting cells from 5ml of broth and 
adding 100 μl of lysozyme for 30 minutes incubation, 700 
μl of cell lysis buffer (comprising SDS, Tris-EDTA, etc.) 
was introduced. The vial was gently inverted for 5 minutes 
to mix the content, and DNA was subsequently 
precipitated from the aqueous layer using ethanol. The 
resulting DNA pellet was dried and then dissolved in 50 
μl of 1x TE buffer. To assess DNA quality, it was 
examined using a 0.8% agarose gel stained with ethidium 
bromide (0.5 μg/μl). A single, concentrated DNA sample 
was used as a template for amplifying the 16s rRNA gene 
(as template DNA), following the method described by 
Zhang et al. (2000). 

For the PCR reaction, universal primers were employed, 
with the forward primer having the sequence 5' 
AGAGTTTGATCMTGGCTCAG3' and the reverse 
primer with  5'TACGGYTACCTTGTTACGACTT 3'. A 
total of 25 μl of the PCR reaction solution was prepared, 
including 1.5 μl each of the forward and reverse primers, 
5 μl of deionized water, and 12 μl of Taq master mix. The 
Taq master mix contained DNA polymerase, 2x tae 
buffer, 0.4Mm dNTPs, 3.2mM MgCl2, and 0.02% 
bromophenol blue. The PCR followed the following 
thermal cycling conditions: 

• Denaturation: Initial heating of the DNA 
template at 94°C, breaking the hydrogen bonds 
and separating the DNA strands. 

• Annealing: Cooling from 90°C to 60°C, allowing 
the primers to bind to complementary sequences 
in the DNA template. 

• Extension: Heating to 72°C, the optimal 
temperature for DNA polymerase to extend the 
primers using the target DNA as a template 
(Zhang et al., 2000). 

The resulting DNA fragments were subjected to 
electrophoresis in agarose gels with a concentration of 1% 
and run in Tris-Acetic-EDTA (TAE) buffer (Bioline, UK). 
Ethidium bromide was used as a staining reagent. A 
loading buffer (containing bromophenol blue) was added 
to the samples, and in each gel, 3 μl of Ikb PCR molecular 
ladder (Bioline, UK) was loaded into the first well. 
Electrophoresis was conducted for 4 hours at 60 volts, and 
the reaction products were visualized using a gel 
documentation system (Alpha Innotech). The purified 
PCR product of the 16S rRNA gene from the bacterial 
isolate was submitted for sequencing using the ABI DNA 
3730 XL sequencer (Applied Bio system). Sequencing was 
carried out in both directions, and the bacterial species 
were identified by comparing the obtained sequences with 
basic local alignment search tool (BLAST) searches. 
Following sequence matching and accession number 
acquisition, the sequences were submitted to the NCBI 
GenBank. 

Biomass Production and Biosorption Experiment 

After the bacteria were cultured in nutrient broth (N.B.) 
medium, their biomass was collected. A 72-hour culture 
was centrifuged for 15 minutes at 10,000 rpm to extract 
the biomass using a centrifuge (Selecta Centromix Model 
220). After being cleaned twice with deionized water, the 
pellets were dried in the oven for 30 minutes at 100°C. 
Harvested biomass of identical volume was mixed for 24 
hours on a rotary shaker at 160 rev/min in 1% nitric acid 
distilled water at a 12 ppm concentration for each heavy 
metal. After separating the biomass, the residual metal 
concentration in the supernatant was calculated using 
flame atomic absorption spectrophotometry (Garcia et al., 
2016). The amount of metal taken up by biomass is 
estimated as follows: 

Percentage uptake

=
V(Ci − Cf)

M
 x 100 … … … … … … … … … … … … … … (1) 

Where V= Volume of medium, Ci= initial concentration, 
Cf=final concentration, M=Mass of biosorbent 

While the percentage uptake was determined thus; 

Percentage uptake

=
q1 − q2

q2
 x 100 … … … … … … … … … … … … … … … (2) 

Where: q1= quantity uptake before biosorption, q2= 
quantity uptake after biosorption.  
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Optimization of Parameters using Response Surface 
Methodology (R.S.M.); Model Design and 
Development  
Two key aspects of the usage of R.S.M. were looked at: 
the performance of statistically prepared experiments and 
determining the coefficients in a mathematical model 
(Saravanan et al., 2012). 

