
 
 

UMYU Scientifica, Vol. 2 NO. 4, December 2023, Pp 114 – 121 

 114 

 

https://scientifica.umyu.edu.ng/                      Umar et al., /USci, 2(4): 114 – 121, December 2023  
 

 
 

ORIGINAL RESEARCH ARTICLE 

A Study of Nigeria Monthly Stock Price Index Using ARTFIMA-FIGARCH 
Hybrid Model 

A. G. Umar1* , H. G. Dikko2 , J. Garba2  and M. Tasi’u2 . 
1Department of Mathematics, School of Sciences, Kwara State College of Education (T) Lafiagi, Nigeria 
2Department of Statistics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria.. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

INTRODUCTION
The concept of long memory characteristics pertains to 
the interdependence or connection among data points 
collected over a time span. In the research by Granger and 
Joyeux (1980) and subsequently by Hosking (1981), long-
term memory characteristics were defined by the gradual 
decrease in the autocorrelation function's graphical 
representation within a dataset. This phenomenon led 
them to suggest the application of fractional differencing 
in mean models when long memory is identified in time 
series data. Noteworthy examples of long-memory mean 
models found in the literature are the Autoregressive 
Fractional Integrated Moving Average (ARFIMA) model 
proposed by Granger, Joyeux, and Hosking and the 
Autoregressive Tempered Fractional Integrated Moving 
Average (ARTFIMA) model introduced by Meershart et 
al., (2014). Other models in this category include the 
Semiparametric Fractional Autoregressive (SEMIFAR) 

model by Beran (1999), the Beta-ARFIMA ( -ARFIMA) 

model by Pumi et al. (2019), and the ARFURIMA model 
by Jibrin (2019). 

To address long-term memory effects in variations, 
fractional differencing was incorporated into variance 
models. An extension of Nelson's (1991) Exponential 
Generalized Autoregressive Conditional 
Heteroscedasticity (EGARCH) resulted in the creation of 
the Fractionally Integrated EGARCH (FIEGARCH) 
model by Bollerslev and Mikkelson in 1996. Another 
notable model in the realm of long-term memory variance 
is the fractionally integrated generalized autoregressive 
conditional heteroscedasticity (FIGARCH) model 
introduced Ballie et al., in 1996. 

Studies have shown that residuals derived from non-
stationary mean models with long memory characteristics, 
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ABSTRACT 
Long memory is a phenomenon in time series analysis that is exhibited by a slow decay of the 
autocorrelation function. It has been observed that the presence of long memory in both 
mean and volatility can complicate model fitting and compromise forecasting reliability. 
Meanwhile, the Autoregressive Tempered Fractional Integrated Moving Average 
(ARTFIMA) as a tempered fractionally differenced long memory mean model and the 
Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity 
(FIGARCH), which is a long memory variance model, could not independently and 
effectively address the challenges of time series data that displayed long memory in mean and 
volatility. To tackle this challenge, we introduce a hybrid model called the ARTFIMA-
FIGARCH by combining ARTFIMA and FIGARCH models using the transformation 
method under the assumption that the residuals of the ARTFIMA model are non-normal, 
serially correlated, and heteroscedastic. To evaluate the effectiveness of this model, we 
employed the Nigerian Monthly Stock Price Index as well as simulated data sets as a testing 
ground and compared its performance against existing models like ARFIMA, ARTFIMA, 
and ARFIMA-FIGARCH. The selection of the most suitable model was determined using 
the Akaike Information Criterion (AIC) and model performance was assessed through 
various forecast accuracy measures. Our findings demonstrated that ARTFIMA (0,1.06,1)-
FIGARCH (1,0.15,1) emerged as the best candidate of the new model and outperformed 
ARFIMA (1,1.06,0)-FIGARCH (1,0.15,1). Based on the findings of this study, it is concluded 
that ARTFIMA-FIGARCH is considered to be the most suitable model for studying the 
mean and volatility of the Nigerian monthly stock price index. 
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including ARFIMA and ARTFIMA, as well as other mean 
models, frequently display serial correlation. This 
discovery has been documented in research conducted by 
Zhou and He (2009) and also by Duppati et al., (2016). 
Furthermore, placing exclusive reliance on long memory 
variance model such as FIGARCH can result in less 
accurate predictions. As a result, the integration of mean 
and variance models into hybrid models, which 
encompass both mean and variability considerations 
simultaneously, has the potential to yield enhanced 
outcomes. 

