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INTRODUCTION
Deterioration refers to damage, spoilage, dryness, 

vaporisation, etc., that result in a decrease in the usefulness 

of the commodity.  The assumption in the classical EOQ 

models that items in the stock preserve their original 

characteristics/conditions forever may not always apply to 

most physical goods (i.e. which deteriorate with time due 

to obsolesce, loss of utility, decay, damage, degradation 

and decrease in their usefulness).  Deterioration of goods 

is an unavoidable phenomenon, and its study plays an 

essential role in any business organisation's smooth and 

efficient running. Researchers such as Geetha and 

Udayakumar (2016), Babangida and Baraya (2020) 

developed an inventory model with non-instantaneous 

deterioration under various assumptions. 

The classical EOQ model assumes that customers must 
pay for the goods purchased as soon as it is received.  
However, in a real market situation, the supplier allows the 

customers to pay their debt within a specific period, 
known as the trade credit period.  The retailer can 
accumulate revenues by selling items and by earning 
interest.  The concept of trade credit in the inventory 
literature was first introduced by Haley and Higgins 
(1973).  Goyal (1985) was the first to propose an EOQ 
model for non-decaying items with a constant demand 
rate under permissible delay in payments and assumed that 
the unit purchasing cost and selling price per unit are the 
same.  Later, Aggarwal and Jaggi (1995) extended Goyal’s 
(1985) model to develop an inventory model for 
deteriorating items with a constant demand rate under 
permissible payment delays.  Soni and Chauhan (2018) 
investigated a joint pricing, inventory, and preservation 
decision-making problem for deteriorating items subject 
to stochastic demand and promotional effort.  The 
generalised price-dependent stochastic demand, time-
proportional deterioration, and partial backlogging rates 
are used to model the inventory system.  The objective is 
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ABSTRACT 
This research developed an economic order quantity model for non-instantaneous 
deteriorating items with two-phase demand rates, linear holding cost, constant partial 
backlogging rate and two-level pricing strategies under trade credit policy.  It is assumed that 
the holding cost is linear time-dependent, the unit selling price before deterioration sets in is 
greater than that after deterioration sets and the demand rate before deterioration sets in is 
considered as continuous time-dependent quadratic, after which it is considered as constant 
up to when the inventory is completely exhausted.  Shortages are allowed and partially 
backlogged.  The purpose of the model is to determine the optimal time with positive 
inventory, cycle length and order quantity such that the total profit of the inventory system 
has a maximum value.  The necessary and sufficient conditions for the existence and 
uniqueness of the optimal solutions have been established.  Some numerical examples have 
been given to illustrate the theoretical result of the model.  Sensitivity analysis of some model 
parameters on the decision variables has been carried out and suggestions towards maximising 

the total profit were also given. , it is seen that the higher the rate of deterioration (𝜃), the 

lower the optimal time with positive inventory (𝑡1
∗), cycle length (𝑇∗), order quantity (𝐸𝑂𝑄∗) 

and the total profit 𝑇𝑃(𝑇∗) and vice versa.  This implies that the retailer needs to take all the 
necessary measures to avoid or reduce deterioration to maximise higher profit.  Based on the 
results application of the model led to an increase in revenue. 
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to find the optimal pricing, replenishment, and 
preservation technology investment strategies while 
maximising the total profit per unit of time.  
Mohsen et al.  (2018) proposed an economic order 
quantity model for non-instantaneous deteriorating items 
under a hybrid payment schedule.  This payment schedule 
comprises a multiple advanced payment scheme and a 
delayed payment plan.  Here, a retailer must prepay a 
portion of the purchasing cost to his supplier during the 
order delivery lead time, in several instalments. 
Under a trade credit policy, Umakanta et al. (2018) 
developed an inventory model for deteriorating items with 
a controllable deterioration rate (using preservation 
technology).  As in practical scenarios, the demand for an 
item is directly associated with its selling price. Keeping 
this in mind, it is assumed to be a price-dependent 
demand.  
Bhaula et al. (2019) derived an optimal ordering policy for 
non-instantaneously deteriorating items under successive 
price discounts with payment delays.  Here, successive 
price discounts are a strategy to sell almost all the items 
before decomposition.  The cause of implementing this 
concept in the model is that about 25% of vegetables and 
fruits in India decayed before selling due to a lack of 
facilities and awareness of business strategies, although 
poverty is a vital factor.  Thus, we propose to offer 
successive price discounts of 20% and 40% after selling 
the stock up to 50% and 90%, respectively, to raise the 
customer’s inflow and rotate the cycle early to avoid more 
deterioration. 
Later researchers such as Babangida and Baraya [(2018), 
(2019), (2022), (2021a)], Tripathy and Sharma (2022), 
Sheng and Jinn (2014), Majunder and Kumar (2019) and 
so on develop inventory models with trade credit policy 
under various assumptions. 
In the classical inventory model, shortages are not allowed.  
However, sometimes, customers’ demands cannot be 
fulfilled by the supplier from the current stocks. This 
situation is known as stock out or shortage condition.  
However, when all the customers are willing to wait for 
the backorder, the situation is referred to as complete 
backlogging.  Researchers such as Mahato and Mahata 
(2023), Tiwari et al. (2022), Choudhury et al. (2013), 
Babangida and Baraya [(2019), (2020)] and so on 
developed inventory models with complete backlogging 
under various assumptions. 
Moreover, when certain customers constantly wait for the 
supplier to supply the goods, the situation is called 
constant partial backlogging.  For example, the customers 
who constantly wait for the backorder might be the 
supplier's close friends and relatives.  Many researchers, 
such as Baraya and Sani (2013), Bello and Baraya (2018), 
Babangida and Baraya (2021b), and so on, developed 
inventory models with constant partial backlogging rates 
under various assumptions. Furthermore, there are 
scenarios whereby the customers wait for the backorder 
based on the time taken before the next replenishment, 
known as the time-dependent partial backlogging rate.  
Researchers such as Babangida and Baraya (2022), Geetha 
and Uthayakumar (2010), Babangida et al. (2023), 