Y = f (X1, X2, X3 .Xk) …………..………………(1)  

Although the actual relationship between Y and Xk is 
typically unclear, equation 2 shows how a second-degree 
quadratic polynomial can describe the function in the 
relevant range (Uzun et al., 2017).  

Z = βO+β1Y1+β2Y2+β3Y3+β4Y4+ β11Y1+ β22Y22+ 
β33Y33+ β44Y44+ β12Y1Y2+ β23Y2Y3+ β34Y3Y4+ 
β31Y3Y1………………………………………...…(2)  

Where Z=Predicted value, βo=Constant, 
Y1=Temperature (ºC), Y2=pH, Y3=Inocula Size (mg/g), 
Y4= Contact time (hours), β1, β2, β3, β4 are linear 
coefficients and β11, β22, β33 and β44 are quadratic 
coefficients. With pH (5 to 9), temperature (25 to 45°C), 
contact duration (24 - 72minutes), and inocula size (0.2-
0.8mg/kg) as parameters, the low, middle, and high levels 
of each variable tested were marked -1, 0 and +1, 
respectively. In batch research, this also allows us to find 
significant interactions. These are approximated by the 
quadratic (second degree) polynomial (equation 2) where 
Y is the predicted value; βo is a constant; Y1 is the inocula 
size (mg/g1); Y2 is the pH, Y3 is the contact time and Y4 
is the temperature (°C). Each variable’s low and high levels 
of each variable are designated as -1, 0 and +1, 
respectively. Multiple linear regressions were utilized to 
determine the model's coefficients using a total of 30 runs.  
Analysis of Surface Molecules Using FT-IR  
Fourier transform infrared spectroscopy (FT-IR) the 
functional groups and chemistry of chemical bonding in 
the bacterial biomass were examined. Infrared spectra of 
the bacteria and biomass were obtained by mixing 200 mg 
of dry potassium bromide (KBr) powder and 200 mg of 
freeze-dried biomass in a mortar at a ratio of 1:100. The 
resultant slurry was compressed into transparent sample 
discs using a pressure bench press. The spectrometer 
(PerkinElmer Spectrum Version 10.4.3) was used to 
conduct the analysis, and spectrum data between 450 and 
4000cm-1 was acquired and presented (Ramyakrishna, and 
Sudhamani, 2016).  
Statistical Analysis  
Descriptive statistics was used to analyze the data. 
Multiple regression analysis was also carried out to identify 
interaction by response surface using Design-Expert 
software (Stat Ease Incorporation Version 12).  

RESULTS AND DISCUSSION 

Morphological and Biochemical Characteristics of 
the Isolate  
As presented in Table 1, the heavy metal-tolerant bacteria 
identified belonged to the phylum Proteobacteria, in the 
class Betaproteobacteria of the order Burkholderiales. 

Proteobacteria are a diverse group with various metabolic 
capabilities. This diversity allows them to adapt to 
different soil conditions and thrive in a wide range of 
environments. Some Proteobacteria can tolerate extreme 
conditions, such as high acidity or salinity, making them 
well-suited for diverse soil types (Zhang et al., 2023). 
Proteobacteria play a crucial role in the decomposition of 
organic matter in soil. They are often involved in the 
breakdown of complex organic molecules such as dead 
plant and animal material, releasing nutrients like carbon, 
nitrogen, and phosphorus back into the soil (Yang et al., 
2023). To corroborate this study, Ivaldi et al. (2023) 
reported the isolation of abundant proteobacteria from 
soil extract. Similarly, Pham et al. (2023) reported the 
isolation of various groups of bacteria including 
proteobacteria from dioxin contaminated soil with 
biodegradation potential. 

Table 1: Morphological, Biochemical and Molecular 
Characteristics of the Bacteria  

Test Result 

Gram reaction Negative 
Motility + 
Cell Shape Rod 
Spore - 
Catalase + 
Lactose - 
Sucrose - 
Glu - 
Citrate + 
Indole - 
Methyl Red + 
Voges Proskauer - 
Nitrate Reduction - 
H2S Production - 
Oxidase + 
Starch Hydrolysis + 
Accession Number MT107249 
Bacteria Alcaligenes faecalis strain U.B.I. 
Phylum Proteobacteria 
Genbank  National Center for 