Baillie et al., (1996) made notable contributions to the 
realm of hybrid modeling by introducing an innovative 
strategy called the ARFIMA-GARCH model. This hybrid 
approach was specifically crafted to simultaneously 
explore patterns of long memory (LM) and variance 
within the context of inflation trends in the United States. 
The ARFIMA-GARCH model combines autoregressive 
fractionally integrated moving average (ARFIMA) models, 
which effectively capture long memory effects in the 
mean, with generalized autoregressive conditional 
heteroscedasticity (GARCH) models, adept at capturing 
volatility patterns in the variance. Additional studies that 
have employed hybrid modeling techniques include those 
by Ishida and Watanabe (2009), Leite et al., (2009), 
Almeida et al., (2017), Sivakumar and Mohandas (2009), 
Korkmaz et al., (2009), Ambach and Ambach (2018), Jibrin 
(2019), and Kabala (2020).  

However, the ARTFIMA-FIGARCH hybrid model with 
tempered fractional differencing for modeling long 
memory in mean and long memory in volatility can handle 
time series data whose fractional differencing value d can 
take any value greater than zero, which could not be 
adequately addressed by previous models. The primary 
objective is to introduce an innovative and tempered 
fractionally differenced hybrid model termed 
ARTFIMA(p,λ,d,q)-FIGARCH(1,1). This hybrid model is 
specifically designed to effectively tackle the challenge 
posed by noisy signals that can distort modeling 
techniques when dealing with both mean and volatile time 
series exhibiting long-term memory characteristics. 

MATERIALS AND METHODS 

The general form of an ARFIMA model of Granger and 
Joyeux (1980) and Hosking (1981) is given by: 

𝜑(𝐿)(1 − 𝐿)𝑑𝑌𝑡 = 𝜃(𝐿)𝜀𝑡, 0 < 𝑑 < 1.                       (1) 

The 𝜑(𝐿) and 𝜃(𝐿) are called characteristics polynomial 

and the (1 − 𝐿)𝑑 is the fractional operator. The 

𝜑1, 𝜑2, … , 𝜑𝑝 and 𝜃1, 𝜃1, … , 𝜃𝑞 are unknown parameters 

and must be estimated from the sample data, d is the long 

memory parameter, 𝐿 lag operator and 𝜀𝑡 is the error term. 

While the ARTFIMA model of Meerchaert et al., (2014) is 
defined as follows:  

𝜑(𝐿)(1 − 𝑒−𝜆𝐿)
𝑑

𝑌𝑡 = 𝜃(𝐿)𝜀𝑡,                                   (2) 

Where: 

 𝜑(𝐿) = 1 − 𝜑1𝐿 − 𝜑2𝐿2−. . . −𝜑𝑝𝐿𝑝 and 𝜃(𝐿) = 1 +

𝜃𝐿 + 𝜃2𝐿2+. . . +𝜃𝑞𝐿𝑞 are AR and MA parameters 

respectively, 

 𝑑 > 0 is a fractional differencing parameter, and 

 𝜆 > 0 is the tampering parameter. It is also called the 
stability index for measuring the heavy tail of a time series. 

The (1 − 𝑒−𝜆𝐿)
𝑑

 is a filter for transforming the non-

stationary time series 𝑌𝑡. 

