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INTRODUCTION
A system or process that has active phases interspersed 
with periods of dormancy or inactivity is often described 
by a mathematical model involving a quiescence phase 
(Usman et al., 2022; Lennon et al., 2011; Jochen et al., 
2021). This idea is frequently utilised in many disciplines 
to investigate phenomena that show alternating periods 
of activity and rest (Jochen et al., 2022; Cox, 2010;  Nil 
et al., 2018).The dynamics of disease transmission, 
including times of latent infection or carriers who are 
asymptomatic, can be studied using a mathematical 
model for treating infectious diseases with quiescence 
phases (Sorrel et al., 2009). These kind of models are 
crucial for understanding disease transmission and 
developing potent preventative measures (Brauer et al., 
2008; Matt et al., 2001). 

SEIQR MODEL 

The SEIR model studied in (Linda, 2015; Brauer et al., 
2008) which stands for Susceptible-Exposed-Infectious-
Recovered, is one popular model that does not take 
quiescence phases into account. In this research we add 
a quiescent phase to the SEIR model to come up with 
SEIQR Model, which stands for Susceptible-Exposed-
Infectious-Quiescence-Recovered: 

We divide the population into five compartments for 
the SEIQR model, including: 

S(t): Susceptible individuals 

E(t): Exposed (infected but not yet infectious) 
individuals 

I(t): Infectious individuals 

Q(t): Quiescent individuals 

R(t) : Recovered individuals 

 

Where the total population size N = S(t)+ E(t)+ I(t)+ 
Q(t)+ R(t) is kept constant and the β is the transmission 
rate, ν is the incubation rate, is the rate of latent people 
becoming infectious, the average incubation period is 
1

𝜈
, σ is recovery rate, ρ is the rate of entering quiescence 

phase and ζ is the rate of exiting quiescence phase.  
If the last equation of the model (1) is deleted one 
recovers the standard SEIQR model. 
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ABSTRACT 
The impact of quiescence or dormancy periods on the dynamics of infectious diseases 
and their possible involvement in significant pandemic outbreaks are investigated in this 
study. By using simulation and mathematical modelling, we show that quiescence greatly 
raises the likelihood of widespread pandemics. Quiescent people, who are infected but 
aren’t actively spreading the disease, build up an undiscovered reservoir that can drive 
virulent epidemics when the conditions are right for them to change from passive to 
active infectious states. Insights from this study can help public health efforts to lessen 
the effects of transmissible diseases with quiescent phases on global health. It also 
advances our understanding of pandemic dynamics. 
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The dynamics of an infectious disease in a population 
are captured by the SEIQR model with a quiescence 
phase, which accounts for both the active infectious 
period and a quiescent period. Let’s dissect the 
biological interpretation of each model compartment. 
The model (1) accounts for how people go through the 
five stages of the disease—susceptible (S), exposed (E), 
infectious (I), quiescent (Q), and recovered (R)—as they 
get infected. For diseases having latent or asymptomatic 
phases, the quiescent phase (Q) reflects people who are 
infected but not actively contagious. 

Numerical Solution of SEIQR Epidemic Model 

We use MATLAB to obtain a numerical Solution of 
model 1, please observe that in Figure 1b the 
quiescence phase increases the time until the pandemic 
ends as compared with Figure 1a and the existence of 
exposed, infected and quiescent individual raises the 
probability of major outbreak. 

 

Figure 1: (a) Numerical solution of model 1 β = 0.4, ν = 0.4, σ = 0.1, ρ = ζ = 0, the initial population sizes are 
S(0) = 498, E(0) = I(0) = 1, Q(0) = R(0) = 0, N = 500 , one gets the solution of SEIR model b) Numerical 

solution of model 1 N = 500, β = 0.4, ν = 0.4, σ = 0.1, ρ = 0.4, ζ = 0.1, the initial population sizes are S(0) = 498, 
E(0) = I(0) = 1, Q(0) = R(0) = 0, total population size N = 500. Please observe that in Figure 1b the quiescence 
phase increases the time until the pandemic ends as compared with Figure 1a. 

Transition Probabilities 

Our main aim is to study the probability of an outbreak 
of an epidemic, thus, it is paramount to transform the 
deterministic model (1) into a stochastic (birth and 

death) process. Therefore, we have to find the 
transition probabilities of each event. The following 
table describes the probabilities of moving from one 
state to the other within a small time interval o∆(t). 
Here, the states are exposed, infection, recovery, 
entering and exiting quiescence. 

