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INTRODUCTION
In the last decades, many researchers have delved into 
various methods for generating new families of 
distributions termed generators or generalized classes of 
probability distributions. It is well-known that when a 
distribution is generalized, an additional shape 
parameter(s) is added to the baseline distribution. The 
importance of these extra shape parameter(s) is to vary the 
tail weight of the resulting compound distribution to be 
used effectively to describe or analyze skewed data, which 
provides more flexibility for modelling real lifetime data 
sets. The extensions sometimes offer better parametric fits 
to some application aspects and reliability analysis. Some 
of the recent literatures on generalized families of 
distributions are: The Kumaraswamy-G family of 
distributions by Cordeiro and de Castro (2011), Log-
gamma-G family of distributions by Amini et al. (2012), 
Exponentiated –G by family of distributions Cordeiro et 
al. (2013), Weibull-G family of distributions by 
Bourguignon et al. (2014), The odd generalized 
Exponential family of distributions by Tahir et al. (2015), 
Topp-Leone family of distributions by Al-shomrani et al. 
(2016), Topp-Leone G-family of distributions by Rezaei et 
al. (2017), type I generalized exponential class of 
distributions by Hamedani et al. (2018), The 
Exponentiated Kumaraswamy-G family of distributions 

by Silva et al. (2019), The Fréchet Topp Leone G Family 
of distributions by Reyad et al. (2019a), Transmuted odd 
Fréchet G by Badr et al. (2020), Topp Leone 
exponentiated-G Family of Distributions by Ibrahim et al. 
(2020), Rayleigh-exponentiated odd generalized-pareto 
distribution by Yahaya and Doguwa (2021), Topp-Leon 
Weibull generated family of distributions by Ibrahim et al. 
(2022), A new compound-G Family of distributions 
Masoom et al. (2023).  

In this paper, a new two parameter family of distributions 
is introduced by using the idea of T-X methodology. Some 
statistical properties of the (NOGEE-G) family were 
derived and studied. 

This paper is organized as follows: in Section 2, we define 
the cumulative distribution, probability density, reliability, 
and hazard functions of the new odd generalized 
exponentiated-exponential-G (NOGEE−G) family of 
distributions, respectively. Furthermore, we introduce the 
statistical properties, including the quantile and median are 
provided in Section 3. Section 4 presents the sub-models 
of the NOGEE−G family of distributions. Maximum 
likelihood estimation of the parameters is determined in 
Section 5. A numerical analysis of NOGEE−G 
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ABSTRACT 
In the last decades, many researchers have developed new methods for generating families of 
distributions. These generators are obtained by adding one or more extra shape parameter(s) 
to the baseline distribution to achieve more flexibility for modelling real lifetime data sets. 
The additional parameter(s) has been proven useful by obtaining tail properties and 
improving the analysis from the goodness-of-fit for the families of distributions under study. 
In this paper, we proposed a new family of distributions called the New Odd Generalized 
Exponentiated Exponential-G Family of Distributions. The statistical properties are derived, 
and the maximum likelihood estimation technique is described for the proposed new family 
of distributions. The new models' performance is illustrated by numerical analysis using a 
real-life dataset, and the dataset shows that the new models offer a better fit compared to 
other competing models. 
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distributions is performed using a real-life data set in 
Section 6. Conclusion in Section 7. 

2. New Odd Generalized Exponentiated 
Exponential-G Family of Distributions 

2.1 The Proposed (NOGEE-G) Family of 
Distributions 

In this work, a new generalized family of distribution is 
proposed called the New Odd Generalized Exponentiated 
Exponential-G (NOGEE-G) family of distributions from 
the cumulative distribution function (cdf) of the 
Exponentiated-G family of distributions based on 
Lehmann (1953) defined by as  

  ( ; , ) 1 ( ; )F x H x


  = −  ,  

 0 ,x   , 0      

 (1) 

With the pdf of; 

  
1

( ; , ) ( ; ) 1 ( ; )f x h x H x


    
−

= −  

      (2) 

Where  is an exponentiated parameter belonging to a set 

of positive real numbers. 

According to Alzaatreh et al. (2013), the cdf of the T-X 
family of distribution is given as  

  ( )
 

( )
( )

( )

W G x

a

F x r t dt R W G x = =      

      (3) 

Where  ( )W G x  satisfies the following conditions 

(i)    ( ) ,W G x a b  

(ii)  ( )W G x is differentiable and 

monotonically non-decreasing, and (4) 

(iii) 𝑊[𝐺(𝑥)] → 𝑎 as 𝑥 →
−∞ and 𝑊[𝐺(𝑥)] → 𝑏 as 𝑥 → ∞ 

Let ( )r t  be the pdf of a random variable  ,T a b for 

a b−     and  ( )W G x  be a function of the cdf 

of a random variable X . 