Biotechnology Information 

Molecular Identification of the Isolate 
Results of the agarose gel electrophoresis carried out were 
shown in Figure 1. Additional phylogenetic characteristics 
of the bacteria revealed a close connection with the cluster 
of Aeromonas sp. and other members of the 
Aeromonadaceae family. Figure 2 depicts the relationship 
between Alcaligenes faecalis strain U.B.I. and other 
Alcaligenes species in the same group. The Alcaligenes faecalis 
strain U.B.I. identified in this research belonged to the 
class Betaproteobacteria and the Burkholderiales order of 
the Proteobacteria phylum. These species of bacteria 
employ several mechanisms that allow them to survive and 
thrive in environments contaminated with elevated levels 
of heavy metals (Abou-Aly et al., 2019; Abou-Aly et al., 
2021). Development of efflux pumps, specialized 
membrane proteins that actively facilitate movement of 
metal ions out of cellular membrane prevents their 
accumulation to toxic level (Nguyen et al., 2023). Because 
of their changing metabolic dynamics, this particular strain 
of bacteria was found to have significant tolerance to 
heavy metals in multiple investigations (Johnson et al., 
2019). 
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Figure 1: Agarose gel electrophoresis for PCR product of 
16SrDNA showing the bacterial isolates labeled 1 
(Alcaligenes faecalis strain UBI), 2 (Aeromonassobria), 3 
(Aeromonas sp strain UBI)  

 

Figure 2: Phylogenetic tree based on 16SrRNA sequence 
using neighbor-joining method (Bootstrap values were ran 
at 1000 replications) 
Biosorption Experiment 
Figure 3 shows the results of an experiment in which 
bacteria were treated in a heavy metal-incorporated 
medium. According to the results, the highest uptake by 
the biomass was 93.0% of Cr+ with a biosorption rate of 
93.0% (Cr > Cd > Pb > Cu). This means the biomass's 
potential for high uptake might result from its expanded 
surface-to-volume ratio. Studies by Tuzen et al. (2007), 
Srinath et al. (2002), and Benmalek and Fardeau (2016) 

demonstrated that dried bacterial biomass has a higher 
biosorption capacity than immobilized or living bacterial 
cells, with a capacity differential of up to 50% compared 
to their living isolates. Wrobel et al. (2023) further support 
this study’s findings, who claimed that Bacillus sp. biomass 
absorbs more heavy metals from the environment than 
other corresponding bacterial cells. 

 

Figure 3: Percentage biosorption of heavy metals by 
Alcaligenes faecalis strain UBI biomass 
Optimization of Heavy Metal Absorption using 
Response Surface Methodology (R.S.M) 
The model for the respective biomass interaction with 
optimized variables is presented in Table 2. Similarly, 
interaction effect of variables on biosorption of Pb2+ by 
biomass is presented in Table 3. Multiple regression 
analysis of the observed responses resulted in the 
quadratic model thus:  Z = 80.23 - 7.05Y1 + 0.725Y2 + 
0.120Y0 - 1.19Y4 - 0.206Y11 - 0.756Y22 + 0.718 Y32 -
0.517Y42 + 0.43 Y1Y2 + 1.73 Y2Y3 - 6.94 Y3Y4 - 
0.817Y4Y5. Similarly, response surface interaction plots of 
different variables were presented in Figures 4 (pH and 
temperature), 5 (biosorbent dose and temperature), 6 
(contact time and temperature), 7 (biosorbent dose and 
pH), 8 (contact time and pH), and 9 (biosorbent dose and 
contact time). The response surface methodology showed 
a R2 value near 1, which indicates the model’s accuracy 
with a non-significant lack of fit (0.601) (Yusuf et al., 2016). 
Temperature was shown to substantially impact the 
biosorption process by the biomass, and the model 
developed was reliable (p = 0.001). According to Hlihor et 
al. (2014) and Adebanjo et al. (2022), temperature affects 
the biosorption capacity of biomass due to the 
thermodynamics and kinetic energy of aqueous 
interactions with metallic ions. In a study by Arasu et al. 
(2023), the main influence of temperature on the usage of 
Bacillus sp. biomass in an optimization process using 
R.S.M. was established. This study showed a statistically 
significant relationship between pH and temperature in 
Pb2+ biosorption (0.0088). The interaction of ions, 
chemical speciation, solubility, and charge of the 
biosorbent may simultaneously impact on these 
parameters together with the applied kinetic energy, as 
Kanamarlapudi et al. (2018) observed.  

