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INTRODUCTION
“Inventory” encompasses the materials used in 
production and the finished products available for sale. 
Efficiently managing the procurement, storage, and 
accessibility of goods is known as inventory control.  The 
primary goal is maintaining an appropriate stock level that 
prevents shortages and excesses.  Poor inventory control 
can lead to either inadequate supplies or surplus products.  
Inadequate inventory management can result in missed 
deliveries, lost sales, dissatisfied customers, and 
production bottlenecks. 

On the other hand, overstocking ties up funds that could 
be used more productively and occupy valuable storage 
space.  Harris introduced the Economic Order Quantity 
(EOQ) model in 1913 to address the balance between 
understocking and overstocking.  This model aimed to 
determine the optimal order quantity that minimises 
variable costs, assuming a constant demand rate.  
However, many subsequent researchers, such as Giri et al. 
(2000) and Kar et al. (2001), adapted the EOQ model for 

scenarios with time-dependent linear demand rates.  These 
adaptations considered changing demand rates over time, 
a more realistic scenario for various products compared to 
the steady rise or fall in demand rate assumed by the 
original model.  Similar to this, some researchers such as 
Ahmed and Musa (2016) and Malumfashi et al. (2022) and 
others modify the assumption of the traditional EOQ 
model in the case of a time-dependent exponential 
demand rate, which is also hardly observed to occur for 
any product because the demand rate of a significant 
number of products may not change at the higher rate of 
change as exponential.  An accelerated/retarded rise or 
decrease in demand rates, which is best represented by a 
quadratic function of time, would be the best substitute 
for linear or exponential demand rates.  An accelerated or 
retarded rise or decrease in demand rates, which is best 
represented by a quadratic function of time, would be a 
preferable option to linear or exponential demand rates.  
New things like technology, trendy items, and so forth 
typically have an accelerated surge in demand.  While 
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ABSTRACT 
In some classical inventory models for non-instantaneous deteriorating items, it is tacitly 
assumed that the selling price before and after deterioration sets in is the same.  However, in 
real practice, when deterioration sets in, the retailer may decide to reduce the selling price to 
encourage more sales, reduce the cost of holding stock, attract new customers and reduce 
losses due to deterioration.  This research developed an economic order quantity model for 
non-instantaneous deteriorating items with two-phase demand rates, linear holding cost, 
complete backlogging rate and two-level pricing strategies under trade credit policy.  It is 
assumed that the holding cost is linear time-dependent, the unit selling price before 
deterioration sets in is greater than that after deterioration sets and the demand rate before 
deterioration sets in is considered as continuous time-dependent quadratic, after which it is 
considered as constant up to when the inventory is completely exhausted.  Shortages are 
allowed and completely backlogged.  The proposed model determines the optimal time with 
positive inventory, cycle length and order quantity such that the total profit of the inventory 
system has a maximum value.  The necessary and sufficient conditions for the existence and 
uniqueness of optimal solutions have been established.  Numerical experiments have been 
conducted to illustrate the theoretical result of the model.  Sensitivity analysis of some model 
parameters on the decision variables has been carried out, and suggestions towards 
maximising the total profit were also given. 
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accelerated rise and fall in demand rates typically happen 
with seasonal products, whose demand rises quickly to a 
peak in the middle of the season and then falls quickly as 
the season ends, accelerated fall in demand rates typically 
happen with outmoded automobiles, clothes, computers, 
and other items.  Khanra and Chaudhuri (2003) were the 
first to study an inventory model with a time-dependent 
quadratic demand rate.  They assumed that only a fixed 
percentage of the available inventory degrades over both 
infinite and finite time horizons, and they provided a 
detailed justification for choosing a time-dependent 
quadratic demand rate over linear or exponential demand 
rates.  Later, researchers like Uthayakumar and 
Karuppasamy (2017), Priya and Senbagam (2018), 
Rahman and Uddin (2021) and so on developed inventory 
models with time-dependent quadratic demand rates. 

The traditional EOQ model (created by Harris, 1913) 
assumed that goods had an indefinite lifespan and that 
inventory was depleted only due to constant demand rates.  
However, occasionally, inventory products are depleted 
due to deterioration.  Therefore, the impact of 
deterioration on inventory items cannot be disregarded. 
The first inventory model for items that deteriorate at the 
end of the allotted storage term was studied by Whitin in 
1957. For products that deteriorate exponentially at 
constant rates, Ghare and Schrader (1963) presented an 
improved version of the EOQ model, in which the 
consumption rate of deteriorating items is based on a 
negative exponential function of time.  After that, Covert 
and Philip (1974) developed an EOQ model for 
instantaneously deteriorating items using a modified 
version of Ghare and Schrader’s (1963) model, where the 
rate of deterioration is distributed according to a two-
parameter Weibull distribution.  Philip (1974) modified 
Covert and Philip’s (1974) model by developing an 
inventory model for instantaneously deteriorating items, 
where the rate of deterioration is distributed according to 
a three-parameter Weibull distribution and shortages are 
prohibited.  Additionally, Baraya and Sani (2016), Mandal 
and Venkataraman (2019), Jaggi et al. (2019), and other 
studies on inventory models assume that deterioration 
begins as soon as items are received. 

A widely accepted belief in academic circles is that once 
inventory items are received, they immediately start to 
deteriorate.  However, this notion is not universally 
applicable, particularly to products like perishables such as 
vegetables, fruits, fish, and meat.  These items often have 
a period during which their quality remains intact, and 
deterioration is not yet evident.  Assuming that 
deterioration begins immediately upon stocking can lead 
retailers to adopt unsuitable restocking strategies, 
exaggerating the estimation of overall inventory costs.  
Addressing this issue, Wu et al. (2006) developed an 
effective method for replenishing items that deteriorate 
gradually over time.  Their approach factors in the 
influence of stock levels on-demand rates, managing 
shortages through variable backlogging rates based on 
time until the next replenishment.  Geetha and 
Udayakumar (2016) similarly tackled this challenge by 

designing an optimal strategy for determining batch sizes 
of deteriorating items.  They considered factors like 
pricing and advertising that affect demand rates and 
accommodated shortages with partial backlogging.  In 
another study, Babangida and Baraya (2018) introduced an 
inventory model for items undergoing gradual 
deterioration, characterised by quadratic demand rates. 
Their model incorporated trade credit policies and 
accounted for time-dependent demand rates before 
deterioration.  Following deterioration, a constant demand 
rate was assumed until inventory depletion.  Furthermore, 
researchers including Bello and Baraya (2018), Bello and 
Baraya (2019), Babangida and Baraya (2021b), Mustapha 
and Majid (2023), and others have extensively explored 
inventory models for items undergoing non-instantaneous 
deterioration.  These studies encompass diverse 
assumptions and scenarios, collectively enhancing the 
comprehension of efficient management strategies for 
items with gradual deterioration under various conditions. 

It is typically believed in some traditional EOQ models 
that the retailer must pay for goods as soon as they are 
received from the supplier or manufacturer.  However, 
such an assumption could not be valid in today's highly 
competitive market environment.  Harley and Higgins 
initially presented the concept of trade credit in the 
inventory literature in 1973.  Tripathy et al. (2022) 
designed an inventory model for non-instantaneous 
deteriorating items with steady demand under progressive 
financial trade credit facilities.  In addition, Jaggi et al. 
(2015), Shaikh et al. (2018), Babangida and Baraya (2020), 
and others have published relevant studies on inventory 
models under trade credit policy with a variety of 
assumptions. 