Then, the pdf corresponding to equation (3) is given by; 

    ( ) ( ) { ( ) }
d

f x W G x r W G x
dx

 
=  
 

  (5) 

Proposition 1: Let X be any arbitrary random variable 

with cdf ( );G x   and pdf ( );g x  . Also, let 

( ),T a b  be a random variable with a pdf ( )r t . 

Furthermore, let our proposed link function with cdf and 
pdf be given as: 

( ; )

1 ( ; )
( ; , , ) 1

G x

G x
H x e





  

 
−  

− 
 
 = −
  

  (6) 

and 

ℎ(𝑥; 𝛼, 𝛽, 𝜓) =
𝛼𝛽𝑔(𝑥,𝜓)

[1−𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
[1 −

𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽−1

     (7) 

Then, the cdf of NOGEE-G family of distributions is 
given as 

 𝐹(𝑥; 𝛼, 𝛽, 𝜃, 𝜓) = 1 − [1 − [1 − 𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽

]

𝜃

 (8) 

Proof: Using the Lehmman II as the Transformed (T) and 
odd generalized exponential-G family as the Transformer 
(X), we have 

 
1

0

( ; , ) ( ; ) 1 ( ; )

k

F x h t H t t


    
−

= −   

Where 

( ; )

1 ( ; )
1

G x

G x
k e







 
−  

− 
 
 = −
  

 

Let  1 ( ; )y H t = −  

When 0t = , 1y = and when t k= , 1y k= −  

( ; )
( ; )

y y
h t t

t h t




 
= −   =

 −
 

 
1

1

1

( ; , ) ( ; )
( ; )

k

y
F x h t y

h t


   



−

−


=   

 
1

1

1

( ; , ) ( ; )
( ; )

k

y
F x h t y

h t


   



−

−


=   

 
1

1

1

( ; , )
k

F x y y


 
−

−

=   

1

1

( ; , )

k

y
F x



  


−

 
=  

 
 

1

1
( ; , )

k
F x y 

−
=  

 ( ; , ) 1 1F x k


  = − −  
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( ; )

1 ( ; )
( ; , , , ) 1 1 1

G x

G x
F x e





   

 
−  

− 

  
  = − − −
    

 

That completes the proof. 

To get the pdf of the NOGEE-G family of distribution, 
equation (8) is differentiated with respect to x as 

𝜕𝐹(𝑥; 𝛼, 𝛽, 𝜃, 𝜓)

𝜕𝑥
=

𝛼𝛽𝜃𝑔(𝑥, 𝜓)

[1 − 𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
[1

− 𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽−1

[1

− [1 − 𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽

]

𝜃−1

 

𝑓(𝑥; 𝛼, 𝛽, 𝜃, 𝜓) =
𝛼𝛽𝜃𝑔(𝑥,𝜓)

[1−𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
[1 −

𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽−1

[1 − [1 − 𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽

]

𝜃−1

 (9) 

It suffices to show that  

0

( ; , , , ) 1f x    


=  

∫
𝛼𝛽𝜃𝑔(𝑥, 𝜓)

[1 − 𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
[1

∞

0

− 𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽−1

[1

− [1 − 𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽

]

𝜃−1

𝜕𝑥 

Let 

( ; )

1 ( ; )
1

G x

G x
m e






 
−  

− = −  

when 0, 0x m= = and when , 1x m=  =  

 

( ; )

1 ( ; )

2

( ; )

1 ( ; )

G x

G xm g x
e

x G x




 



 
−  

− 


=
 −

 

𝛼𝛽𝜃∫
𝑔(𝑥, 𝜓)

[1 − 𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
[𝑚]𝛽−1[1

1

0

− [𝑚]𝛽]
𝜃−1 𝜕𝑚

𝛼𝑔(𝑥;𝜓)
[1 − 𝐺(𝑥; 𝜓)]2

𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
 

   
1

1

0

1m m m
 


 −

−  − 
   

Let  1z m


= −  

when 0, 1m z= =  and when 1, 0m z= =   

1z
m

m

 −
= −


 

   
1

1 1

0

m z m
 


− −

  

   
1

1 1

1

0

z
m z

m

 






− −

−


  

  
1

1

0

z z



−
  

1

0

z




 
 
 

 

1

0
z  

1 0−  

1  

Therefore,  

𝑓(𝑥; 𝛼, 𝛽, 𝜃, 𝜓) =
𝛼𝛽𝜃𝑔(𝑥,𝜓)

[1−𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
[1 −

𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽−1

[1 − [1 − 𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽

]

𝜃−1

is a valid 

pdf.  