Assumptions of the ARTFIMA( p,λ,d,q )-FIGARCH 

(1,d,1) Model 

a. The current study assumed that the model in (2) 
failed to completely eliminate the magnitude of 
trend, heavy tail and long memory known as the 

component of variation in the time series 𝑌1, 

𝑌2,…, 𝑌𝑁. Large proportion of these variations 

are also found to be present in the residuals 𝜀1, 

𝜀2,…, 𝜀𝑁 of the ARTFIMA model in (2).  
b. Also, the current study assumed that the residuals 

from the ARTFIMA model, 𝜀1, 𝜀2,…, 𝜀𝑁 are 
auto-correlated and heteroscedastic. The Ljung- 
Box and ARCH-LM test can be used to check the 
autocorrelation and heteroscedasticity of the 
residuals. In time series analysis, estimating the 
ARTFIMA alone would lead to bad modeling 
and consequently presenting an unreliable 
forecast. 

c. Kabala (2020) considers the residuals of 
ARTFIMA model and introduced the 
ARTFIMA-GARCH hybrid model to study both 
the mean and volatility in time series. 

Moreover, Engle (1982) considered 𝜀𝑡 in eq.(2) to be a 
stochastic process defined as: 

𝜀𝑡 = 𝑎𝑡𝜎𝑡.                                                                    (3) 

Where 𝐸(𝑎𝑡) = 0, 𝑉𝑎𝑟(𝑎𝑡) = 1 and 𝜎𝑡 is positive and 
changes with respect to time, t. This implies that the 

process {𝑎𝑡}, is assumed to be serially uncorrelated and 
expressed as: 

𝑎𝑡~𝑖𝑖𝑑(0,1)                                                                (4) 

 FIGARCH(1,d,1) model of Baillie et al., (1996) is defined 
as:  

𝜎𝑡
2 = 𝜔[1 − 𝛽(𝐿)]−1 + {1 − [1 − 𝛽(𝐿)]−1𝛼(𝐿)(1 −

𝐿)𝑑}𝜀𝑡
2.                                                                        (5) 

Where 𝛼 and  𝛽 are parameters of the model and we 

assume that all the roots of the polynomials 1 − 𝛽(𝐿) and 

𝛼(𝐿) lie outside the unit circle. 

Therefore, ARTFIMA(p, , 1d ,q)-FIGARCH(1, 2d ,1) 

model is represented as 
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𝑌𝑡 =
∑ 𝜑𝑖

𝑝
𝑖=1 (1−𝑒−𝜆𝐿)𝑑1𝑌𝑡−𝑖+∑ 𝜃𝑗

𝑞
𝑖=1 𝜀𝑡−𝑗+√(𝜔∗+𝛼∗)𝑎𝑡

(1−𝑒−𝜆𝐿)𝑑1
 (6) 

Note 𝜔∗ = 𝜔(1 − 𝛽(𝐿))−1, 𝛼∗ = [1 − [1 −

𝛽(𝐿)]−1𝛼(𝐿)(1 − 𝐿)𝑑2]𝜀𝑡
2 

where 

𝜑,  𝜃,  𝛼,  𝛽,  𝜆, 𝑑1 and 𝑑2 are parameters of the model to be estimated. 

PROPERTIES OF THE MODEL 

This subsection deals with properties of the ARTFIMA-

FIGARCH Model. 

Mean 

Consider ARTFIMA (1, , 1d ,1)-FIGARCH(1, 2d  ,1) 

𝑌𝑡(1 − 𝑒−𝜆𝐿)𝑑 = 𝜑1(1 − 𝑒−𝜆𝐿)𝑑𝑌𝑡−1 + 𝜃1𝜀𝑡−1 +

√(𝜔∗ + 𝛼∗)𝑎𝑡                                  (7) 

0 =                                               (8) 

1 1: [ ] [ ] and [ ] [ ] 0t t t tE Y E Y E E a − −= = = =Note
 
 

  ARTFIMA- FIGARCH is a zero mean Process. 