Many inventory models assume constant holding costs, 
but in reality, these costs often change due to shifts in the 
time value of money and price indices.  Most items held in 
stock have holding costs that increase linearly with the 
length of time they are stored.  Researchers have addressed 
this issue in various ways.  Selvaraju and Ghuru (2018) 
developed Economic Order Quantity (EOQ) models for 
items that deteriorate instantly, considering constant, 
linear, and quadratic holding costs.  Babangida and Baraya 
(2019a) extended the EOQ model to non-instantaneously 
deteriorating items, incorporating two demand 
components and linear time-dependent holding costs 
under a trade credit policy.  They found that models with 
time-varying holding costs tend to have higher total 
variable costs compared to those with constant holding 
costs.  Malumfashi et al. (2021) devised an EOQ-like 
model, known as the Economic Production Quantity 
(EPQ), for delayed deteriorating items.  This model 
considers a two-phase production period, a variable 
demand rate, and linearly increasing time-dependent 
holding costs.  It has four stages: two production phases 
with different rates but the same demand rate, a period 
after inventory build-up with a quadratic time demand 
rate, and a deterioration period with demand dependent 
on stock levels, with no backorders allowed.  Deo et al. 
(2022) developed an inventory model that accounts for 
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selling prices, time-dependent demand, variable holding 
costs, and two storage facilities.  Babangida and Baraya 
(2022) expanded the EOQ model for non-instantaneously 
deteriorating items, considering two-phase demand rates, 
time-dependent linear holding costs, and addressing 
shortages with partial backlogging under a trade credit 
policy.  Their model aims to simultaneously determine the 
optimal time for positive inventory, cycle length, and 
economic order quantity to minimise total variable costs. 

In the classical inventory model, shortages are not allowed.  
However, sometimes, customers’ demands cannot be 
fulfilled by the supplier from the current stocks; this 
situation is known as stock out or shortage condition.  Roy 
(2008) developed an EOQ model for instantaneous 
deteriorating items with a price-dependent demand rate, 
where deterioration rate and holding cost are considered 
linearly increasing time functions. Shortages are allowed 
and completely backlogged.  Choudhury et al. (2013) 
developed an inventory model for non-instantaneous 
deteriorating items with stock-dependent demand rates, 
time-varying holding costs, and completely backlogged 
shortages.  Babangida and Baraya (2019b) developed an 
inventory model for non-instantaneous deteriorating 
items with two-phase demand and shortages under the 
trade credit policy.  Shortages are allowed and completely 
backlogged.  The optimal time with positive inventory, 
cycle length and order quantity are determined such that 
the total variable cost has a minimum value.  

Most inventory models for non-instantaneous 
deteriorating items assume that the unit selling price 
before and after deterioration sets in is the same.  
However, in real practice, the unit selling price before and 
after deterioration sets in differs and this assumption 
needs to be considered in developing inventory policies 
for non-instantaneous deteriorating items, where the 
objective function is to maximise the total profit of the 
inventory system.  Pang et al. (2022) developed an 
inventory model for perishable items with two-stage 
pricing.  Babangida and Baraya (2021a) developed an 
EOQ model for non-instantaneous deteriorating items 
with two-phase demand rates and two-level pricing 
strategies under trade credit policy. 

This study focuses on an Economic Order Quantity 
(EOQ) model designed for items with non-instantaneous 
deterioration.  The model considers two-phase demand 
rates, a linear holding cost, a complete backlogging rate, 
and two-level pricing strategies, all operating under a trade 
credit policy.  The research establishes the necessary and 
sufficient conditions for optimal solutions.  The aim is to 
determine the optimal time for maintaining positive 
inventory, the cycle length, and the order quantity, 
collectively maximising the total profit per unit of time. 
The paper presents several numerical experiments to 
demonstrate how the theoretical model works in practice.  
Additionally, sensitivity analysis is conducted on specific 
parameters within the proposed models to understand the 
impact of parameter changes on decision variables.  

Recommendations for maximising total profit in light of 
these effects are also provided in this work. 

NOTATIONS AND ASSUMPTIONS 

Notation: 

The inventory system is developed using the following 
notations. 

 𝐴     The fixed ordering cost per order 

𝐶     The purchasing cost per unit time 

𝑆1     Unit selling price during the interval [0, 𝑡𝑑]

𝑆2 Unit selling price during the interval [𝑡𝑑 , 𝑇],
where 𝑆1 > 𝑆2 > 𝐶 

𝐶𝑏     Shortage cost per unit time 

𝐼𝐶      The interest charged in stock by the supplier. 

𝐼𝑒     The interest earned 

𝑀  The trade credit period (in year for settling 
account) 

𝜃     The constant deterioration rate function 

𝑡𝑑     The length of time in which the product exhibit 
more deterioration 

𝑡1  Length of time in which the inventory has no 
shortage 

𝑇      The length of replenishment cycle time 

𝑄𝑚    The maximum inventory level 

𝐵𝑚     The backorder level during the shortage period 

𝑄      The order quantity during the cycle length 

i.e.𝑄 = 𝑄𝑚 + 𝐵𝑚

Assumptions 

In addition to assumptions 8 and 9, which are not taken 
into consideration in Babangida and Baraya (2021), this 
model develops under the following assumptions, which 
have been adapted from the aforementioned research. 

1. The replenishment rate is infinite, i.e., the
replenishment rate is instantaneous, and the lead
time is zero.

2. During the fixed period,𝑡𝑑 , there is no deterioration
and at the end of this period, the inventory item

deteriorates at the rate 𝜃.
3. There is no replacement or repair for deteriorating

items.
4. The demand rate before deterioration begins is

assumed to be continuous time-dependent quadratic

and is given by 𝑎 + 𝑏𝑡 + 𝑡2, where 𝑎 ≥ 0, 𝑏 ≠
0, 𝑐 ≠ 0𝑐 ≠ 0. Here 𝑎 is the initial demand rate, 𝑏
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is the rate at which the demand rate changes and 𝑐 
is the accelerated change in the demand rate. 

5. The demand rate after deterioration sets in is 

assumed to be constant and is given by 𝑑,𝑑 > 0. 

6. During the trade credit period 𝑀(0 < 𝑀 < 1), the 
e account is not settled; generated sales revenue is 
deposited in an interest-bearing account.  At the end 
of the period, the retailer pays off all units bought 
and starts to pay the capital opportunity cost for the 
items in stock.  No interest is earned after the trade 
credit period. 

7. The unit selling price is not the same as the unit 
purchasing cost.  It is assumed that the unit selling 
price before deterioration sets in is greater than that 

after deterioration sets n (𝑆1 > 𝑆2 > 𝐶). 
8. Shortages are allowed and completely backlogged. 

9. Holding cost 𝐶1(𝑡)per unit time is linear time-

pendent and is assumed to be 𝐶1(𝑡) = ℎ1 + ℎ2𝑡; 

where ℎ1 > 0 and ℎ2 > 0. 

FORMULATION OF THE MODEL 

𝑄𝑚 Units of items are ordered at the beginning of the 

cycle (i.e., at time 𝑡 = 0).  During the interval [0, 𝑡𝑑], the 
inventory level is depleting gradually due to market 
demand only and the demand rate is assumed to be time-

dependent quadratic.  At time interval [𝑡𝑑 , 𝑡1], the 
inventory level is depleting due to the combined effects of 
customer demand and deterioration, and the demand rate 

reduces to 𝑑.  At time 𝑡 = 𝑡1, the inventory level depletes 

to zero.  Shortages occur at the time interval [𝑡1, 𝑇] and 
are completely backlogged.  The behaviour of the 
inventory system is described in Figure 1 below. 

