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INTRODUCTION
Ensuring a reliable food supply is critical to national 
development, particularly in the face of rapid population 
growth, urbanization, and globalization, which have 
significantly reduced arable land (Chen et al., 2019). 
Consequently, farmers must optimize land use and select 
appropriate crops to meet the rising demand for food. 
Accurate crop yield prediction has thus emerged as a 
pivotal tool for addressing global food security (WHO, 
2021; UN, 2021; Kheir et al., 2021). By estimating future 
yields, stakeholders can devise strategies to mitigate 
hunger, enhance resource allocation, and boost 
agricultural productivity (UN, 2021). 

Multiple factors influence crop yield, including soil quality, 
irrigation methods, water availability, weather patterns, 
pest infestations, and fertilization practices (Elavarasan & 
Vincent, 2020). The complexity of these factors has 
spurred the use of Machine Learning (ML) techniques, 
especially given their ability to analyze large, multifaceted 
datasets and uncover non-linear patterns (Chlingaryan et 
al., 2018; Zhang, 2006). ML algorithms such as Random 
Forest, Gradient Boosting, XGBoost, and LightGBM 
have been widely adopted for yield forecasting due to their 
high accuracy and robustness (Singh et al., 2022; Mamatha 
& Kavitha, 2022; Zhi et al., 2022). However, many existing 

studies either focus narrowly on a single factor (e.g., 
rainfall) or employ generalized global datasets, which may 
not reflect local conditions (Paudel et al., 2021; Prasad et 
al., 2021). 

Recent research (e.g., Ramesh et al., 2022; Chakraborty et 
al., 2022; Eli et al., 2023) underscores the need for more 
localized or field-specific data to capture the unique 
environmental and socio-economic conditions affecting 
crop production. Although Shuaibu (2021) proposed a 
fuzzy logic model for rice yield in Jigawa State, it did not 
incorporate model performance metrics or 
comprehensive soil data. Similarly, Eli et al. (2023) focused 
solely on climatic data for Katsina State without 
integrating other critical factors like irrigation methods 
and soil properties. These gaps highlight the necessity for 
a holistic approach that combines soil data, irrigation 
practices, climate variables, pest infestation levels, and 
fertilization practices, all of which are key determinants of 
crop yield. 

Against this backdrop, this study seeks to bridge the gap 
by developing a machine-learning model tailored to the 
Hadejia and Auyo areas of Jigawa State, Nigeria. Unlike 
previous works, our approach integrates: 
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ABSTRACT 
Accurate crop yield prediction is essential for addressing food security challenges, particularly in 
regions facing climatic variability and resource constraints. This study proposes a machine 
learning–based framework for rice yield prediction in Hadejia and Auyo, Jigawa State, Nigeria, by 
integrating soil properties, irrigation methods, water usage, fertilization practices, pest infestation 
data, and local weather variables. Four ensemble learning algorithms, Random Forest, Gradient 
Boosting, XGBoost, and LightGBM, were trained and evaluated using both a traditional 80/20 
hold-out split and k-fold cross-validation to ensure robust performance assessment. Among these 
models, Random Forest achieved the highest predictive accuracy, recording an R² of 0.9529 and 
RMSE of 1.1118, demonstrating its effectiveness in capturing complex, non-linear interactions 
among agronomic factors. The proposed approach underscores the value of localized data, 
offering farmers, policymakers, and stakeholders a scalable decision-support tool for optimizing 
resource allocation, mitigating risks, and enhancing overall agricultural productivity. This research 
provides a practical roadmap for precision agriculture initiatives in Jigawa State and other regions 
with similar agroecological conditions by illustrating how comprehensive feature integration and 
ensemble-based machine learning can significantly improve yield forecasts. 
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1. Comprehensive Feature Set: Soil properties, 
irrigation methods, water usage, climatic 
variables (temperature, rainfall), pest infestation 
data, and fertilization practices. 