Variance 

To obtain the variance of the model, we first multiply 

equation (7) by tY  and take its expectation:  

𝐸[𝑌𝑡
2] = 𝜑1

2𝐸[𝑌𝑡−1
2 ] + 2𝜑1𝜃1(1

− 𝑒−𝜆𝐿)−𝑑𝐸[𝜀𝑡−1𝑌𝑡−1] + 2𝜑1(1

− 𝑒−𝜆𝐿)−𝑑√(𝜔∗ + 𝛼∗)𝐸[𝑎𝑡𝑌𝑡−1] 

                            +2𝜃1((1

− 𝑒−𝜆𝐿)−𝑑))2√(𝜔∗ + 𝛼∗)𝐸[𝑎𝑡𝜀𝑡−1]

+ 𝜃1
2((1 − 𝑒−𝜆𝐿)−𝑑))2𝐸[𝜀𝑡−1

2 ] 

                                        +((1 −

𝑒−𝜆𝐿)−𝑑))2(𝜔∗ + 𝛼∗)𝐸[𝑎𝑡
2]                                       (9) 

Note:  

𝑬[𝒀𝒕
𝟐] = 𝑬[𝒀𝒕−𝟏

𝟐 ] = 𝜸𝟎 and 𝑬[𝜺𝒕−𝟏𝒀𝒕−𝟏]   =  𝑬[𝒂𝒕𝒀𝒕]

= 𝝈𝜺
𝟐 

𝜸𝟎 =
𝝈𝜺

𝟐[𝟐𝝋𝟏𝜽𝟏+𝜽𝟏
𝟐(𝟏−𝒆−𝝀𝑳)−𝒅+(𝝎∗+𝜶∗)(𝟏−𝒆−𝝀𝑳)−𝒅]

(𝟏−𝒆−𝝀𝑳)𝒅(𝟏−𝝋𝟏
𝟐)

 (10) 

The variance of ARTFIMA-FIGARCH Process is given 

in equation (10) above. 

Autocovariance at Lag 1 

To obtain Autocovariance at lag 1, multiply equation (7) 

Yt-1 and taking its expectation: 

( )2 * *

1 1

1 2

1

( ) (1 )

(1 ) (1 )

d

d

e

e L







    




− −

−

+ + −
=

− −
           (11) 

Autocorrelation at Lag1 ( 1 ) 

Finally the autocorrelation at lag 1 ( 1 ) of the new 

model is given as 

𝜌1 =
𝜑1√(𝜔∗+𝛼∗)+𝜃1(1−𝑒−𝜆𝐿)−𝑑

2𝜑1𝜃1+𝜃1
2(1−𝑒−𝜆𝐿)−𝑑+(𝜔∗+𝛼∗)(1−𝑒−𝜆𝐿)−𝑑  (12) 

SIMULATION STUDY 

In this part of the study, we employed Monte Carlo 

simulation to create datasets of various sizes (100, 200, 500 

and 1000) for ARTFIMA modeling. We duplicated these 

datasets for use in the ARTFIMA-FIGARCH and 

ARFIMA-FIGARCH estimations. For the hybrid models, 

we conducted the estimation procedure iteratively, 

investigating a range of p and q combinations. These 

values of p and q were both limited to 3 or lower, thereby 

keeping their sum under 5 during the hybrid model 

estimation process. 

Compared to a significance level of 0.05, the results from 

conducting portmanteau and ARCH-LM tests on the four 

simulated datasets, as displayed in Table 1, indicate that 

the residuals of the ARTFIMA model exhibit 

heteroscedasticity and serial correlation. This suggests that 

relying solely on the ARTFIMA model is insufficient for 

analyzing the dataset, primarily due to the presence of 

noise signals. Consequently, it is advisable to incorporate 

a variance model, and in this regard, FIGARCH is being 

considered as a suitable option. 