 

Fig. 1: Graphical representation of the inventory system 
with a complete backlogging rate 

During the time interval [0, 𝑇], the change of 

inventory at any time 𝑡 is represented by the 
following differential equations, 

𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝑎 + 𝑏𝑡 + 𝑐𝑡2),        0 ≤ 𝑡 ≤  𝑡𝑑        (1) 

with boundary conditions 𝐼1(0) =  𝑄𝑚and𝐼1(𝑡𝑑) =
𝑄𝑑 . 

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃𝐼2(𝑡) = −𝑑,      𝑡𝑑 ≤ 𝑡 ≤  𝑡1               (2) 

with boundary conditions 𝐼2(𝑡1) =  0 and 𝐼2(𝑡𝑑) =
 𝑄𝑑. 

𝑑𝐼3(𝑡)

𝑑𝑡
= −𝑑,                        𝑡1 ≤ 𝑡 ≤  𝑇             (3) 

with condition 𝐼3(𝑡1) =  0 at 𝑡 = 𝑡1. 

The solution of equations (1), (2) and (3) are 
respectively given by 

𝐼1(𝑡) =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + 𝑎(𝑡𝑑 − 𝑡)

+
𝑏

2
(𝑡𝑑

2 − 𝑡2) +
𝑐

3
(𝑡𝑑

3 − 𝑡3)   0

≤ 𝑡 ≤  𝑡𝑑                                      (4) 

𝐼2(𝑡) =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡) − 1),      𝑡𝑑 ≤ 𝑡 ≤  𝑡1           (5) 

   𝐼3(𝑡) = 𝑑(𝑡1 − 𝑡)                                                         (6) 

From Fig.1, using the condition 𝐼1(0) =  𝑄𝑚 In 
equation (4), the maximum stock level is given by 

𝑄𝑚 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

+ (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
)            (7) 

Similarly, the value of 𝑄𝑑 can be derived at 𝑡 = 𝑡𝑑, 
then it follows from equation (5) that 

𝑄𝑑 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)                                           (8) 

The maximum back-ordered inventory 𝐵𝑚 It is 

obtained at 𝑡 = 𝑇, and then from equation (6), it 
follows that. 

𝐵𝑚 = 𝑑(𝑇 − 𝑡1)                                                    (9) 

Therefore, the order size 𝑄 during the period [0, 𝑇] 
is obtained as the sum of the maximum inventory 

level 𝑄𝑚 And maximum back-ordered inventory 𝐵𝑚 

𝑄 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

+ 𝑑(𝑇 − 𝑡1)                        (10) 

(i) The total demand during the period  [𝑡𝑑 ,  𝑡1] is given by 

     𝐷𝑀 = ∫ 𝑑
𝑡1

𝑡𝑑

𝑑𝑡 = 𝑑(𝑡1 − 𝑡𝑑)                                (11) 

(ii) The total number of deteriorated items per cycle is obtained 

as the difference between  𝑄𝑑  𝑎𝑛𝑑 𝐷𝑀 

𝐷𝑃 =
𝑑

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)]                (12) 

(iii) Total number of items sold 
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𝑆𝑁 = 𝑄 − 𝐷𝑃 = (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑑(𝑡1 − 𝑡𝑑)

+ 𝑑(𝑇 − 𝑡1)                                  (13) 

(iv) Sale revenue (SR) 

𝑆𝑅 = 𝑆1 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

]

+ 𝑆2 [∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

+ ∫ 𝑑𝑑𝑡
𝑇

𝑡1

] 

= 𝑆1 (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑)

+ 𝑆2𝑑(𝑇 − 𝑡1)                                                 (14) 

(v) Purchasing cost (PC) 

𝑃𝐶 = 𝐶𝑄 = 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

+ (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
)

+ 𝑑(𝑇 − 𝑡1)]                       (15) 

(iv) The fixed ordering cost per order is given by 𝐴 

(v) The inventory holding cost for the entire cycle is given by 

𝐶𝐻 = ∫ (ℎ1 + ℎ2𝑡)𝐼1(𝑡)𝑑𝑡
𝑡𝑑

0

+ ∫ (ℎ1 + ℎ2𝑡)𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

       (16) 

Substituting (5)and(4) into (16) to obtain 

𝐶𝐻 = ∫ (ℎ1 + ℎ2𝑡) [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

𝑡𝑑

0

+ 𝑎(𝑡𝑑 − 𝑡) +
𝑏

2
(𝑡𝑑

2 − 𝑡2)

+
𝑐

3
(𝑡𝑑

3 − 𝑡3)] 𝑑𝑡

+ ∫ (ℎ1

𝑡1

𝑡𝑑

+ ℎ2𝑡) [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡) − 1)] 𝑑𝑡 

= ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4

+
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

+ ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5

+
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3

+
𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]                          (17) 

(vi) The back-ordered cost per cycle is given by 

𝑆𝐶 = 𝐶𝑏 ∫ −𝐼3(𝑡)𝑑𝑡
𝑇

𝑡1

 =
𝐶𝑏𝑑

2
(𝑇 − 𝑡1)2         (18) 

(vii) The total profit per unit time for a replenishment cycle 

(denoted by 𝑇𝑃(𝑡1 ,𝑇 ) is given by 

𝑇𝑃(𝑡1 ,𝑇 )

= {

𝑇𝑃1(𝑡1 ,𝑇 )            0 < 𝑀 ≤ 𝑡𝑑

𝑇𝑃2(𝑡1 ,𝑇 )𝑡𝑑           < 𝑀 ≤ 𝑡1

𝑇𝑃3(𝑡1 ,𝑇 )               𝑀 > 𝑡1

                      (19) 

where 𝑇𝑃1(𝑡1 ,𝑇 ), 𝑇𝑃2(𝑡1 ,𝑇 ), and  𝑇𝑃3(𝑡1 ,𝑇 ) are 

discussed for three different cases follows. 

Case 1: (𝟎 < 𝑀 ≤ 𝒕𝒅) 

The interest payable 

This is the stage before deterioration begins, and 

goods are settled with the rate 𝐼𝑐 for the items in 
stock.  Therefore, the interest payable is given below. 

𝐼𝑃1 = 𝐶𝐼𝑐 [∫ 𝐼1(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+ ∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

] 

= 𝐶𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

+
𝑎

2
(𝑡𝑑 − 𝑀)2

+
𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀

+ 𝑀2)(𝑡𝑑 − 𝑀)2

+
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1

− 𝜃(𝑡1 − 𝑡𝑑))]                (20) 

The Interest Earned 

In this case, the retailer can earn interest up to the 

time 𝑀.  The interest earned is 

𝐼𝐸1 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑀

0

]

= 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3

+ 𝑐
𝑀4

4
)                                  (21) 

The total profit per unit time for case 1(0 < 𝑀 ≤
𝑡𝑑) is 

𝑇𝑃1(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue-Purchasing cost-

Ordering cost - inventory holding 
cost- back ordered cost - interest 
payable during the permissible 

delay period + interest earned 
during the cycle} 
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=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑)

+ (𝑆2 − 𝐶)𝑑(𝑇 − 𝑡1) − 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4

+
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5

+
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝑑

2
(𝑇 − 𝑡1)2

− 𝑐𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝑎

2
(𝑡𝑑 − 𝑀)2

+
𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑))]

+ 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3

+ 𝑐
𝑀4

4
)}                                                          (22) 

