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ABSTRACT

A multistep collocation approach is used to derive a single-step modified block hybrid
method (MBHM) of order five for solving general second-order initial-value problems
(IVPs) of ordinary differential equations (ODEs). The new method's basic convetgence
property is established, and its numerical accuracy is demonstrated using numerical
examples from the literature. The new method outperforms similar methods in terms of
accuracy, earning it a recommendation as a likely candidate for solving general second-order

ODEs.

INTRODUCTION

Consider the general second-order initial value-problem
(IVP) in ordinary differential equations (ODEs) of the
form

y'=fl,yy)y@=ay@=p o)

on the interval a < x < b, a, B € R, where fsatisfies a
Lipschitz condition which guarantees the existence and
uniqueness of the solution of (1). Naturally, (1) occurs
frequently in the mathematical modelling of ODE:s in a
variety of applications, including engineering and science
studies such as astrophysics, biology, chemical
engineering, chemical kinetics, circuit and control theory
(Jator, 2010a; Jator, 2010b). According to Jator (2010b),
while most direct methods for solving (1) are linear
multistep  (LMM), multistep  collocation  (MC),
multiderivative, exponentially-fitting and
trigonometrically-fitting, and  Runge-Kutta-Nystrom
methods, implementing some of them requires the use of
predictor-corrector (PC) approach, which takes more
computer time and thus increases computational
burdens. Another approach is to reduce (1) to a system
of first-order ODEs and use methods specifically
designed for the resulting first-order systems, which
increases computational burdens.

While hybrid methods were also used in solving (1), their
catlier application became pronounced as they overcame
the popular ‘Dahlquist batrier theorem’, but the
introduction of ‘off-grid’ points, which is a characteristic

Block hybrid methods, modified
methods, multistep collocation,
second-order, ordinary differential
equations

e
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of hybrid methods, increases additional computer
burdens in the PC approach by users.

The preceding establishes the tone for more research by
authors such as Jator (2007) and Jator and Li (2009) to
overcome the shortcomings among other potential
interests. The motivation for this research stems from
the works of Adesanya, Alkali and Sunday (2014),
Abdelrahim and Omar (20106), and Ogunniran, Tijani,
Adedokun and Kareem (2022) as well as the references
therein. This particular research is anchored by the
benefit of single-step methods, which by themselves are
self-starting, and the usage of block methods as a
collection of simultaneous integrators without relying on
any way to generate starting values. Additionally, the
methodology used in the recent studies by Adee,
Kumleng and Patrick (2022), Adee and Yunusa (2022)
and Singla, Singh, Ramos and Kanwar, (2022), in which
block hybrid methods were implemented as a collection
of numerical integrators for first-order IVPs of ODEs on
non-ovetlapping subintervals, is employed in this study.

MATERIALS AND METHODS

Development of the single-step modified block
hybrid method (MBHM)

We obtain a continuous hybrid linear method, as Adee ez
al. (2022) and Adesanya ¢z al. (2014) did, by considering a
polynomial of the form :
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. 12 4 .
y(x) = ZGZCY ;X! @) Interpolating (2) at Xp4y, 7 = 0,7, 7, < and collocating
e (B)at X, M= % ,% gives a system of nonlinear

Differentiating (2) twice gives equations of the form

6

" i(i -2 ' AX =

y' () =Y j(i-Dax 2= f(xy,y) 3) U @

=0 Where:

A:[ai’aZ’a3’a4’aS’a6’a7]T’ U :[yn’yn+%’yn+%’yn+%’yn+§’ fn+§’ fn+§]T and

1 x x X X X° x°
1 n+i §+i Xr31+% X:+l n+i Xr?%
1 n+2 T?‘F% r?+§ :+§ X:+§ r?+%
X=1 n+d n2+g ig :+g n+d r?+%
1 Xn+5 Xs# Xr?# X:Jr‘é X:+é X:+%
0 0 2 6x, 20x, 20x, 30x,
0 0 2 6x, 12¢, 12¢. 12x,
Solving (4) for the unknowns &;, i =1(1)7 and substituting them into (2) gives the continuous hybrid linear method of

the form
y(x):Zai(x)yn+i+h2(2ﬂi(x)fn+i] (5)