In summary, the outcomes presented in Table 2 

demonstrated that the ARTFIMA- FIGARCH model 

surpasses the existing ARFIMA- FIGARCH model in 

terms of its ability to accurately represent the data's fit and 

its forecasting precision. Consequently, integrating the 

FIGARCH variance model into the ARTFIMA 

framework has brought about notable enhancements. As 

a result, the hybrid model becomes a more appropriate 

option for both the analysis of the generated data and the 

generation of more precise predictions. 
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Table 1 Simulation result of ARTFIMA Model for sample sizes n =100, 200, 500 and 1000 

n=100 

ARTFIMA (p,d,q) Loglikelihood AIC Portmanteau test ARCH-LM Test 

ARTFIMA (1,d,0) -718.1677 1438.335       0.03983        0.03589 

ARTFIMA (0,d,1) -704.4607 1410.921       0.04688        0.02891 

ARTFIMA (1,d,1) -704.3798 1412.76       0.01001         0.03851 

ARTFIMA (2,d,0) -706.8703 1417.74       0.03083         0.03475 

ARTFIMA (0,d,2) -706.4651 1416.93       0.03928         0.06922 

  n=200   

ARTFIMA (1,d,0) -1406.401 735.2701      0.03665        0.02867 

ARTFIMA (0,d,1) -1406.254 735.3077      0.02885         0.06333 

ARTFIMA (1,d,1) -1406.538 737.2214      0.04162         0.01277 

ARTFIMA (2,d,0) -1406.287 738.0678       0.03576         0.02776 

ARTFIMA (0,d,2) -1405.923 737.784     0.0005376        0.02623 

  n=500   

ARTFIMA (1,d,0) -3526.924 7284.098     5.251e-10 0.015 

ARTFIMA (0,d,1) -3526.915 7085.71      3.62e-06 0.01553 

ARTFIMA (1,d,1) -3525.317 7087.665     3.36e-06 0.01456 

ARTFIMA (2,d,0) -3526.8 7237.371    2.419e-05 0.04375 

ARTFIMA (0,d,2) -3526.71 7090.789    7.811e-06 0.02 

  n=1000   

ARTFIMA (1,d,0) -7280.815 14563.63   0.001059 2.2e-16 

ARTFIMA (0,d,1) -7093.783 14189.57   1.14e-12 0.01112 

ARTFIMA (1,d,1) -7093.544 14191.09   1.05e-12 0.0111 

ARTFIMA (2,d,0) -7214.265 14432.53   4.378e-12 0.05103 

ARTFIMA (0,d,2) -7103.693 14211.39   3.129e-12 0.01123 

Table 2: Simulation result of ARFIMA- FIGARCH and ARTFIMA- FIGARCH models for sample sizes n =100, 200, 

500 and 1000 

                                                                                n=100 

MODEL AIC MAE MSE RMSE 

ARTFIMA(0,d,1)-   

FIGARCH(1,d,1) 

13.905 0.8913 1.1328 1.0643 

ARFIMA(2,d,3)-FIGARCH(1,d,1) 13.893 249.3704 82376.22 287.0126 

 n=200    

ARTFIMA(0,d,1)-FIGARCH(1,d,1) 13.865 0.9034 1.1277 1.0619 

ARFIMA(1,d,0)-FIGARCH(1,d,1) 13.872 249.7105 81900.88 286.1833 

 n=500    

ARTFIMA(2,d,1)-FIGARCH(1,d,1) 13.859 0.8848 1.0318 1.0158 

ARFIMA(2,d,2)-FIGARCH(1,d,1) 13.877 251.7693 83678.29 289.272 

 n=1000    

ARTFIMA(2,d,2)-FIGARCH(1,d,1) 13.842 0.8741 1.0176 1.0088 

ARFIMA(1,d,0)-FIGARCH(1,d,1) 13.852 250.0027 83333.03 288.6746 
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APPLICATION  

This section presents the application of the ARTFIMA, 
ARFIMA, ARTFIMA-FIGARCH and ARFIMA-
FIGARCH model by using Nigerian Monthly Stock Price 
Index obtained from Morgan Stanley Capital Index 
(MSCI) from 2012 to 2020. 