Case 2: (𝒕𝒅 < 𝑀 ≤ 𝒕𝟏) 

The interest payable 

This is when the credit period is greater than the 
period with no deterioration but shorter than or equal 
to the period with positive inventory.  The interest 
payable is 

𝐼𝑃2 = 𝑐𝐼𝑐 [∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑀

]

= 𝑐𝐼𝑐 [
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1

− 𝑀))]                                                                   (23) 

The interest earned 

In this case, the retailer can earn interest up to the 

trade credit period 𝑀.  The interest earned is 

𝐼𝐸2 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

]

+ 𝑆2𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑀

𝑡𝑑

] 

= 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ 𝑆2𝐼𝑒 (
𝑑𝑀2

2

−
𝑑𝑡𝑑

2

2
)                                                     (24) 

The total profit per unit time for case 2(𝑡𝑑 < 𝑀 ≤
𝑡1) is 

𝑇𝑃2(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - 

Ordering cost - inventory holding 
cost - back ordered cost - interest 
payable during the permissible 

delay period + interest earned 
during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

+ 𝑆2𝑑(𝑡1 − 𝑡𝑑)
+ (𝑆2 − 𝐶)𝑑(𝑇 − 𝑡1)

− 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3

+
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4

+
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3

+
𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝑑

2
(𝑇 − 𝑡1)2

− 𝑐𝐼𝑐 [
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1

− 𝑀))] + 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ 𝑆2𝐼𝑒 (
𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)}           (25) 

Case 3: (𝑴 > 𝒕𝟏) 

The interest payable 

In this case, the delay in payment is greater than the 
period with positive inventory.  In this case, the 

retailer pays no interest.  Therefore,𝐼𝑃3 = 0. 

The interest earned 

In this case, the period of delay in payment (𝑀) is 

greater than the period with positive inventory(𝑡1).  

Interest earned for the time period [0, 𝑇] 
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𝐼𝐸3 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ (𝑀

− 𝑡1) ∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

]

+ 𝑆2𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑡1

𝑡𝑑

+ (𝑀 − 𝑡1) ∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

] 

= 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
)]

+ 𝑆2𝐼𝑒 [−
𝑑

2
(𝑡1−𝑡𝑑)2

+ 𝑀𝑑(𝑡1

− 𝑡𝑑)]                                                            (26) 

The total profit per unit time for case 3 (𝑀 > 𝑡1) is 

𝑇𝑃3(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - 

Ordering cost - inventory holding 

cost - back ordered cost + interest 
earned during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

+ 𝑆2𝑑(𝑡1 − 𝑡𝑑)
+ (𝑆2 − 𝐶)𝑑(𝑇 − 𝑡1)

− 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3

+
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4

+
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2

−
𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝑑

2
(𝑇 − 𝑡1)2

+ 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
)]

+ 𝑆2𝐼𝑒 [−
𝑑

2
(𝑡1−𝑡𝑑)2

+ 𝑀𝑑(𝑡1

− 𝑡𝑑)]}                                      (27) 

Since 0 < 𝜃 < 1, by utilising a quadratic approximation 

for the exponential terms in equations (22), (25) and (27) 
to obtain 

𝑇𝑃1(𝑡1, 𝑇) =
1

𝑇
{[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

− (𝑆2 − 𝐶)𝑑𝑡𝑑 −
𝐶𝑑𝜃𝑡𝑑

2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2

+
𝑑𝑡𝑑

3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐 (
𝑎

2
(𝑡𝑑 − 𝑀)2

+
𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+ 𝑑𝑀𝑡𝑑 −
𝑑𝑡𝑑

2

2
+

𝑑

2
(𝑡𝑑 − 𝑀)𝜃𝑡𝑑

2)

+ 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)]

+ 𝑑 [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃

+ 𝑐𝐼𝑐(𝑀 + (𝑡𝑑 − 𝑀)𝜃𝑡𝑑)] 𝑡1

−
𝑑

2
[ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (

𝑡𝑑𝜃

2
+ 1) 𝑡𝑑

+ 𝐶𝜃 + 𝐶𝑏 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] 𝑡1
2

−
𝐶𝑏𝑑𝑇2

2
+ 𝐶𝑏𝑑𝑡1𝑇 + (𝑆2 − 𝐶)𝑑𝑇} 

=
𝑑

𝑇
{−

1

2
𝐴1𝑡1

2 + B1𝑡1 − C1 −
𝐶𝑏𝑇2

2

+ 𝐶𝑏𝑡1𝑇

+ (𝑆2 − 𝐶)𝑇}                              (28) 

Where 

𝐴1 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 +

𝐶𝑏 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)], 

B1 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃

+ 𝑐𝐼𝑐(𝑀 + (𝑡𝑑 − 𝑀)𝜃𝑡𝑑)] 

and 
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C1 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑

−
𝐶𝑑𝜃𝑡𝑑

2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2

+
𝑑𝑡𝑑

3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐 (
𝑎

2
(𝑡𝑑 − 𝑀)2

+
𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+ 𝑑𝑀𝑡𝑑 −
𝑑𝑡𝑑

2

2
+

𝑑

2
(𝑡𝑑 − 𝑀)𝜃𝑡𝑑

2)

+ 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)] 

Similarly, 

𝑇𝑃2(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
𝐴2𝑡1

2 + B2𝑡1 − C2 −
𝐶𝑏𝑇2

2
+ 𝐶𝑏𝑡1𝑇

+ (𝑆2 − 𝐶)𝑇}                       (29) 

Where 

𝐴2 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏 + 𝐶𝐼𝑐], 

[ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + (𝐶𝑏 + 𝐶𝜋𝛿)

+ 𝑐𝐼𝑐] 

B2 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝑐𝐼𝑐𝑀] 

and 

C2 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑

−
𝐶𝑑𝜃𝑡𝑑

2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2

+
𝑑𝑡𝑑

3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐

𝑑

2
𝑀2

+ 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ 𝑆2𝐼𝑒 (
𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)] 

and 

𝑇𝑃3(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
𝐴3𝑡1

2 + B3𝑡1 − C3 −
𝐶𝑏𝑇2

2
+ 𝐶𝑏𝑡1𝑇

+ (𝑆2 − 𝐶)𝑇}                       (30) 

Where 

𝐴3 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 +

𝐶𝑏 + 𝑆2𝐼𝑒], 

B3 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃

−
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)}

+ 𝑆2𝐼𝑒𝑡𝑑 + 𝑆2𝐼𝑒𝑀] 

and 

C3 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑

−
𝐶𝑑𝜃𝑡𝑑

2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2

+
𝑑𝑡𝑑

3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

+ 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) 𝑀] − 𝑆2𝐼𝑒

𝑑

2
𝑡𝑑

2

− 𝑆2𝐼𝑒𝑀𝑑𝑡𝑑] 

OPTIMAL DECISION 

This section determines the optimal ordering policies that 
maximise the total profit per unit time.  The necessary and 
sufficient conditions for optimal solutions' existence and 
uniqueness will be established.  The necessary conditions 

for the total profit per unit time 𝑇𝑃𝑖(𝑡1, 𝑇) to be 

maximum are 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 for 𝑖 =

1, 2, 3. The value of (𝑡1, 𝑇) obtained from 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
=

0 and 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 and for which the sufficient 

condition {(
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1
2 ) (

𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇2 ) − (
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 𝜕𝑇
)

2

} >

0 is satisfied, gives a maximum value for the total profit 

per unit time 𝑇𝑃𝑖(𝑡1, 𝑇). 