3. Statistical properties  

3.1 Survival function  

The survival function of the NOGEE- family of 
distributions is given as    

 𝑆(𝑥; 𝛼, 𝛽, 𝜃, 𝜓) = 1 − {1 − [1 − [1 −

𝑒
−𝛼(

𝐺(𝑥;𝜓)

1−𝐺(𝑥;𝜓)
)
]
𝛽

]

𝜃

}     (10)  

3.2. Hazard rate function  

The hazard rate function is an important measure used to 
characterize a life phenomenon. Hence, the hazard rate 
function of the NOGEE- family of distributions is given 
as: 
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𝜏(𝑥; 𝛼, 𝛽, 𝜃, 𝜓) =

𝛼𝛽𝜃𝑔(𝑥,𝜓)

[1−𝐺(𝑥;𝜓)]2
𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
[1−𝑒

−𝛼(
𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽−1

[1−[1−𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽

]

𝜃−1

1−{1−[1−[1−𝑒
−𝛼(

𝐺(𝑥;𝜓)
1−𝐺(𝑥;𝜓)

)
]

𝛽

]

𝜃

}

 

      (11) 

3.3.Quantile Function  

The quantile function of the NOGEE- family is easily 
simulated by inverting the cdf (8) as follows:  if q  has a 

uniform (0,1)U  distribution, then the solution of the 

nonlinear equation is given by    

( )
( )

1
1

1

1

1
1

1 1 log

1 1
u

u

x F

u






−

   −    
 = = − −  
  − − 
     

  (12) 

The median of the NOGEE- family of distributions can 
be obtained by setting Q = 0.5 in (12) as: 

( )
( )

1
1

1

1

1 0.5
1

1 1 log

1 1 0.5

Med F






−

   −    
 = = − −  
  − − 
     

 (13) 

4. Sub-models of the NOGEE- family of distributions 

In this section, we provide some sub-models of the 
NOGEE- family. The cdf and pdf of the family of 
distributions were presented as follows. However, the two 
sub-models of this family of distributions with 
corresponding baseline of the Frechet (Fr) and Gompertz 
(Go) distributions show the new family's flexibility. 

4.1 The NOGEE-Fréchet (NOGEE-Fr) distribution 

Lemma1: The NOGEE-Fr distribution is defined from 

(8) by taking ( ) xG x e
−−=  and ( ) 1 xg x x e


−− − −= as the 

cdf and pdf of Fréchet distribution with parameters . 

The cdf and pdf of the (NOGEE-Fr) distribution are 
given as 

1
( ; , , , ) 1 1 1

x

x

e

e
F x e










   

−−

−−

 
 −
 
− 

  
   

= − − −  
  

   

 (14) 

and 

𝑓(𝑥; 𝛼, 𝛽, 𝜃, 𝜎) =
𝛼𝛽𝜃𝜎𝑥−(𝜎+1)𝑒−𝑥

−𝜎

[1−𝑒−𝑥
−𝜎
]
2 𝑒

−𝛼(
𝑒−𝑥

−𝜎

1−𝑒−𝑥
−𝜎)

[1 −

𝑒
−𝛼(

𝑒−𝑥
−𝜎

1−𝑒−𝑥
−𝜎)
]

𝛽−1

{1 − [1 − 𝑒
−𝛼(

𝑒−𝑥
−𝜎

1−𝑒−𝑥
−𝜎)
]

𝛽

}

𝜃−1

 (15) 

where 0   is scale parameter and 0,   0   and 

0   are shape parameters. 

 

Figure 1: Plots of cdf and pdf of the NOGEE-Fr distribution for different parameter values. 

4.1.1 The Survival function of NOGEE-Fr distribution 
is given by 

 

1
( ; , , , ) 1 1 1 1

x

x

e

e
S x e









   

−−

−−

 
 −
 
− 

        = − − − −          

  (16) 

4.1.2 The hazard rate function of NOGEE – Fr 
distribution is given by 

𝜏(𝑥; 𝛼, 𝛽, 𝜃, 𝜎) =
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      (17) 
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Figure 2: Plots of the survival function and hazard function of the NOGEE-Fr distribution for different parameter 
values. 

4.2 The NOGEE-Gompertz (NOGEE-Go) 
distribution   

Lemma 2: The NOGEE-G distribution is defined from 

(8) by taking ( )
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distribution with parameters  . 
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and 
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Figure 3: Plots of cdf and pdf of the NOGEE-Go distribution for different parameter values. 
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4.2.1The Survival function of NOGEE-Go distribution is given by 

𝑆(𝑥; 𝛼, 𝛽, 𝜃, 𝜎) = 1 −
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      (20) 

4.2.2 The hazard rate function of NOGEE – Go distribution is given by 

𝜏(𝑥; 𝛼, 𝛽, 𝜃, 𝜎) =
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Figure 4: Plots of the survival function and hazard function of the NOGEE-Go distribution for different parameter 
values. 