Illustrated in Figure 1 are the time series plots of Nigeria 
Monthly Stock Price Index. These plots reveal 
fluctuations, deterministic trends, and nonlinearity within 
the data. The observed trend behavior stems from abrupt 
shifts in the series. Furthermore, the Autocorrelation 
Function (ACF) demonstrates a gradual decay, which 
signifies the presence of a long-range dependence process. 
As a result, there are indications of Long Memory (LM) 
characteristics in the studied series. Such series exhibiting 
LM traits often yield LM values within the range of 0 < d 
< 1 and beyond. Hence, the series can be characterized as 

originating from a long memory process. On average, the 
series lacks stationarity. 

Figure 2 illustrates the plot of log-returns and the 
Autocorrelation Function (ACF) for the Nigerian 
Monthly Stock Price Index. The log-returns demonstrate 
intervals of heightened volatility, providing evidence of 
volatility clustering. This phenomenon implies that returns 
tend to group together over time, with periods of 
increased volatility followed by comparatively less volatile 
periods. Moreover, the ACF exhibited in Figure 2 for the 
Nigerian Monthly Stock Price Index showcases consistent 
and positive values that are notably elevated. The gradual 
decline of the ACF towards zero signifies the presence of 
volatility clustering. This indicates that the autocorrelation 
of the returns remains significant across numerous time 
lags, underscoring that past returns maintain a correlation 
with future returns. This pattern is a fundamental 
characteristic of volatility clustering within financial time 
series data. 

 

Figure 1: Time Series Plot and ACF for Nigeria Monthly Stock Price Index. 

 

Figure 2: The plot of log-returns and ACF for Nigerian Monthly Stock Price Index. 
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MEAN MODELING  

In this section, we identify the parameters for each set of 
candidate from the mean models ARFIMA and 
ARTFIMA models putting into consideration the model 

from the estimation with least AIC values. Table 3 displays 
the outcomes of the analysis carried out on Nigerian 
Monthly Stock Price Index dataset using the two mean 
models. 

Table 3: AIC Values and Diagnostic tests for ARFIMA  and ARTFIMA  Models 

ARFIMA ARTFIMA 

ARFIMA 
(p,d,q) 

AIC Portmanteau 
Test 

ARCH-
LM Test 

ARTFIMA 
(p,λ,d,q) 

AIC Portmanteau 
Test 

ARCH-LM 
Test 

ARFIMA 
(1,d,0)  

1257.452 2.2e-16 2.2e-16 ARTFIMA 
(1,d,0)  

1222.666 0.0004071 0.002454 

ARFIMA 
(0,d,1)  

1299.126 2.2e-16 2.2e-16 ARTFIMA 
(0,d,1)  

1222.662 0.0003534 0.04523 

ARFIMA 
(1,d,1)  

1259.139 2.2e-16 2.2e-16 ARTFIMA 
(1,d,1)  

1224.117 0.0004702 0.002485 

ARFIMA 
(2,d,0)  

1259.814 2.2e-16 2.2e-16 ARTFIMA 
(2,d,0)  

1224.541 0.0007355 0.01777 

ARFIMA 
(0,d,2)  

1288.923 2.2e-16 2.2e-16 ARTFIMA 
(0,d,2)  

1224.313 0.001543 0.003287 

The AIC values were compared and candidate models 

with the minimum AIC values are identified. Results 

indicated that the ARTFIMA have the least AIC values. 

Therefore, the ARTFIMA models are a better fit for the 

data when compared with ARFIMA models. However, 

results showed evidence of serial correlation and 

heteroscedasticity in residuals of both ARFIMA and 

ARTFIMA models because the p-values are less than 0.05. 