Where: @i (x),i = 0(%) g,ﬁg(x),ﬁg(x) are all expressed in terms of 7 = X=X, as follows:
5 5

a,(r) = 96% (96h°® —1600h°z +10350n*z* —33125h°7° + 55625h*z* — 46875hz° +156257°)
a,(t) = 6_:16 (648h°® —6750h*7 + 26625hz* —50000h°z® + 45000hz* —156257°)
a,(7) = —16% (2664h°> —30150h*7 +123625h%? — 238125h°7% + 219375h7* — 781257°)

o, (7) = # (424h° — 4950h*7 + 21125h°% — 42500h%z° + 41250hz* —156257°)

a,(r) = %Thﬁ (432h° — 4050h*z +10875h** — 4375h°7° —16875h* +15625¢°)
B,(z) = —ﬁ (504h° —5850h*z + 24625h%72 — 48125h?7% + 44375hr* —156257°)
Bi(7) = —ﬁ (24h* — 2503z +875h?72 —1250h7° + 6257*)
Evaluating (5) at 7=h gives the discrete scheme
12h? 12h?
=y, 17y, +46y_, —46y . +17y , fl.— fooe 6
yn+l yn yn+g + yn+g yn+g + yn+g + 25 n+2 25 n+2 ( )

Differentiating (5) yields
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Y= (x n+h2(zﬂ. j @

where

a,'(r) = (—1600h°® + 20700h*z —99375h37? 4+ 222500h?7* — 234375hz* +937507°)
0 9 h6

oy () = 6h6 (648h® —13500h*z + 79875h%z%? —200000h?z°® + 225000hz* —937507°)

a, (7)) = —20100h*r +123625h37% —317500h?z® +365625hz* —1562507°)

a, () = 6—:]6 (424h® —9900h*z + 63375h%z2 —170000h27® + 206250hz* —937507°)

a,'(z) = 961h6 (432h° —8100h*z +32625h%72 —17500h27° —84375hz* +937507°)
. '(r) = —— - (504h° —11700h*z + 73875h* —192500h%z° + 221875hs* —937507°)
200h*
B (@)=~ (24h* —500h%7 + 2625h%z2 —5000hz° + 31257%)

Evaluating (7) at T = 0, 5 25h ] 35h ] 45h and h with y'= g yields

~150hg, =378h*f,_, +72h?f _, + 2500y, —16200y, , + 24975y, . —10600y, . — 675y, , ®)
150hg, ., =72h*f , +18h*f . —3175y ., +5400y, , —2025y_,—200y, , )
—600hg, , = 132h? f ..+ 48h? f,..+125y —2800y,, , +7650y,6 , —4400y ,—575y ., (10)

600hg_,, =108h*f_ , +72h*f _ +125y —2700y, , +1350y_, +1900y ,—675y , (11
—150hg,,, =18h*f , +72h*f ., —200y, , —2025y, , +5400y, ,—3175y, , (12)

150hg,,, =1272h*f , —822h*f_ . +2500y, —43175y_, +104400y, , —90025y .+ 26300y (13)

2 4
n+5 n+5

Further differentiating (7) yields

y"(x) =iz;:a; "(X)y (iﬁ " 5) (14)

i=2

url =

where

oy "(2) = Lﬁ (20700h* —198750h°7 + 667500h?z2 —937500hz* + 4687507%)

9
a, "(z) = 5 (~13500h* +159750h*z — 600000h?*z* +900000hz* — 4687507 ")
a, "(z) =~ 6h6( 20100h* + 247250h%*z —952500h?z? +1462500hz® —7812507%)
o, "(r)— = (—9900h* +126750h°z —510000h*z? +825000hz°® — 4687507")
a, () = S6n 6( 8100h* + 65250h°*s —52500h?z? —337500hz° + 4687507")
B (1) = zoéh“( 11700h* +147750h%z —577500h?72 +887500hz® —4687507¢*)
By (7)) =~ Oh3( —500h® + 5250h?7 —15000hz? +125007°)