2. Localized Data Processing: While publicly 
available datasets from Kaggle, FAO, and the 
World Bank form the foundation, we also 
incorporate region-specific information where 
available to improve relevance and accuracy. 

3. Robust Evaluation: We compare four ML 
algorithms (Random Forest, Gradient Boosting, 
XGBoost, LightGBM) and employ k-fold cross-
validation to ensure reliable performance metrics. 

By emphasizing local factors and using multiple ML 
techniques, this research aims to provide farmers, 
policymakers, and other stakeholders with a decision-
support tool for early yield prediction. The findings will 
contribute to resource optimization, risk management, 
and policy planning in agriculture, ultimately supporting 
sustainable food production in Jigawa State and beyond. 

MATERIALS AND METHODS 

2.1 Overview of the Proposed System 

This research aims to develop a robust machine learning 
(ML) model for rice crop yield prediction in Hadejia and 
Auyo, Jigawa State, Nigeria. The Python 3 environment 
with Anaconda was used for model development due to 
its extensive ecosystem of libraries (e.g., NumPy, Pandas, 
Scikit-learn) that streamline data preprocessing, model 
training, and evaluation. The Figure 1 below illustrates the 
general ML workflow adopted in this study, encompassing 
data collection, preprocessing, feature engineering, model 
training, and performance evaluation. 

The proposed model was evaluated using machine 
learning performance metrics, including Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), and R² 
score. 

2.2 Data Collection 

Data collection is a critical step in developing a machine 
learning model, as the data's quality, diversity, and 
representativeness directly impact the model’s 
performance. This study gathered data from multiple 
reputable sources, including Kaggle, the World Bank, and 
the Food and Agriculture Organization (FAO) of the 
United Nations and local sources. These sources provide 
comprehensive datasets related to agriculture, soil 
properties, climatic conditions, and irrigation practices. 

2.2.1 Primary Data Sources 

1. Kaggle: Provided a baseline dataset containing 
global crop yield records, including soil 
properties and basic irrigation information. 

2. Food and Agriculture Organization (FAO): 
Supplied broader agricultural statistics on 
production, land use, and water resource 
management. 

3. World Bank: Offered macro-level data related to 
agricultural development, including irrigation 
infrastructure and land fertility indices. 

2.2.2 Local Data Integration 

To ensure relevance to Hadejia and Auyo, we 
incorporated region-specific data where possible: 

1. Meteorological Stations: Daily rainfall and 
temperature records from local weather stations 
in Jigawa State sources from the state ministry of 
agriculture and Hadejia-Jamaare river basin 
development authority. 

2. Local Agricultural Extension Offices: Pest 
infestation trends and fertilizer usage data were 
collected through periodic reports sources from 
the state ministry of agriculture and Hadejia-
Jamaare River basin development authority. 

3. Manually Curated Records: Certain values 
(e.g., specific irrigation methods used in Hadejia 
and Auyo) were adjusted or annotated to reflect 
local practices. 

These combined datasets were merged into a single file 
(full_dataset.csv) to capture both global patterns and local 
nuances of rice cultivation in the study area. 

2.3 Dataset Description 

The merged dataset contained the following key variables 
(see Table 1 for a summary): 

2.4 Dataset Preprocessing 

After data collection, preprocessing was performed to 
ensure that the dataset was clean, structured, and suitable 
for machine learning model development. The key 
preprocessing steps included: 

2.4.1 Data Cleaning 

To improve data reliability, several preprocessing steps 
were applied: 

• Handling Missing Data: Missing values in the 
dataset were addressed using mean imputation 
for numerical variables (e.g., soil pH, rainfall) and 
mode imputation for categorical variables (e.g., 
irrigation type). 

• Outlier Removal: Extreme values were 
identified using the interquartile range (IQR) 
method and removed to prevent model 
distortions. 

• Normalization: Features such as water 
consumption, fertilizer usage, and rainfall were 
normalized using Min-Max scaling to ensure 
comparability. 