Analysis of Surface Molecules using FT-IR 
After interacting with heavy metals, surface molecules and 
functional groups showed O-H stretch and H-bonded at 
position 3268 cm1, whereas C=C stretch and N-O 
asymmetrical stretch/C-O stretch/CH2

xalkyl-halide 
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appeared at positions 2195 cm-1 and 1629 cm-1 of the 
spectra, respectively. Upon interaction with heavy metals, 
a very significant shift in position was seen in the 
functional groups. Similar functional groups with O.H. 
stretch, C-N stretch, and N-H bond were seen in the 
biomass with obvious positional shifts (Table 4). The 
chemistry of the surface molecules of the bacterial 
biomass analyzed in this study showed peaks between 
3200 cm-1 and 3400 cm-1, indicative of hydroxyl (O.H.) 
and carboxylic (COOH) stretches. Heavy metal can bind 
to the functional groups present on bacterial cell surfaces 
(Ayele and Godeto, 2021). These functional groups are 
important components of various molecules like 
lipopolysaccharides, proteins and lipids. This observation 
was supported by similar findings by Cabuk et al. (2005) 
and Anna and Zofia (2014), who reported that Pb2+ was 
bound to hydroxyl and carboxyl groups and amide and 
sulphonamide bioligands. In another study by Qiao et al. 
(2019) on the bio-immobilization of lead by Bacillus 
biomass recovered from contaminated soil samples, these 

substances were discovered on the surface of the bacteria. 
Additionally, peaks at 1640 cm-1 measure the presence of 
amide, aromatic, and alkene functional groups, 
respectively, while those at 2000 cm-1 and 2200 cm-1 show 
a variable stretch of alkene present in the bacteria 
identified. According to Faghihzadeh et al. (2016), the 
existence of these surface molecules is a sign that 
structural proteins are present. It should be noted that 
after the heavy metal experiment, the wavelength of all 
bacterial surfaces noticeably altered between 3200 cm-

1 and 3400 cm-1. This can be as a result of the 
conformational alterations and and disruptions primarily 
due to modification of the structural integrity of the 
cellular proteins susceptible to the stressors (Aryal, 2021). 
In their study, Satapute et al. (2019) reported similar 
observation on some heavy metal resitant bacteria. 
Similarly, in agreement to this findings, Chai et al. (2021) 
reported similar observation in a review on conventional 
and novel materials towards heavy metal adsorption in 
wastewater treatment. 

Table 2: Complete Composite Design Model of Response Surface Methodology for Biomass of Alcaligenes 
faecalis strain U.B.I. Showing Actual and Predicted Values of Pb2+ Biosorption 

Run Temperature (ºC) pH Biosorbent Dose (mg/g) Contact Time (minutes) Actual (%) Predicted (%) Error Rate 

1 45 9 0.9 72 60.4 64.79 4.39 

2 25 5 0.9 24 74.8 78.89 4.09 

3 35 3 0.6 48 81.8 75.50 6.3 

4 25 5 0.9 72 76.8 77.68 0.88 

5 35 7 0.6 48 80.6 80.23 0.37 

6 25 9 0.3 72 72.8 75.19 2.39 

7 35 7 0.6 48 80.5 80.23 0.27 

8 45 5 0.3 72 56.4 60.69 4.29 

9 35 7 0.6 48 80.6 80.23 0.37 

10 45 9 0.3 24 62.3 67.18 4.88 

11 25 9 0.9 24 77.4 78.86 1.46 

12 15 7 0.6 48 74.8 66.55 8.25 

13 25 5 0.3 72 63.2 71.42 8.22 

14 45 5 0.9 24 58.9 62.26 3.36 

15 35 7 0.6 96 83.4 74.49 8.91 

16 45 9 0.9 24 65.4 61.40 4.0 

17 55 7 0.6 48 40.1 38.37 1.73 

18 35 7 0.6 48 81.9 80.23 1.67 

19 45 9 0.3 72 63.5 63.64 0.14 

20 25 9 0.3 24 79.2 81.60 2.4 

21 35 7 0 48 82.7 76.57 6.13 

22 35 11 0.6 48 82.1 78.42 3.68 

23 35 7 1.2 48 80.9 77.05 3.85 

24 35 7 0.6 48 81.4 80.23 1.17 

25 25 5 0.3 24 78.2 79.56 1.36 

26 35 7 0.6 0 80.3 79.24 1.06 

27 25 9 0.9 72 73.7 79.37 5.67 

28 45 5 0.9 72 62.1 63.92 1.82 

29 45 5 0.3 24 67.4 65.95 1.45 

30 35 7 0.6 48 76.4 80.23 3.83 
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Table 3: ANOVA Model of R.S.M. Design for Biomass of Alcaligenes faecalis strain U.B.I. 
Source Sum of Squares Df Mean Square F-value p-value Fit Statistics 