10
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Evaluating (14) at T = % ' %! h gives

1
h*f,.. = 5 (44h”f,, +8n*f _, —75y, ~1200y, , + 2550y, , ~1200y, . ~75Y, .) (15)
h*f ., = % (28hf_, —80h?f_, +75y, —1200y, , +4650y, , —6000y_, +2475y ) (16)

h2f = % (908h*f_, —360h*f , +1725y, —30000y_, +66150y_, —49200y, ,+11325y ,) (17)

The modified block method is now formed by combining the discrete methods in (6), (8)-(14), (15)-(17).
Modified block method

The modified block method for the independent evaluation of unknown parameters, as desctibed by Fatunla (1995) and
Awoyemi ¢f al. (2011), is of the form

ARNY (™ = h*By™ +h**CF(Y, ) (18)
where

(n) = (yn+1! yn+2 ) yn+3! yn+4! yn+l) y(n) = (yn_gr yn_%’ yn_%, yn_%’ Yo gn_é: gn_%a gn_%’ gn_%’ gn)T >

F(Ym) = (fn, fm%, fn+%, fn+§' fm%, fn+1), N is the order of the derivative of (7), A is the order of the differential

equation and / is the power of h relative to the derivative of the differential equation where A Band C are constant
coefficient matrices from the block method (6), (8)-(14), (15)-(17). Normalizing (18) gives the coefficient matrices as

R -1
2 1
1 0000O0OO0OO0OO0DO 0000100001 e A o en
01 0 0O0O0O0OO0ODOO0OTDO 000010000 & 36000 288 2250 6000 1125
5 53 409 —56 91 —134
00100O0O0OO0OO0OTGO 0000100002 2250 2250 225 375 1125
5 147 1203 —177 18 -3 | (19)
000100O0O0OOOTO0T Of-> 000010000 2 4000 4000 500 200 500
N [0000100000 1000010000 :¢ ci_| mm  um mE S ms
looooo10000 "Joooooo00001 =B S A N
0000001000 0000000001 3500 3000 isoo. 150 1009
0000000100 0000000001 W qe  me B =
000000O0OO010 00000000O0O0?1 ALz =B L £
000O0OOO0OOOTOOT1 0000O0O0O0CO0OTU0?1 a5 234 -6 &8 S22
Substituting (19) into (1 8) gives the individual hybrid methods
You =Y, +hg, +4:19f,, +155f , —160f ,+210f ,—80f ,) (20)

Yoir = Yo + N0, + 385 (367 f,,, +2375f, , —3952f , +3786f, , ~1856f, .) (1)

Yoz = Yo +2h0, + 555 (53, +409f , —560f . +546f , —268f ,) 22)
Yooy = Yo +2hg, + 25 (491, +401f, , —472f , +510f , —248f ) 23)
Yoos = Yo +2hg, + &5 (71, +59f, , —64f , +78f , —35f .) (24)
9nn = O +14 9T, +85f , -70f ., +120f ,-10f .) (25)
9, = On+3m (2511, +1001f , -2774f , +2616f ,-1274f ) (26)
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Op: = Oy +75(29f,,+269f ,-266f ,+294f ,-146f ,) 27)
O,: = 0, +6Of ,+79f ,-66f ,+104f . -46f ,) (28)
9,. =9, +2(7f,,+67f ,-58f[n+2/5]+102f ,-28f ,) (29)

The methods (20)-(29) comprise the single-step modified
block hybrid method, abbreviated as MBHM in this
study.

RESULTS
Analysis of basic properties of the method

To fully understand this section, some useful definitions
that can be found in the literature are given below:
Defnition 1: The linear difference operator L associated
with (18) is defined as

LIy(x);h]=h*AY,” =h*By. +h*CF(Y,)  (0)

where Yy(X)is an atbitrary test function contjnuously

and F(Y )

differentiable on [a b] Expandmg

-376 -19 -19 -14 -51 -14

component-wise in the Taylor series and collecting terms

in powers of h gives
Lly(x):h]= S ChOy(x) (D)
i=0

where a,l =0,1,...