For case 1(𝟎 < 𝑀 ≤ 𝒕𝒅) 

The necessary condition for the total profit 𝑇𝑃1(𝑡1, 𝑇) in 

equation (28) to be the maximum are 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
= 0, which gives 

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−𝐴1𝑡1 + B1 + 𝐶𝑏𝑇} 

Setting 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 
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{−𝐴1𝑡1 + B1 + 𝐶𝑏𝑇} = 0                        (31) 

and 

𝑇 =
1

𝐶𝑏

(𝐴1𝑡1 − B1)                                  (32) 

Since(𝑡𝑑 − 𝑀) ≥ 0, (𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) > 0,it 
should be noted that 

(𝐴1𝑡1 − B1) = [ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1)

+ ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑

+
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝑡1

+ 𝑐𝐼𝑐((𝑡1 − 𝑀)

+ 𝜃(𝑡𝑑 − 𝑀)(𝑡1 − 𝑡𝑑))] > 0 

Similarly, 

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
𝐴1𝑡1

2 + B1𝑡1 − C1

+
𝐶𝑏𝑇2

2
}                                   (33) 

Setting  
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝐴1𝑡1

2 + B1𝑡1 − C1 +
𝐶𝑏𝑇2

2
} = 0     (34) 

Substituting 𝑇 from equation (32) into equation (34) yields 

{𝐴1(𝐶𝑏 − 𝐴1)𝑡1
2 − 2B1(𝐶𝑏 − 𝐴1)𝑡1

− (B1
2 − 2𝐶𝑏C1)}

= 0                                             (35) 

Let   ∆1= {𝐴1(𝐶𝑏 − 𝐴1)𝑡𝑑
2 − 2B1(𝐶𝑏 − 𝐴1)𝑡𝑑 −

(B1
2 − 2𝐶𝑏C1)}, then the following result is obtained. 

Lemma 1 

(i) If   ∆1≥ 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) (say 

𝑡11
∗ ), which satisfies equation (35) not only exists but 

also is unique. 
See the proof in Appendix 1a 

(ii) If   ∆1< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) Which 
satisfies equation (35) does not exist. 

See the proof in Appendix 1b 

Therefore, the value of 𝑡1 (denoted by  𝑡11
∗ ) can be 

found from equation (35) and is given by 

𝑡11
∗ =

B1

𝐴1
+

1

𝐴1

√
(2𝐴1C1 − B1

2)𝐶𝑏

(𝐴1 − 𝐶𝑏)
           (36) 

Once the value of𝑡11
∗  is obtained, then the value of 𝑇 

(denoted by 𝑇1
∗) can be found from (32) and is given 

by 

𝑇1
∗ =

1

𝐶𝑏

(𝐴1𝑡11
∗ − B1)                                     (37) 

Equations (36) and (37) give the optimal values of 𝑡11
∗  

and 𝑇1
∗ for the profit function in equation (28) only if 

B1 satisfies the inequality given in equation (38) 

2𝐴1C1 > B1
2                                               (38) 

Theorem 1 

(i) If  ∆1≥ 0, then the total profit𝑇𝑃1(𝑡1, 𝑇) is 
concave and reaches its global maximum at the 

point (𝑡11
∗ , 𝑇1

∗), where (𝑡11
∗ , 𝑇1

∗) is the point 
which satisfies equations (35) and (31), if all 
principal minors are negative definite, i.e., if 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

)

< 0, (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

)
|

|

> 0. 
See the proof in Appendix 1c 

(ii) If  ∆1< 0, then the total profit𝑇𝑃1(𝑡1, 𝑇) has a 

maximum value at the point (𝑡11
∗ , 𝑇1

∗) where 𝑡11
∗ =

𝑡𝑑  and 𝑇1
∗ =

1

𝐶𝑏
(𝐴1𝑡𝑑 − B1) 

See the proof in Appendix 1d 

For case 2 (𝒕𝒅 < 𝑀 ≤ 𝒕𝟏) 

The necessary condition for the total profit 

𝑇𝑃2(𝑡1, 𝑇) in equation (29) to be the maximum 

are
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1
= 0 and 

𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= 0, which gives 

𝜕𝑇𝑃2(𝑡1, 𝑇)

𝜕𝑡1
=

𝑑

𝑇
{−𝐴2𝑡1 + 𝐵2 + 𝐶𝑏𝑇} 

Setting 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1
= 0 gives 

{−𝐴2𝑡1 + 𝐵2 + 𝐶𝑏𝑇} = 0                        (39) 

and 

𝑇 =
1

𝐶𝑏
𝐴2𝑡1 − 𝐵2                                    (40) 

Since(𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) ≥ 0, it should be 
noted that 
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(𝐴2𝑡1 − 𝐵2) = [ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1)

+ ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑

+
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝑡1 + 𝐶𝐼𝐶(𝑡1

− 𝑀) > 0 

Similarly 

𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
𝐴2𝑡1

2 + 𝐵2𝑡1 − 𝐶2

+
𝐶𝑏𝑇2

2
}                                   (41) 

Setting 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝐴2𝑡1

2 + 𝐵2𝑡1−𝐶2 +
𝐶𝑏𝑇2

2
} = 0       (42) 

Substituting T from equation (40) into equation (42) 
yields 

𝐴2(𝐶𝑏 − 𝐴2)𝑡1
2 − 2𝐵2(𝐶𝑏 − 𝐴2)𝑡1 − (𝐵2

2

− 2𝐶𝑏𝐶2)} = 0                      (43) 

Let ∆2= {𝐴2(𝐶𝑏 − 𝐴2)𝑀2 − 2𝐵2(𝐶𝑏 − 𝐴2)𝑀 −
(𝐵2

2 − 2𝐶𝑏𝐶2)}, then the following result is obtained. 

Lemma 2 

(i) If ∆2≥ 0, then the solution of 𝑡1 ∈
[𝑀, ∞) (𝑠𝑎𝑦 𝑡12

∗ ), which satisfies equation (43) not 
only exists but also is unique. 

The proof is similar to Appendix 1a.  hence is omitted 

(ii) If∆2< 0, then the solution of  𝑡1 ∈ [𝑀, ∞), which 
satisfies equation (43), does not exist. 
The proof is similar to Appendix 1b; hence is omitted 

Therefore, the value of 𝑡1 (denoted by 𝑡12
∗ ) can be 

found from equation (43) and is given by 

𝑡12
∗ =

𝐵2

𝐴2
+

1

𝐴2

√
(2𝐴2𝐶2 − 𝐵2

2)𝐶𝑏

(𝐴2 − 𝐶𝑏)
                     (44) 

Once the value of 𝑡12
∗  is obtained, then the value of 

T (denoted by 𝑇2
∗) can be found from 

𝑇2
∗ =

1

𝐶𝑏

(𝐴2𝑡12
∗ − 𝐵2)                              (45) 

Equations (44) and (45) give the optimal of 𝑡12
∗  and 

𝑇2
∗for the profit function in equation (29) only if 

𝐵2 satisfies the inequality given in equation (46) 

2𝐴2𝐶2 >
𝐵2

2                                                                                                                               (46)  

 

Theorem 2 

(i) If ∆2≥ 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇)It is a 
concave and reaches its global maximum at the 

point (𝑡12
∗ , 𝑇2

∗), where (𝑡12
∗ , 𝑇2

∗) is the point which 
satisfies equations (45) and (41) if all principal 
minors are negative definite, i.e. if 

(
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

)

< 0, (
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

)

< 0 

The proof is similar to Appendix 1c; hence is omitted 

(ii).  If ∆2< 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇) has a 

maximum value at the point (𝑡12
∗ , 𝑇2

∗) where𝑡12
∗ =

𝑡𝑑and 𝑇2
∗ =

1

𝐶𝑏
(𝐴2𝑡𝑑 − 𝐵2) 

The proof is similar to Appendix 1d; hence is omitted. 