• Encoding Categorical Variables: Nominal 
categorical features (e.g., soil type, irrigation 
method) were one-hot encoded, while ordinal 
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categorical features (e.g., pest severity levels) 
were label-encoded. 

Feature Engineering and Selection 

• Correlation Analysis: A heatmap was generated 
to assess multicollinearity. Highly correlated 
variables were flagged for possible removal. 

The correlation map Figure 2 indicates a very low 
correlation between all features, which emphasizes the 
significance of each feature. 

• Domain Knowledge: Expert feedback from 
local agronomists guided the inclusion of 
fertilization practices, pest infestation, and 
climatic variables as they significantly influence 
rice yield. 

• Random Forest Feature Importance: A 
preliminary Random Forest model was run to 
rank features by importance. Features 
contributing minimally to yield prediction were 
excluded or merged. 

 

Figure 1 Proposed System Methodology 

Based on existing literature, soil properties, irrigation 
methods, and water consumption were selected as primary 

features. However, based on reviewer recommendations, 
the following additional features were incorporated: 

Data Collection 
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• Climatic Variables: Rainfall and temperature 
data were included and sourced from 
meteorological stations. 

• Pest Infestation Data: Pest severity indices 
were extracted from local agricultural reports. 

• Fertilization Practices: Data on fertilizer 
application rates and types were integrated to 
assess their impact on yield. 

The final feature set was selected using correlation analysis 
and feature importance ranking from Random Forest 
models, ensuring only relevant predictors were retained. 

Table 1: Description of Complete Dataset Variables  

S/N Variable name Description 

1.  District Names of districts in the study area 
2.  Crop Selected crop for analysis (Rice) 
3.  Season Wet or dry season 
4.  Area (hectares) Farm size in hectares 
5.  Yield (quintals) Crop yield per hectare (1 quintal = 100 kg) 
6.  Production (metric tons) Total rice production per season 
7.  Soil Properties Soil type (sandy loam, loam, sandy) pH level, organic matter (%), nitrogen (N), 

phosphorus (P), potassium (K). 
8.  Irrigation method Canal or tube well irrigation 
9.  Water Consumption (L/ha) Volume of water used for irrigation. 
10.  Water Availability (L/ha) Measured water resources for irrigation. 
11.  Fertilizer Usage (kg/ha) Quantity and type of fertilizer applied per hectare (locally sourced data). 
12.  Pest Infestation Level Categorical variable (e.g., low, medium, high) indicating pest severity in the region. 

13.  Climatic Variables Rainfall (mm) and temperature (°C) recorded during the growing season. 

  
Figure 2: The correlation map to assess multicollinearity 
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2.4.3 Encoding Categorical Variables 

• One-Hot Encoding: Applied to non-ordinal 
categorical features (e.g., soil type, irrigation 
method). 

• Label Encoding: Used for ordinal variables like 
pest infestation level (low < medium < high). 

2.4.4 Feature Scaling 

Min-Max Normalization: Ensured that numerical 
features (e.g., rainfall, water consumption) lie within a 
consistent range [0, 1], improving model convergence. 

2.4 Model Training and Validation 

2.5.1 Model Selection 

Four regression-based supervised learning algorithms 
were chosen for comparative analysis due to their proven 
effectiveness in yield prediction: 

1. Random Forest (RF) 

2. Gradient Boosting (GB) 

3. XGBoost 

4. LightGBM 

Random Forest Model 

The Random Forest model, introduced by Breiman 
(2001), is a widely used ensemble learning method that 
combines multiple decision trees to enhance accuracy and 
robustness (Pedamkar, 2020). It effectively handles both 
categorical and continuous data while reducing overfitting 
risks compared to individual decision trees. 

Previous studies, such as Ferrer et al. (2020) and Meng et 
al. (2021), have successfully implemented Random Forest 
for crop yield prediction in various crops, including citrus 
fruits, corn, wheat, and soybeans. This research selected 
Random Forest for its ability to manage complex data 
structures and model non-linear relationships between 
yield and influencing factors. 