Model 2635.43 14 188.25 5.61 0.0010* - 
A 1191.45 1 1191.45 35.52 0.0001* - 
B 12.76 1 12.76 0.3805 0.5466** - 
C 0.3504 1 0.3504 0.0104 0.9199** - 
D 33.84 1 33.84 1.01 0.3310** - 
AB 0.6806 1 0.6806 0.0203 0.0088* - 
AC 9.15 1 9.15 0.2728 0.6091** - 
AD 8.27 1 8.27 0.2465 0.6268** - 
BC 4.31 1 4.31 0.1284 0.7251** - 
BD 2.98 1 2.98 0.0887 0.7699** - 
CD 47.96 1 47.96 1.43 0.2503** - 
A² 1322.09 1 1322.09 39.42 < 0.0001* - 
B² 18.34 1 18.34 0.5468 0.4710** - 
C² 20.06 1 20.06 0.5981 0.4513** - 
D² 19.48 1 19.48 0.5808 0.4578** - 
Residual 503.08 15 33.54   - 
Lack of Fit 483.90 10 48.39 58.62 0.601** - 
Std. Dev. 5.79 - - - - - 
Mean - - - - - 72.67 
C.V. - - - - - 4.97 
R² - - - - - 0.9397 
Adjusted R² - - - - - 0.9014 
Predicted R² - - - - - 0.9031 
Adequacy Precision - - - - - 110.5575 

Key: A: Temperature; B: pH; C: Biosorbent dose; D: Contact time; *:Significant; **: Not significant 

Table 4: Surface chemistry of biomass obtained by FTIR spectrocopy 
Before After Surface Molecules 

3272.76 3272.80 OH stretch, N.H. stretch, CH stretch 
2918.77 2950.84 O-H stretch 
2996.82 2918.79 Medium CH Stretching 
1629.54 2851.84 N-O asymmetric stretch, 
1529.54 1629.56 N-O stretch, 
1402.72 1529.60 N-O Stretching 
1230.72 1462.77 S=O stretching 
1313.78 1313.80 C-N Stretching 
1056.77 1231.77 S=O stretching, CO stretching 

 

Figure 4: Graphical representation of response surface 
interaction in biomass of Alcaligenes faecalis strain U.B.I. 
between (B) pH and (A) temperature on percentage 
biosorption of Pb2+ 

 

Figure 5: Graphical representation response of surface 
interaction in biomass of Alcaligenes faecalis strain U.B.I. 
between (C) biosorbent dose and (A) temperature on 
percentage biosorption of Pb2+ 
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Figure 6: Graphical representation of response surface 
interaction in biomass of Alcaligenes faecalis strain U.B.I. 
between (D) contact time and (A) temperature on 
percentage biosorption of Pb2+ 

 

Figure 7: Graphical representation of response surface 
interaction in biomass of Alcaligenes faecalis strain U.B.I. 
between (C) biosorbent dose and (B) pH on percentage 
biosorption of Pb2+ 

 

Figure 8: Graphical representation of response surface 
interaction in biomass in Alcaligenes faecalis strain U.B.I. 
between (D) contact time and (B) pH on percentage 
biosorption of Pb2+ 

 

Figure 9: Graphical representation of response surface 
interaction in biomass of Alcaligenes faecalis strain U.B.I. 
between (C) biosorbent dose and (D) contact time on 
percentage biosorption of Pb2+ 
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CONCLUSIONS 

In conclusion, the biomass of Alcaligenes faecalis strain 
U.B.I. utilized in this study belonged to a group of bacteria 
that was stated to have a high tolerance for heavy metals, 
and its biomass can be employed as a biosorbent to 
remove heavy metals. 

RECOMMENDATIONS FOR FUTURE 
RESEARCH 

It is recommended that; 

i. Advanced analytical techniques (e.g., ICP-
MS) should be employed in further studies 
to quantify the amount of heavy metals 
accumulated by the bacterial biomass. 

ii. The dynamics of bacterial biomass in biofilm 
formation should be studied to further 
understand the organization and interaction 
in the community. 
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