5 Parameter Estimation 

This section will estimate the derivation of unknown 
parameters of the NOGEE – family of distributions using 
the Maximum Likelihood Estimators.  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 to be a random sample of size n from 

NOGEE – (𝜉), where ( ), , ,    , is the parameter 

function 𝐿 of the probability density function given as: 
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To obtain the maximum likelihood estimates of the 

parameters , , ,    , we partially differentiate (22) with 

respect to the parameters , ,    and . This gives: 
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  (26) 

Since the solution to the above non-linear equations (23) - (26) cannot be solved analytically, a numerical solution is 
applied by the Newton-Raphon technique.  

5.1 Applications to real-life data sets 
This section will fit the NOGEE-Fr distribution to two 
real-life data sets to demonstrate its applicability and 
flexibility. The goodness of fit of NOGEE-Fr distribution 
would be compared with five models comprising the 
baseline distribution, namely, Kumaraswamy Fr (KFr) 
distribution, exponentiated Fr (EFr) distribution, 
Transmuted Fr (TFr), two parameters Fr (2Fr) distribution 
and one parameter Fr (1Fr) distribution. The model 
comparison would be based on the minimized log-
likelihood estimate and the following information 
statistics: Akaike information criterion (AIC) and Bayesian 
information criterion (BIC). The model with the smallest 

minimized log-likelihood and information statistics value 
is the best.  
Data set 1: represents the survival times (in days) of 72 
guinea pigs infected with virulent tubercle bacilli, observed 
and reported by Bjerkedal (1960). The data are given as:  
0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 
1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 
1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 
1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 
1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 
2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 
3.61, 4.02, 4.32, 4.58, 5.55. 

 
Table 1: The models' MLEs and performance requirements based on data set 1 

Models ̂  ̂  ̂  ̂  ll  AIC BIC 

NOGEE-Fr 2.2615 109.7045 19.1686 0.1463 -94.4668 196.9337 206.0403 

KFr 1.6209 0.4309 1.9751 0.0966 -95.3479 198.6959 207.8025 

EFr 54.4861        - 0.4785 167.5938 -105.6273 217.2547 224.0847 

TFr 0.6830 -0.9110 1.3157      - -112.6363 231.2725 233.8259 

2Fr 1.0585 1.1730      -      - -118.1660 240.3320 244.8854 

1Fr        -       -      - 1.1871 -118.3069 238.6138 240.8905 
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Figure 5: Histogram and empirical density plots for data set 1 
Data set 2: was given by Lee (1992), and it represents the survival times of one hundred and twenty-one (121) patients 
with breast cancer obtained from a large hospital in a period from 1929 to 1938.: The data set is as follows:  
0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 1
6.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31
.0, 1.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 
44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 6
2.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 1
17.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0. 

Table 2: The models' MLEs and performance requirements based on data set 2 

Models ̂  ̂  ̂  ̂  ll  AIC BIC 

NOGEEFr 0.0363 0.1184 0.4986 1.3668 -579.2023 1166.4050 1177.5880 

KFr 0.0003 0.1654 0.4824 0.0015 -833.4187 1674.8370 1686.0210 

EFr 549.4801        - 0.3725 13.0551 -599.4801 1204.9600 1213.3480 

TFr 1.1629 -1.4265 0.4419      - -660.4618 1326.9240 1330.5150 

2Fr 16.8999 0.6523      -      - -636.7940 1277.5880 1283.1800 

1Fr        -       -      - 0.3836 -727.5931 1457.1860 1459.9820 

 

 

Figure 6: Histogram and empirical density plots for data set 2 
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5.3 Results 
NOGEE-Fr and NOGEE-Go distributions are the two 
sub-models proposed in this study. The MLEs and the 
performance of the parameters are calculated. For the 
distributions, NOGEE-Fr distribution is used to test the 
goodness-of-fit of the proposed new family. The model 
with smaller values of these statistics is thought to be the 
best model for comparison. Table 1 and Table 2 provide 
the estimated values and the results for each parameter of 
the NOGEE-Fr distribution and that of its sub-models. 
According to Tables 1 and 2, the NOGEE-Fr distribution 
fits the data better compared to other distributions. As a 

result, the NOGEE-Fr distribution best fits this data and is 
a very strong competitor to other distributions.  
CONCLUSION 
In this paper, we proposed a new family of distributions, 
called the New Odd Generalized Exponentiated 
Exponential-G family of distributions. We use two 
applications on a set of real-life data to compare the 
performance of the NOGEE-Fr with other existing 
distributions. The analysis results showed that the 
NOGEE-Fr distribution is the best distribution for 
modeling these type of data sets compared to other 
distributions used in this paper.
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