The residuals of the two mean models are serially 

correlated indicating that they are not appropriate for the 

data set. In view of these, the fractionally integrated 

volatility model, FIGARCH is considered next to form 

hybrid models with the ARFIMA and ARTFIMA models. 

The reason for introducing the variance model is to 

improve the model fitting to the data. Therefore, further 

analyses based on ARFIMA-FIGARCH and ARTFIMA-

FIGARCH models are carried out and discussed in next 

section. 

 

HYBRID MODELING 

The analysis for ARFIMA-FIGARCH and ARTFIMA-
FIGARCH models for the Nigerian Monthly Stock Price 
Index is shown in Table 3 below. The two models are used 
for the estimation, and the procedures involved shall be 

repeated for  3p   and 3q   so that 5p q+   in the 

hybrid models, estimations and the residuals are assumed 
to be distributed normal (norm), student-t (std), skewed 
student-t (sstd) and generalized error distribution (ged). 
AIC values, log likelihood values and measures of forecast 
accuracy; Mean Absolute Error (MAE), Mean Square 
Error (MSE) and Root Mean Square Error (RMSE) shall 
considered. 

The Hybrid Models Identification 

After going through the procedures of the model 
diagnostic test, the best models for the two hybrid models 
are identified for Nigerian Monthly Stock Price Index. The 
identification was done and selection was based on the 
models that are stationary and have the least AIC values. 
The outcomes are as presented in Table 4. 

Table 4: Estimation of ARFIMA(p,d,q) –FIGARCH(1,1)and ARTFIMA (p,λ,d,q)-FIGARCH(1,1) with their AIC values. 

Model Parameters Estimate AIC MAE MSE RMSE 

ARTFIMA(0,1.06,1)-
FIGARCH(1,0.15,1) 

MA1 0.0426 11.465 0.6902 0.8420 0.0426 

   1.2     

   0.0101     
   0.0398     

ARFIMA(1,1.06,0)-
FIGARCH(1,0.15,1) 

AR1 0.9878 11.788 63.7709 7231.032 85.0355 

   0.0002     
   0.0400     
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The ARTFIMA-FIGARCH model exhibits the smallest 

AIC value as well as having lower forecast accuracy 

measures (MAE, MSE, and RMSE) values in comparison 

with the corresponding values of the ARFIMA-

FIGARCH model. In particular, the best candidate of 

ARTFIMA-FIGARCH, ARTFIMA(0,1.06,1)-

FIGARCH(1,0.15,1) model has the lowest AIC value 

(11.465) in addition to recording the smallest MAE, MSE, 

and RMSE values (0.6902, 0.8420 and 0.0426) as 

compared to ARFIMA(1,1.06,0)-FIGARCH (1,0.15,1) 

with AIC value (11.788) and MAE, MSE, and RMSE 

values (63.7709, 7231.032, 85.0355). This indicates that 

the ARTFIMA-FIGARCH model is more suitable for 

fitting the dataset and making a more reliable forecast as 

compared to the ARFIMA-FIGARCH model of Ballie et 

al., (1996). 

CONCLUSION  

This study introduces a novel hybrid model named 
ARTFIMA-FIGARCH and carried out a comprehensive 
comparative analysis against established mean and hybrid 
models. The outcomes show the superior suitability and 
performance of the hybrid model, specifically ARTFIMA-
FIGARCH, in comparison with the mean models 
(ARTFIMA and ARFIMA) and the hybrid model, 
ARFIMA-FIGARCH, for both simulated and real-world 
datasets. This study is in conformity with the works of 
Jibrin (2019) and Kabala (2020), who are of the opinion 
that hybrid models outperform mean models. These 
findings clearly show the dominance of the ARTFIMA-
FIGARCH model as a hybrid mean-volatility model over 
its counterpart, the ARFIMA-FIGARCH model, and are 
therefore considered the most suitable for studying the 
mean and volatility of the Nigerian Monthly Stock Price 
Index and other financial data that exhibit similar 
characteristics.
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