Gradient Boosting Model 

Gradient Boosting is a powerful ensemble technique that 
optimizes predictions by sequentially refining weak 
learners (Khan et al., 2021). This model builds decision 
trees iteratively, addressing errors from previous models 
to enhance accuracy. Gradient Boosting has been found 
to reduce overfitting while improving predictive 
performance (Aravind & Indumathi, 2021). 

 

Figure 3: Random Forest Model Illustration (Muhammad et al., 2021) 

 

Figure 4: Gradient Boosting Algorithm (Aravind and Indumathi, 2021) 

In this study, Gradient Boosting was employed due to its 

effectiveness in improving accuracy and providing 

valuable feature importance analysis, which can help 

optimize agronomic practices. 

XGBoost (Extreme Gradient Boosting) 

XGBoost, developed by Tianqi Chen (2016), is a highly 
efficient and scalable machine learning model. It enhances 
predictive performance through regularization techniques 
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that prevent overfitting (Gopal & Bhargavi, 2019). Studies 
such as Charoen-Ung & Mittrapiyanuruk (2018) and 
Alibabaei et al. (2021) have successfully applied XGBoost 
in crop yield prediction. 

This research evaluated XGBoost for its robust handling 
of large datasets and ability to capture complex 
relationships within agricultural data. 

LightGBM 

Light Gradient Boosting Machine (LightGBM) is a 
gradient boosting framework optimized for high 
efficiency and scalability. Unlike traditional tree-based 
models, LightGBM grows trees leaf-wise, reducing error 
more effectively (Ke et al., 2017). This approach results in 
faster training times and improved accuracy for large 
datasets (Sun et al., 2019). 

 

Figure 5: XGBoost Algorithm (Guo et al. 2020) 

 

Figure 6: LightGBM Algorithm (Ke et al. 2017) 

In this study, LightGBM demonstrated strong 
performance in rice yield prediction, offering a balance of 
efficiency and accuracy, making it a valuable tool for 
precision agriculture. 

2.5.2 Train-Test Splitting 

Although an 80/20 hold-out split was initially used to 
provide a straightforward evaluation, we additionally 
performed a K-fold cross-validation (K=5) to ensure a 
more robust assessment of model performance. 

• Hold-Out Method (80/20): The dataset was 
divided into 80% training and 20% testing 
subsets. 

• K-Fold Cross-Validation: The dataset was 
partitioned into 5 folds, iteratively training on 4 
folds and validating on the remaining fold. 
Performance metrics were then averaged across 
all folds. 

Initially, the study employed an 80/20 train-test split. 
However, K-fold cross-validation (K=5) was 
implemented to enhance robustness and mitigate bias. 
This method divides the dataset into five subsets, training 
the model on four and testing on the remaining one, 
iterating the process across all subsets. 

Performance metrics (e.g., RMSE, R-squared) were 
compared between simple train-test splitting and K-fold 
cross-validation. Results showed a 5-10% improvement in 
prediction stability when cross-validation was applied. 

2.5.3 Training Procedure 

• Hyperparameter Tuning: Grid search or 
randomized search was employed for each 
algorithm (RF, GB, XGBoost, LightGBM) to 
optimize parameters such as tree depth, learning 
rate, and number of estimators. 

• Model Fitting: The best hyperparameters from 
the tuning stage were used to train each model on 
the training set (or training folds). 

• Performance Evaluation: The models were 
evaluated using the test set (or validation folds) 
to assess generalization capability after training. 

2.6 Performance Metrics 

Model performance evaluation is a critical step in the 
machine learning pipeline for classification and regression 
tasks such as crop yield prediction, as it helps to determine 
the accuracy and reliability of the trained model. It also 
allows one/researcher to assess the performance of the 
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model and make any necessary adjustments to improve its 
accuracy.  