For case 3 (𝑴 > 𝒕𝟏) 

The necessary condition for the total profit 

𝑇𝑃3(𝑡1,𝑇)  in equation (30) to be the maximum is 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1
 and 

𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0, which gives 

𝜕𝑇𝑃3(𝑡1, 𝑇)

𝜕𝑡1
=

𝑑

𝑇
{−𝐴3𝑡1 + 𝐵3 + 𝐶𝑏𝑇} 

Setting 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1
= 0 gives 

{−𝐴3𝑡1 + 𝐵3 + 𝐶𝑏𝑇} = 0                               (47) 

and 

𝑇 =
1

𝐶𝑏

(𝐴3𝑡1 − 𝐵3)                               (48) 

Since(𝑡1 − 𝑡𝑑) > 0, it should be noted that 

(𝐴3𝑡1 − 𝐵3) = ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1)

+ ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑

+
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝑡1

+
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)}

− 𝑆2𝐼𝑒(𝑡𝑑 + 𝑀)] > 0 

Similarly, 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 2 NO. 3, September 2023, Pp 165 – 180 

 175 

 

https://scientifica.umyu.edu.ng/                      Madugu et al., /USci, 2(3): 165 – 180, September 2023  
 

𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇

= −
𝑑

𝑇2
{−

1

2
𝐴3𝑡1

2 + 𝐵3𝑡1 − 𝐶3

+
𝐶𝑏𝑇2

2
}                                                         (49) 

Setting 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝐴3𝑡1

2 + 𝐵3𝑡1 − 𝐶3 +
𝐶𝑏𝑇2

2
} = 0     (50) 

Substituting𝑇 from equation (48) into equation (50) 
yields 

{𝐴3(𝐶𝑏 − 𝐴3)𝑡1
2 − 2𝐵3(𝐶𝑏 − 𝐴1)𝑡1 − (𝐵3

2

− 2𝐶𝑏𝐶3)} = 0                                               (51) 

Let∆3𝑎= {𝐴3(𝐶𝑏 − 𝐴3)𝑡𝑑
2 − 2𝐵3(𝐶𝑏 − 𝐴3)𝑡𝑑 −

(𝐵3
2 − 2𝐶𝑏𝐶3)} > 0 

and 

∆3𝑏= 𝐴3(𝐶𝑏 − 𝐴3)𝑀2 − 2𝐵3(𝐶𝑏 − 𝐴3)𝑀
− (𝐵3

2 − 2𝐶𝑏𝐶3) < 0 

Then, the following result is obtained. 

Lemma 3 

(i) If∆3𝑏≤ 0 ≤ ∆3𝑎, then the solution of 𝑡1 ∈
[𝑡𝑑 , 𝑀](𝑠𝑎𝑦 𝑡13

∗ ), which satisfies equation (55) 
not only exists but also is unique. 
The proof is similar to Appendix 1a; hence is 
omitted 

(ii) If ∆3𝑎< 0, then the solution of 𝑡1 ∈

[𝑡𝑑,𝑀]Which satisfies equation (51) does not 

exist. 
The proof is similar to Appendix 1b; hence is 
omitted 

Therefore, the value of 𝑡1 (denoted by 𝑡13
∗ ) can be 

found from equation (51) and is given by 

𝑡13
∗ =

𝐵3

𝐴3
+

1

𝐴3

√
(2𝐶3𝐶3 − 𝐵3

2)𝐶𝑏

(𝐴3 − 𝐶𝑏)
                   (52) 

Once the value of 𝑡13
∗ is obtained, then the value of  𝑇 

(denoted by 𝑇3
∗) can be found from (48) and is given 

by 

𝑇3
∗ =

1

𝐶𝑏

(𝐴3𝑡13
∗ − 𝐵3)                                  (53) 

Equations (52) and (53) give the optimal values of 

𝑡13 
∗ and 𝑇3

∗ for the profit function in equation (30) 

only if 𝐵3 satisfies the inequality given equation (54) 

2𝐴3𝐶3 > 𝐵3
2                                           (54) 

 

Theorem 3 

(i) if ∆3𝑎≥ 0, then the total profit  𝑇𝑃3(𝑡1,𝑇)is concave 

and reaches its global maximum at the point 

(𝑡13
∗ , 𝑇3

∗) where (𝑡13
∗ , 𝑇3

∗) is the point which satisfies 
equation (47) and equation (51) if all principal minors 
are negative definite, i.e. if 

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

)

< 0, (
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

)

< 0 
and 

|

|

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

𝜕3𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

)
|

|
 

The proof is similar to Appendix 1c; hence is omitted 

(ii) if ∆3𝑎< 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a 

maximum value at the point (𝑡13
∗ , 𝑇3

∗) where𝑡13
∗ = 𝑀 

and 𝑇3
∗ =

1

𝐶𝑏
(𝐴3𝑀 − 𝐵3). 

The proof is similar to Appendix 1d; hence is omitted 

(iii) If  ∆3𝑏> 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a 

maximum value at the point (𝑡13
∗ , 𝑇3

∗) where  𝑡13
∗ =

𝑡𝑑 and 𝑇3
∗ =

1

𝐶𝑏
(𝐴3𝑡𝑑 − 𝐵3) 

The proof is similar to Appendix 1d; hence is 
omitted. 

Thus, the optimal Economic Order Quantity 

(denoted by 𝐸𝑂𝑄∗) corresponding to 𝑡1
∗ and 𝑇∗ Can 

be computed as follows: 

𝐸𝑂𝑄∗

= 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠 𝑖𝑛
+ 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠 𝑖𝑛
+ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 
+  𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑏𝑎𝑐𝑘 − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 

= ∫ (𝑎 + 𝑏𝑡 + 𝑑𝑡2)𝑑𝑡 +
𝑡𝑑

0

∫ 𝑑𝑑𝑡
𝑡1

∗

𝑡𝑑

+ [
𝑑

𝜃
(𝑒𝜃(𝑡1

∗−𝑡𝑑) − 1) − 𝑑(𝑡1
∗

− 𝑡𝑑)] + 𝑑(𝑇∗ − 𝑡1
∗) 

= 𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
+

𝑑

𝜃
(𝑒𝜃(𝑡1

∗−𝑡𝑑) − 1)

+ 𝑑(𝑇∗ − 𝑡1
∗)                                 (55) 

Note: It is obvious when 𝑡𝑑 = 𝑡1 = 𝑀 that 

𝑇𝑃1(𝑡1, 𝑇) = 𝑇𝑃2(𝑡1, 𝑇) = 𝑇𝑃3(𝑡1, 𝑇).  When 𝑡𝑑 = 𝑀, 

𝑇𝑃1(𝑡1, 𝑇) = 𝑇𝑃2(𝑡1, 𝑇).  When𝑡1 = 𝑀, 𝑇𝑃2(𝑀, 𝑇) =
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𝑇𝑃3(𝑀, 𝑇).  Hence, the profit function𝑇𝑃(𝑡1, 𝑇) is 
continuous and well-defined. 