Definition 2: The block method (18) and its associated
linear difference operator (30) are said to have order P

if C =0,r < p+1land Cp+2

constants of the method. The analysis of the MBHM
(20)-(29) shows that its order

p=[55,555,55,55,5]" with the error constant

are vectors.

# 0 are called the error

T

C — -61 -1231 -71 -123
p+2 3150000 * 393750000 * 9843750 ' 10937500 ’

Definition 3: The block method (18) is said to be zero
stable as N —> O if its first characteristic polynomial

p(z) =det[zA'-B"|=z"*(z-1)* =0 (32)
where Tis the order of the matrices A" and B' and the
roots  Lg,S = 1(1)10 of (32) satisfy the condition
|2,| <1and those roots with 2| =1 have multiplicity not

exceeding the order of the differential equation.
The new method MBHM (20)-(29) satisfies the above
conditions since from (18), r =10 and g=2. Thus,

det[zA'-B]=2°(z-1)*=0. The new block
method s zero-stable as the roots of
det[zA-B|=2°(z-1)" =0 satisfy the above

definition, hence convergent as it is both zero-stable and
consistent.

Numerical excperiments

In this section, we compare the results of some general
second-order initial value problems solved with the new
method (MBHM) to those obtained using some existing
methods in the literature. We evaluate the performance

24609375 ' /900000 ' 900000 ' 703125 ' 2500000 ' 703125

of MBHM in terms of absolute errors, as shown in
Tables 1-3, where we have used the notation

a(b) = axlOb. We use the following code names for

the various methods used in the comparison to keep
things simple:

MBNM: Eq. (20)-(29) of this research with order
p=>5.

AAS (2014): Adesanya ez al. (2014) with order P = 5

AO (2016): Abdelrahim and Omar (20106).
OTAK (2022): Ogunniran ¢ al. (2022) with order

p="7.
Problem 1: (Source: Adesanya ez al. 2014).
nonlinear initial value

1 1
" x(y')? =0, y(0)=1 y'(0)==,h=—,0<x<1
y"-x(y’) y(0) =1, y'(0) >N =100

1 2+ X
X)=1+=1In . Table 1
y(X) > (2 j

Consider the
problem

Exact solution:

— X
contrasts the findings from AO (2016) with those from
MBHM (20)- (29), and the lesser errors found there
suggest greater accuracy than in AO (2010), all of order

p=>5.

Adee and Kumleng /USci, 1(2): 08 — 14, December 2022 12
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Table 1: Comparison of the absolute errors of the MBHM with Adesanya ez 2/ (2014) for problem 1.

X Exact result y(x) MBHM Result Y, (X) I(Ezrgiz 21;1) MBHM ](Ezr(ﬁ)i) in AAS
0.1 1.0500417292784912682 1.0500417292784913335 6.531000(-17) 2.375877(-14)
0.2 1.1003353477310755806 1.1003353477310758422 2.616100(-16) 1.958433(-13)
0.3 1.1511404359364668053 1.1511404359364674275 6.222100(-16) 6.901146(-13)
0.4 1.2027325540540821910 1.2027325540540834025 1.211510(-15) 1.708411(-12)
0.5 1.2554128118829953416 1.2554128118829974847 2.143110(-15) 3.496758(-12)
0.6 1.3095196042031117155 1.3095196042031153355 3.620010(-15) 6.361800(-12)
0.7 1.3654437542713961691 1.3654437542714021577 5.988610(-15) 1.069567(-11)
0.8 1.4236489301936018068 1.4236489301936116953 9.888510(-15) 1.701372(-11)
0.9 1.4847002785940517416 1.4847002785940682823 1.654071(-14) 2.601008(-11)
1.0 1.5493061443340548457 1.5493061443340832461 2.840041(-14) 3.866063(-11)

Problem  2: (Source:

equations

' "= _e_xyza yl(o) =1, Y1 I(O) =0, h=0.01

Abdelrahim and Omar, 20106).
Consider the system of second-order ordinary differential

Exact solution:  Y; (X) =C0SX, Y, (X) =e* cosX.
Table 2 compares the results in AO (2016) and MBHM

(20)-(29). Again, the smaller errors in the MBHM

demonstrate an improvement in accuracy over AO

Y, t= Zexyl , Y, (O) =1, Y, '(0) =1

(2016).