To capture different aspects of model accuracy and 
reliability, the following metrics were utilized: 

i. Mean Squared Error (MSE): MSE takes 
the square of the average between predicted 
and original values or actual values and 
predicted values (Deepa et al. 2019). 
The MSE will never be negative since we are 
always squaring the errors. The value lies 
between 0 to ∞, a perfect MSE value is 0.0 
or close to it. The MSE is formally defined 
by the equation (1): 

𝑀𝑆𝐸 = ∑
(𝑦𝑖 −  �̂�𝑖)2

𝑁

𝑛

𝑖=1

                                            (1) 

Where N is the number of data samples we 
are testing against, yi is the actual data and 

ȳi is the predicted data value. 
ii. Root Mean Square Error (RMSE): RMSE 

or Root Mean Squared Error is the extension 
of MSE that allows you to get rid of the 
squared error by calculating the square root 
of the MSE result (Deepa et al. 2019). As 
with MSE, a perfect RMSE value is 0.0 or 
close to it, which means that all predictions 
matched the expected values exactly.  
RMSE metric can be calculated using the 
formula in equation (2) below. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 −  �̂�𝑖)2

𝑁

𝑛

𝑖=1

                                            (2) 

iii. R-Square (R2)-Score: The coefficient of 
determination, also called the R2 score, is 
used to evaluate the performance of a linear 

regression model and to determine the 
accuracy of the fit of the regression model. 
The percentages are represented by values 
between 0 and 1. The better the model, the 
higher the value. The R2 is expressed in 
equation (3) below. 

𝑅2 = 1 −
∑ (𝑦𝑖 −  �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 −  �̂�𝑖)𝑛
𝑖=1

                                            (3) 

However, the choice of performance evaluation metric 
will depend on the specific problem being addressed and 
the goals of the analysis. It is important to use multiple 
metrics to gain a comprehensive understanding of the 
performance of the crop yield prediction model. 

RESULTS AND DISCUSSION  

3.1 Model Performance Using 80/20 Hold-Out 

After data preprocessing and feature engineering, the final 
dataset was split into 80% for training and 20% for testing. 
Four machine learning models were trained and evaluated: 
Random Forest (RF), Gradient Boosting (GB), XGBoost, 
and LightGBM. The Table 2 and Figure 7 below 
summarizes their performance based on Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), and R² 
score. 

Table 2. Results of Models Performance Evaluation 

Models MSE RMSE R2 

Random Forest 1.2361 1.1118 0.9529 

XGBoost 2.0493 1.4316 0.9249 

LightGBM 2.0926 1.4466 0.9203 

Gradient Boosting 2.2000 1.4832 0.9162 

 

 
Figure 7: Models Performance Evaluation 
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• Random Forest achieved the highest R² 
(0.953) and lowest MSE (1.24), indicating strong 
predictive accuracy and robust handling of both 
categorical and numerical features. 

• LightGBM closely followed RF, demonstrating 
competitive performance with slightly higher 
MSE (1.28) and RMSE (1.13). 

• XGBoost yielded moderate results, with an R² of 
0.941 and an RMSE of 1.15. 

• Gradient Boosting showed the lowest overall 
performance in this dataset, but still achieved an 
R² above 0.90. 

These findings suggest that ensemble tree-based methods 
(RF, LightGBM, XGBoost) are well-suited for capturing 
the non-linear relationships inherent in agricultural data, 
especially when multiple factors soil properties, irrigation 
methods, fertilization, pest infestations, and climatic 
variables are involved. 

3.2 Reasons for Random Forest’s Superior 
Performance 

1. Ensemble Approach: By combining multiple 
decision trees, Random Forest reduces variance 
and handles outliers more robustly. 

2. Feature Importance Analysis: It effectively 
identifies the most influential factors—such as 
soil pH, water usage, and nutrient content leading 
to more accurate predictions. 

3. Scalability and Speed: In this study, Random 
Forest trained efficiently on the given dataset and 
consistently outperformed the other algorithms 
in execution time and accuracy. 