Table 1: Transitions rates for the SEIQR model 

Type Transition Probability 

Latency period (St, Et, It, Qt, Rt) → (St − 1, Et, It + 1, Qt, Rt) β SI ∆t + o(∆t) 
N 

Infection I (St, Et, It, Qt, Rt) → (St, Et − 1, It + 1, Qt, Rt) νI∆t + o(∆t) 

Recovery of I (St, Et, It, Qt, Rt) → (St, Et, It − 1, Qt, Rt + 1) σI∆t + o(∆t) 

Go quiescent of I (St, Et, It, Qt, Rt) → (St, Et − 1, It − 1, Qt + 1, Rt) ρI∆t + o(∆t) 

Wake-up of Q (St, Et, It, Qt, Rt) → (St, Et , It + 1, Qt − 1, Rt) ζQ∆t + o(∆t) 
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Figure 2: (a) Stochastic simulation of SEIQR CTMC with the parameter values β = 0.4, ν =4.0, σ = 0.1, ρ = 
ζ = 0, the initial population sizes are S(0) =  497, E(0) =  I(0) = Q(0) = 1, R(0) = 0, N = 500 , one gets 
the solution of SEIR model (b) Stochastic simulation of CTMC with the parameter values β = 0.4, ν = 

0.4, σ = 0.1, ρ = 0.4, ζ = 0.1, the initial population sizes are S(0) = 498, E(0) = I(0) = Q(0) = 1, R(0) = 
0, total population size N = 500. 

Probability of an Outbreak 

Basic reproductive number of the model (1) is given 
by 

 

Probability of no major outbreak (extinction of the 
pandemics) for the continuous Time Markov chain of 
SEIQR epidemic model is given as 

 

Thus , the probability of an outbreak is 

 

For the origin of these formulas see (Linda, 2013; 
Norman, 1990; RB, 1999). 

RESULTS 

Figure 3 shows that the probability of an outbreak 
increases with the increase of Basic Reproduction 
number. Figure 4 shows that the probability of an 
outbreak is zero when the Reproductive number is less 
that one. Figure 5 and 6 show that in all the values of 
eo,i0,q0 tested, the probability of major outbreak is 
greater than 85% when the basic reproduction number is 
2 and above. 

 

Figure 3: Probability of Outbreak against the Basic 
reproductive number 

 

Figure 4: Probability of an Outbreak vs.  Time for 
Different e0, i0, q0 values with R0 = 0.8 < 1 
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Figure 5: Probability of an Outbreak vs. Time for 
Different e0, i0, q0 values with R0 = 2 > 1 

 

Figure 6: Probability of an Outbreak vs. Time for 
Different e0, i0, q0 values with R0 = 4 > 1, Probability 
of major outbreak as calculated analytically is 0.984375 
when e0, = i0 = q0 = 1 which is consistent with the 
result obtained by using simulation as shown in the 
graph above 

We have seen in Figure 3 that the probability of an 
outbreak increases with the increase of Basic 
Reproduction number. We also learnt in Figure 4 above 
that the probability of an outbreak is zero when the 
Reproductive number is less that one. We have seen also 
in Figure 5 and 6 that in all the values of eo,i0,q0 tested 
the probability of major outbreak is greater than 85% 
when the basic reproduction number is 2 and above.  

DISCUSSION  

The likelihood of a severe pandemic breakout can be 
significantly increased by the presence of quiescence, 
or latent periods, within the dynamics of an infectious 
disease. This conclusion emphasises the significance 
of quiescent phase in disease transmission models 

and emphasises their potential function as important 
triggers of widespread outbreaks. Relevant 
implications may include  

1) Early Detection and action: Early detection and 
prompt action depend on an understanding of the 
quiescent phases of disease transmission. Although 
it might be difficult, keeping track of and identifying 
individuals at these stages is essential for stopping 
serious epidemics.  

2) Enhanced Preparedness: When diseases with 
quiescence are discovered, public health institutions 
and policy-makers must be ready to react quickly.  To 
stop epidemics from getting worse, strategies should 
include efficient testing, contact tracing, and 
isolation techniques. The possibility of quiescent 
carriers should be taken into consideration while 
planning vaccination campaigns. The likelihood of a 
significant outbreak can be decreased by making an 
effort to immunise not just persons with current 
illnesses but also those who are in quiescent stages 
of the disease.  

3) Behavioural Interventions: Even in those who 
seem healthy, behavioural interventions and public 
health messaging should stress the value of hygiene, 
mask use, and social isolation. When dealing with 
diseases that have asymptomatic or dormant carriers, 
this is very pertinent. 

In the final analysis, reducing the danger of catastrophic 
pandemic breakouts requires understanding and 
addressing the significance of quiescent stages in 
disease transmission. Management and effect reduction 
of infectious diseases in quiescent phases require a 
comprehensive strategy that integrates surveillance, 
early detection, immunisation, and behavioural 
interventions 

CONCLUSION AND FUTURE WORK 

The result of this research indicates that quiescence 
considerably increases the likelihood of severe pandemic 
breakouts, so it is obvious that current pandemic 
preparedness and control tactics must take this hidden 
component into consideration. A significant and 
sometimes ignored threat to the security of the global 
health system is the presence of people who are in 
quiescent stages of the disease, diseased but not actively 
spreading it. Developing infectious disease transmission 
models to properly take into consideration quiescent 
stages should be the main goal of future research. This will 
make it easier to anticipate and manage outbreaks. 

In a nutshell, it is crucial for the control of pandemics to 
take into account the importance of quiescent stages in the 
spread of diseases.
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