Table 2: Comparison of the absolute errors of the MBHM with Abdelrahim and Omar (2016) for problem 2.

Exact solution of Y,

MBHM solution of Y;

Error of Y; in
MBHM (20)-(29)

Error of Y; in AO
(2016)

0.2
0.4
0.6
0.8
1.0

0.980066577841241630
0.921060994002884990
0.825335614909678110
0.69670670934716505

0.540302305868139210

0.98006657784124126591
0.92106099400288340625
0.82533561490967467453
0.69670670934715917733
0.54030230586813073067

-3.6521 <x107*®

-1.67655%<107*°
-3.62271 <107*®
-6.24359 <107*°
-8.98673 <107*°

3.348466x107°
3.276545x107°
1.332214x1077
3.546280x10~7

7.355177x1077

Problem 3: (Source: Ogunniran ez al. 2016). Consider the
Linear singular non-homogeneous Lane-Emden equation

y"+§y'+xy: X* - X" +44x*-30x, y(0)=0, y'(0) =0,h:l

32

Exact solution: y(x) =x*—x>. Table 3 compares the

outcomes of OTAK (2022) and MBHM (20)- (29).
Again, the smaller errors in the MBHM indicate that,

despite its order P = S, it is more accurate than the

higher order P =7 in OTAK (2022).

Table 3: Comparison of the absolute errors of the MBHM with Ogunniran ¢ a/., (2022) for problem 3.

X Exact solution MBHM result Error in MBHM (20)-(29) Error in OTAK (2022)
0.03125 -0.00002956390381 -0.00002956390380 1.000e-14 7.0000e-14

0.09375 -0.00074672698975 -0.00074672698974 1.000e-13 0.0000

0.15625 -0.00321865081787 -0.00321865081787 0.0000 0.0000

0.21875 -0.00817775726318 -0.00817775726318 0.0000 3.0000e-12

0.28125 -0.01599025726318 -0.01599025726318 0.0000 0.0000

0.34375 -0.02665615081787 -0.02665615081787 0.0000 0.0000

0.40625 -0.03980922698975 -0.03980922698976 0.0000 0.0000
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X Exact solution MBHM result Error in MBHM (20)-(29)  Etrror in OTAK (2022)
0.46875 -0.05471706390381 -0.05471706390381 0.0000 1.0000e-11

0.53125 -0.07028102874756 -0.07028102874756 0.0000 3.0000e-11

0.59375 -0.08503627777100 -0.08503627777099 0.0000 1.0000e-11

0.65625 -0.09715175628662 -0.09715175628663 0.0000 1.0000e-11

0.71875 -0.10443019866943 -0.10443019866943 0.0000 0.0000

0.78125 -0.10430812835693 -0.10430812835694 0.0000 0.0000

0.84375 -0.09385585784912 -0.09385585784912 0.0000 1.0000e-10

0.90625 -0.06977748870850 -0.06977748870850 0.0000 1.1000e-10

0.96875 -0.028410911560006 -0.028410911560006 0.0000 1.0000e-10

CONCLUSION Second Order Ordinary Differential Equations.

We developed a new single-step hybrid method of order
five in this study and implemented it as a set of numerical
integrators using the block approach for the direct
solution of general second-order ordinary differential
equations. The new block hybrid technique converges
because it is consistent and zero-table. Indeed, the block
approach yielded the numerical solution at all of the
desired points of interest at the same time, and the
performance of the new method indicated that the
solution was more accurate than similar existing methods
in the literature; thus, we recommend it for the direct
solution of second-order ordinary differential equations.
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