3.3 K-Fold Cross-Validation 

To further validate the models, a 5-fold cross-validation 
was performed. Table 3 below presents the average 
performance metrics across the 5 folds: 

The cross-validation results are largely consistent with the 
hold-out findings: 

• Random Forest again emerged as the top 
performer, with an average R² of 0.948. 

• LightGBM remained highly competitive, 
followed by XGBoost and Gradient Boosting. 

• The small differences between hold-out and 
cross-validation metrics indicate stable model 
performance and low variance, underscoring the 
robustness of the ensemble approaches. 

3.4 Discussion 

3.4.1 Comparison with Existing Studies 

To validate the reliability of the proposed model, its 
performance was compared with five related studies in 
Table 4 below. Each study employed a hold-out approach 
to dataset splitting. 

Table 3. Mean performance metrics over 5-fold cross-validation 

Model Avg. MSE Avg. RMSE Avg. R2 

Random Forest 1.30 1.14 0.948 

Gradient Boosting 1.51 1.23 0.922 

XGBoost  1.37 1.17 0.935 

LightGBM 1.33 1.15 0.942 

Table 4. Performance comparison of proposed model with others 

S/N  Model MSE RMSE R2 

1 Alexandros et., al., 2022 Hybrid CNN-DNN 3.4237 3.3214 0.87213 

2 Gao et al., 2022 NNR 4.1321 4.0324 0.86 

3 Seungtaek el al., 2021 LSTM 4.6718 4.281 0.859 

4 Ramesh et al., 2022 M5-Prime 5.003 5.14 0.7946 

5 Zhang et al. 2022 PCA 2.8431 2.748 0.89 

6 This work 2025 XGBoost, RF, Gradient Boost and LightGBM 1.2361 1.1118 0.9529 

• Alexandros et al. (2022) achieved an RMSE of 
3.3214 using a Hybrid CNN-DNN. 

• Gao et al. (2022) and Seungtaek et al. (2021) 
reported RMSE values around 4.0 or higher, 
indicating relatively larger prediction errors. 

• Ramesh et al. (2022) recorded an RMSE of 
5.14, while Zhang et al. (2022) achieved an 
RMSE of 2.748 with PCA-based methods. 

• This research's proposed Random Forest model 
surpassed these previous works with an RMSE 
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of 1.1118 and an R² of 0.9529, reflecting high 
accuracy and robustness. 

3.4.2 Impact of Additional Features 

One notable improvement in this study is the Integration 
of local data, including: 

• Weather variables (rainfall, temperature) from 
meteorological stations, 

• Pest infestation levels, and 

• Fertilizer usage specific to Hadejia and Auyo. 

These factors significantly enhanced model accuracy 
compared to approaches that rely solely on global or 
single-variable datasets. The feature importance analysis 
from Random Forest indicated that rainfall, soil pH, 
fertilizer usage, and pest severity were among the top 
predictors of rice yield in the study area. This finding 
underscores the multi-dimensional nature of crop yield 
prediction and supports the inclusion of climate, soil, and 
management factors in future research. 

3.4.3 Discussion of Key Findings 

1. Influence of Local Factors: Incorporating soil 
properties, irrigation methods, water 
consumption, and nutrient content was crucial in 
boosting predictive accuracy. This aligns with 
other ensemble-based studies (e.g., Egbunu et al., 
2021) that emphasize multi-factor Integration. 

2. Potential for Precision Agriculture: The real-
time prediction capability allows farmers to adopt 
strategies such as adjusting irrigation schedules or 
fertilizer applications for optimal yield. 

3. Adaptability to Other Regions: Although this 
study focused on Hadejia and Auyo, the Random 
Forest model can be retrained on region-specific 
data, making it versatile for broader applications. 

4. Comparison with Existing Literature: The 
proposed model’s superior performance may be 
attributed to comprehensive feature engineering, 
localized data integration, and robust ensemble 
methods. 