NUMERICAL RESULTS 

Example 5.1 (𝑴 ≤ 𝒕𝒅) 

The following parameters are adopted from Babangida 

and Baraya (2021) in addition to ℎ1 and 𝐶𝑏 which are not 
considered in their work.  The parameters and their 
values are as follows: 

Table 5.1: Parameters and their values 

Parameter(s) Value(s) 

𝐴 $250/order 

ℎ1 $2 unit/year 

ℎ2 $15 unit/year 

𝜃 0.01 unit/year 

𝑎 180 unit 

𝑏 30 unit 

𝑐 15 unit 

𝑑 120 unit 

𝑡𝑑 0.1354 year 

𝑀 0.0888 year 

𝐼𝑐 0.1 

𝐼𝑒 0.08 

𝐶𝑏 $30 

It is seen that 𝑀 ≤ 𝑡𝑑, ∆1 is solved numerically to test the 

conditions of lemma 1, which states that if ∆1≥ 0 solution 

exists and is unique, and if ∆1< 0 solution does not exist. 

∆1= 39.8867 > 0, which implies that the solution exists and is 
unique. 

Likewise   2𝐴1𝐶1 = 51.4381 and 𝐵1
2 = 0.0851 were solved 

numerically to see if equation (38) 2𝐴1𝐶1 > 𝐵1
2 is satisfied.  

Substituting the above values in equation (36), (37), (28) and 
(55). The result is obtained in the table 5.2 below. 

Table 5.2: Optimal Solutions, for example, 5.1 

Parameters Values 

𝑡11
∗  0.4694 (171 days) 

𝑇1
∗ 0.5487 (200 days) 

𝑇𝑃1(𝑡11
∗ , 𝑇1

∗) $314.7020 

𝐸𝑂𝑄1
∗ 74.3213 unit. 

Example 5.2 (𝑴 > 𝒕𝒅) 

The values of the parameters are the same as in example 5.1 

[as in Babangida and Baraya (2021)] except that 𝑀 =
0.1523.  It is seen that 𝑀 > 𝑡𝑑 , ∆2 is solved numerically to 

check the condition of lemma 2, which states that if ∆2≥
0 solution exists and is unique, and if ∆2< 0 solution does 

not exist. ∆2= 38.50112 > 0, which implies that the 
solution exists.  Likewise  

2𝐴2𝐶2 = 50.7758  and  𝐵2
2 = 0.1496 were solved 

numerically to check if equation (46) is satisfied 2𝐴2𝐶2 >

𝐵2
2.  Substituting the above values in equation (44), (45), 

(29) and (55). The result is obtained in the table 5.3 below 

Table 5.3: Optimal Solutions for example 5.2 

Parameters Values 

𝑡12
∗  0.4689 (171 days) 

𝑇2
∗ 0.5448 (199 days) 

𝑇𝑃2(𝑡12
∗ , 𝑇2

∗) $326.5504 

𝐸𝑂𝑄2
∗ 73.8575 unit. 

Example 5.3 (𝑴 > 𝒕𝟏) 

The values of the parameters are the same as in Example 5.1, 

except that 𝑀 = 0.36.  It is seen that  𝑀 > 𝑡𝑑, ∆3𝑎 and 

∆3𝑏were solved numerically to check the condition of  lemma 

3, which states that if ∆3𝑏≤ 0 ≤  ∆3𝑎 the solution not only 

exists but is also unique, and if ∆3𝑎< 0 The solution does not 

exist. ∆3𝑎= 19.5432 > 0, ∆3𝑏= −2.0879 < 0, which implies 

that the solution exists and is unique.  Likewise  2𝐴3𝐶3 =
27.1778 and 𝐵3

2 = 0.2916 were solved numerically to check if   

equation (54)  2𝐴3𝐶3 > 𝐵3
2 is satisfied.  Substituting the above 

values in equation (52), (53), (30) and (55). The result is obtained 
in the table 5.4 below. 

Table 5.4: Optimal Solutions 

Parameters Values 

𝑡13
∗  0.3451 (126 days) 

𝑇3
∗ 0.3936 (144 days) 

𝑇𝑃3(𝑡13
∗ , 𝑇3

∗) $425.2604 

𝐸𝑂𝑄3
∗ 55.6691 unit. 

Thus, the optimal total profit is given by 

 𝑇𝑃(𝑡1
∗, 𝑇∗) =

𝑀𝑎𝑥(𝑇𝑃1(𝑡11
∗ , 𝑇1

∗), 𝑇𝑃2(𝑡12
∗ , 𝑇2

∗), 𝑇𝑃3(𝑡13
∗ , 𝑇3

∗)) =

𝑇𝑃3(𝑡13
∗ , 𝑇3

∗) = $425.2604. 

Table 5.5: Comparison of the proposed model and 
Babangida and Bature (2021) 

Models Average 
total profit 
per unit 
for case 1 

Average 
total profit  
per unit 
for case 2 

Average 
total profit  
per unit 
for case 3 

Babangida and 
Baraya (2021) 

$4.1341 $4.3176 - 

 Proposed 
Model 

$4.2343 $4.4214 $7.6391 

It is clearly seen from the table 5.5 above that the average 
total profit per unit for case 1 and case 2 of model 1 is 
greater than that of Babangida and Baraya (2021). 

SENSITIVITY ANALYSIS 

The sensitivity analysis of some model parameters has been 

carried out by changing each of these parameters from −5% to 

+5% taking one parameter at a time and keeping the remaining 
parameters unchanged.  The effects of changes in these 
parameters on decision variables are summarised in Tables 6.1. 
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Table 6.1: Effect of changes of some parameters on decision variables. 

Parameter % change in 
Parameter 

% change in 

𝑡13
∗  

% change in 

𝑇13
∗  

% change in 

𝐸𝑂𝑄3
∗ 

% change in 

𝑇𝑃3(𝑡13
∗ , 𝑇3

∗) 

𝜃 −5% 0.0594 0.0485 0.0388 0.0121 

5% -0.0593 -0.0483 -0.0387 -0.0121 

𝐶 −5% -6.8911 -7.2181 -6.1342 25.0845 

5% 6.4091 6.7169 5.7094 -24.8227 

𝑆1 −5% 30.7285 31.9598 27.1758 -16.7289 

5% -47.1617 -49.1444 -41.7406 25.9853 

𝑆2 −5% -19.4973 -20.2416 -17.1991 -17.7268 

5% 15.7682 16.4243 13.9627 19.5527 

𝐼𝑒 −5% 2.8609 2.9129 2.4760 -1.3487 

5% -2.8636 -2.9291 -2.4895 1.3948 

𝐴 −5% -14.3321 -14.9876 -12.7356 8.0730 

5% 12.4479 13.0172 11.0656 -7.0117 

𝐶𝑏 −5% -0.2355 0.4007 0.3396 0.1327 

5% 0.2152 -0.3639 -0.3084 -0.1212 

DISCUSSION ON SENSITIVITY ANALYSIS 

The following managerial insights are discovered based on 
the results shown in Table 6.1. 

(i) From Table 6.1, it is obviously seen that the 

higher the rate of deterioration (𝜃), the lower the 

optimal time with positive inventory (𝑡1
∗), cycle 

length (𝑇∗), order quantity (𝐸𝑂𝑄∗) and the total 

profit 𝑇𝑃(𝑇∗) and vice versa.  This implies that 
the retailer needs to take all the necessary 
measures to avoid or reduce deterioration in 
order to maximise higher profit. 