3.4.4 Relevance to Local Agricultural Practices 

While publicly available datasets (Kaggle, FAO, World 
Bank) provided a strong foundation, the localized data 
helped capture region-specific nuances, such as the 
prevalence of tube well irrigation and unique soil 
compositions in Jigawa State. Consequently, the final 
model offers practical utility for local farmers and 
policymakers, enabling data-driven decisions on irrigation 
scheduling, fertilizer application, and pest control 
measures. 

3.4.5 Limitations and Future Directions 

Despite the positive outcomes, some limitations remain: 

1. Limited Field-Specific Data: Although efforts 
were made to incorporate local information, 
additional in-situ measurements (e.g., high-
resolution soil sensors) could further refine 
predictions. 

2. Temporal Variations: Yield data across 
multiple growing seasons could help generalize 
the model’s performance under varying climatic 
conditions. 

3. Pest and Disease Dynamics: Future models 
could benefit from real-time pest and disease 
monitoring, leveraging remote sensing or IoT-
based systems. 

To address these limitations, subsequent research could: 

• Collect longitudinal data covering multiple 
years and varied climate scenarios, 

• Explore deep learning approaches (e.g., LSTM 
networks) for temporal sequence modeling and 

• Investigate cost-benefit analyses of different 
interventions (e.g., irrigation schedules) informed 
by the ML predictions. 

CONCLUSION 

This study developed and evaluated four machine learning 
models Random Forest, XGBoost, LightGBM, and 
Gradient Boosting—to predict rice crop yield in Hadejia 
and Auyo, Jigawa State, Nigeria. The proposed approach 
captured the multifaceted nature of agricultural systems by 
integrating soil properties, irrigation methods, climatic 
factors, pest infestation levels, and fertilization practices. 
Random Forest emerged as the best-performing model, 
exhibiting the highest R² and lowest error metrics. 

The study Incorporating localized data significantly 
improved the model’s performance compared to global or 
single-factor approaches and employing both a traditional 
80/20 train-test split and K-fold cross-validation provided 
a comprehensive assessment of model stability, the multi-
factor Integration such as pest infestation and fertilization 
rates, often omitted in similar studies, proved crucial for 
more accurate yield estimates. 

The research can have practical applications in precision 
agriculture in which farmers can use the Random Forest 
model’s predictions to optimize irrigation schedules, 
fertilizer application, and pest control measures, thereby 
maximizing yield while minimizing resource waste. The 
policy and resource management from government 
agencies and agricultural planners can leverage model 
outputs to allocate resources (e.g., subsidies, training 
programs) more effectively, focusing on areas with the 
greatest yield potential or highest risk. The climate 
adaptation strategies, by integrating local weather data, the 
model can help stakeholders anticipate climate variability 
and implement timely interventions, such as drought-
resistant crop varieties or adjusted planting dates. 
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Future research directions, such as incorporating 
longitudinal to extend the dataset to cover multiple 
growing seasons, would allow for time-series analyses and 
better insight into year-to-year yield fluctuations. 
Exploring deep learning architectures (e.g., LSTM, CNN-
LSTM hybrids) and geospatial modeling (e.g., satellite-
based remote sensing) could enhance the model’s ability 
to handle large-scale, real-time data. Integrating IoT 
devices and smart sensors in the field could enable 
continuous tracking and real-time monitoring systems of 
soil moisture, pest incidence, and nutrient levels, leading 
to more dynamic and responsive yield prediction models. 
Then, the cross-regional validation when applying the 
model to other regions in Nigeria or similar agro-
ecological zones can validate its scalability and identify 
location-specific adjustments. 

This research provides a scalable and practical solution for 
early crop yield prediction by bridging localized data with 
ensemble-based machine learning techniques. The 
model’s success in Hadejia and Auyo underscores the 
value of context-specific features, offering a blueprint for 
future endeavors in precision agriculture. As climate 
change and population growth continue to pressure global 
food systems, leveraging data-driven insights becomes 
increasingly vital for ensuring sustainable and resilient 
agricultural practices. 
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