(ii) From Table 6.1, it is visibly seen that as the unit 

purchasing cost (𝐶) increases, the total profit  

𝑇𝑃(𝑇∗) decreases while the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗) and 

order quantity  (𝐸𝑂𝑄∗) increase and vice versa.  
This result reveals that when the unit purchasing 
cost increases, the retailer will order smaller 
quantities to enjoy the benefits of permissible 
delay in payments more frequently, which will 
consequently shorten the cycle length. 

(iii) From Table 6.1, it is apparently seen that as the 

unit selling price before deterioration sets in (𝑆1) 
increases, the optimal time with positive 

inventory (𝑡1
∗), cycle length (𝑇∗) and order 

quantity (𝐸𝑂𝑄∗) decrease while the total profit 

𝑇𝑃(𝑇∗) Increases and vice versa.  This implies 
that as the selling price increases, the retailer will 
order less quantity to enjoy the benefits of trade 
credit more frequently. 

(iv) From Table 6.1, it is evidently seen that as the 

unit selling price after deterioration sets in (𝑆2) 
increases, the optimal time with positive 

inventory (𝑡1
∗), cycle length (𝑇∗), order quantity 

(𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) Increase and 

vice versa.  This implies that as the selling price 
increases, the retailer maximises higher profit. 

(v) From Table 6.1, it is seen that as the interest 

earned. (𝐼𝑒) is increasing, the total profit 𝑇𝑃(𝑇∗) 
is also increasing while the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗) and 

order quantity (𝐸𝑂𝑄∗) are decreasing and vice 
versa.  This implies that when the interest earned 
is high, the retailer should order less quantity of 
inventory to enjoy the benefits of trade credit 
more frequently. 

(vi) From Table 6.1, it is obviously seen that as the 
ordering cost (A) is increasing the total profit 

𝑇𝑃(𝑇∗) is decreasing while the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗) and 

order quantity (𝐸𝑂𝑄∗) increase.  This implies 
that the retailer should order large quantity when 
the ordering cost per order is high. 

(vii) From table 6.1, it is clearly seen that as the 

shortage cost (𝐶𝑏) increases the total profit 

𝑇𝑃(𝑇∗), the economic order quantity (𝐸𝑂𝑄∗), 

the optimal cycle length (𝑇∗)  decreases while the 
time with positive inventory increases. 

CONCLUSION 

This research developed an economic order quantity 
model for non-instantaneous deteriorating items with 
two phase demand rates, linear holding cost, 
complete backlogging rate and two-level pricing 
strategies under trade credit policy.  The purpose of 
the model is to determine the optimal time with 
positive inventory, cycle length and order quantity 
such that the total profit of the inventory system has 
a maximum value.  Some numerical examples have 
been given to illustrate the theoretical result of the 
model.  Sensitivity analysis of some model parameters 
on the decision variables has been carried out, and 
suggestions towards maximising the total profit were 
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also given.  The retailer can maximise the total profit 
by ordering less quantity and shortening the cycle 
length if the rate of deterioration, unit purchasing 
cost, ordering cost and shortage cost increase and 
unit selling price before deterioration starts, unit 
selling price after deterioration starts, and interest 
earned decrease.  The model can be used in inventory 
control and management of items such as food items 
(e.g., beans, maise, corns, millet), electronics (e.g., 
mobile phones, computers), automobiles, 
fashionable items, etc. The proposed model can be 
extended by considering factors such as variable 
deterioration, inflation and time value of money, 
quantity discount, order size dependent trade credit, 
etc. 

APPENDIX 1a: Proof of Lemma 1(i) 

From equation (35), a new function 𝐹1(𝑡1) is defined 
as follows 

𝐹1(𝑡1) = {𝐴1(𝐶𝑏 − 𝐴1)𝑡1
2 − 2B1(𝐶𝑏 − 𝐴1)𝑡1

− (B1
2 − 2𝐶𝑏C1)},    𝑡1

∈ [𝑡𝑑 , ∞)            (56) 

Taking the first-order derivative of 𝐹1(𝑡1) with 

respect to 𝑡1 ∈ [𝑡𝑑 , ∞), it follows that 

𝐹1(𝑡1)

𝑑𝑡1
= 2(𝐴1𝑡1 − B1)(𝐶𝑏 − 𝐴1) < 0 

Because(𝐴1𝑡1 − B1) > 0 

and 

{𝐶𝑏 − 𝐴1} = − [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +
𝑡𝑑𝜃

2
) 𝑡𝑑

+ 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)]

< 0 

Hence 𝐹1(𝑡1) is a strictly decreasing function of 𝑡1 in 

the interval [𝑡𝑑 , ∞).Moreover, lim
𝑡1→∞

𝐹1(𝑡1) = −∞ 

and 𝐹1(𝑡𝑑)  = ∆1≥ 0.  Therefore, by applying 

intermediate value theorem, there exists a unique 𝑡1 

say 𝑡11
∗ ∈ [𝑡𝑑 , ∞) such that 𝐹1(𝑡11

∗ ) = 0.  Hence 𝑡11
∗  

is the unique solution of equation (35). 

APPENDIX 1b: Proof of Lemma 1(ii) 

If ∆1< 0, then from equation (36), 𝐹1(𝑡1) < 0.  Since 

𝐹1(𝑡1) is a strictly decreasing function of 𝑡1 ∈ [𝑡𝑑 ,
∞) and 𝐹1(𝑡1) < 0 for all 𝑇 ∈ [𝑡𝑑 , ∞).Therefore, a 

value of 𝑇 ∈ [𝑡𝑑 , ∞) such that 𝐹1(𝑡1) = 0 cannot 
found.  This completes the proof. 

APPENDIX 1c: Proof of Theorem 1(i) 

When ∆1≥ 0, it is seen that 𝑡11
∗  and 𝑇1

∗ are the unique 
solutions of equations (35) and equation (31) 
respectively from Lemma l(i).  Taking the second 

derivative of 𝑇𝑃1(𝑡1, 𝑇) with respect to 𝑡1 and 𝑇, and 

then finding the values of these functions at the point 

(𝑡11
∗ , 𝑇1

∗), it follows that 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗ 𝐴1 < 0 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

=
𝑑

𝑇1
∗ 𝐶𝑏 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗ 𝐶𝑏 < 0 

and 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

)

− (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

)

2

= 

𝑑2𝐶𝑏

𝑇1
∗2 ([ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +

𝑡𝑑𝜃

2
) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏

+ 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)])

> 0                                              (57) 

It is therefore conclude from equation (57) and 

Lemma 1 that𝑇𝑃1(𝑡11
∗ ,   𝑇1

∗)is concave and 

(𝑡11
∗ ,   𝑇1

∗)is the global maximum point of𝑇𝑃1(𝑡1,
𝑇).  Hence the values of𝑡1and 𝑇in equation (36) and 
equation (37) are optimal. 

APPENDIX 1d: Proof of Theorem 1(ii) 

When  ∆1< 0,then 𝐹1(𝑡1) < 0for all 𝑡1 ∈ [𝑡𝑑 ,

∞).Therefore,
𝜕𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇
=

𝐹1(𝑡1)

𝑇2 < 0 for all 𝑡1 ∈

[𝑡𝑑 , ∞) which implies 𝑇𝑃1(𝑡1,   𝑇) is astrictly 

decreasing function of 𝑡1.  Therefore,𝑇𝑃1(𝑡1,   𝑇) has 

a maximum value when 𝑡1 is minimum.  Therefore, 

𝑇𝑃1(𝑡1,   𝑇) has a maximum value at the 

point(𝑡11
∗ ,   𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and𝑇1

∗ =
1

𝐶𝑏
(𝐴1𝑡𝑑 − B1).  This completes the proof. 
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