Umakanta and Chaitanya (2012), Sarkar and Sarkar (2013) 
developed an inventory model with time-dependent 
partial backlogging under various assumption. 
Babangida and Baraya (2021a) developed an EOQ model 
for non-instantaneous deteriorating items with two-phase 
demand rates and two-level pricing strategies under trade 
credit policy.  It is assumed that the unit-selling price 
before deterioration is greater than after deterioration.  In 
addition, the demand rate before deterioration sets in is 
assumed to be continuous time-dependent quadratic and 
is considered constant after deterioration sets in.  Holding 
cost is considered as constant and shortages are not 
allowed.  However, in real-life situations, the holding cost 
of many items may be dynamic as there is a change in the 
time value of money and price index.  Therefore, the 
model is extended by considering linear holding cost and 
constant partial backlogging rate. 
The purpose of the model is to determine the optimal time 
with positive inventory, cycle length and order quantity 
such that the total profit of the inventory system has a 
maximum value. 
Moreover, if the model is accepted, it will help retailers to 
increase cash flow, encourage sales, reduce the cost of 
holding stock, attract new customers, decrease the levels 
of inventory loss due to deterioration, boost market share 
or retain customers, increase the cycle length, spread the 
ordering cost over a long period, reduce the total variable 
cost of the inventory and generate more revenue. 
This paper model considers an EOQ model for non-
instantaneous deteriorating items with two phase demand 
rate, two level pricing strategies, linear holding cost and 
constant partial backlogging rate under trade credit policy.  
The demand rate before deterioration sets in is assumed 
to be time-dependent quadratic, which is considered 
constant after deterioration sets in.  It is also assumed that 
the unit selling price is different before and after 
deterioration sets in.  The holding cost is assumed to be 
linear time-dependent.  Shortages are allowed with a 
constant partial backlogging rate. 

NOTATIONS AND ASSUMPTIONS 

Notation: 

The inventory system is developed using the following 
notations. 

 𝐴     The fixed ordering cost per order 

𝐶     The purchasing cost per unit time 

𝑆1     Unit selling price during the interval [0, 𝑡𝑑] 

𝑆2      Unit selling price during the interval[𝑡𝑑 , 𝑇], where 

𝑆1 > 𝑆2 > 𝐶 

𝐶𝑏     Shortage cost per unit time 

𝐼𝐶      The interest charged in stock by the supplier 

𝐼𝑒     The interest earned 

𝑀     The trade credit period (in year for settling account) 
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𝜃     The constant deterioration rate function 

𝑡𝑑     The length of time in which the product exhibit more 
deterioration 

𝑡1     Length of time in which the inventory has no 
shortage 

𝑇      The length of replenishment cycle time 

𝑄𝑚    The maximum inventory level 

𝐵𝑚     The backorder level during the shortage period 

𝑄      The order quantity during the cycle length i.e.𝑄 =
𝑄𝑚 + 𝐵𝑚 

 𝐶𝜋   Unit cost of lost sales per unit 

 𝛿      Backlogging parameter 

Assumptions 

In addition to assumptions 8 and 9, which are not 
considered in Babangida and Baraya (2021a), this model 
develops under the following assumptions, which have 
been adapted from the aforementioned research. 

1. The replenishment rate is infinite, i.e., the 
replenishment rate is instantaneous, and the lead time is 
zero. 

2. During the fixed period,𝑡𝑑 , there is no 
deterioration, and at the end of this period, the inventory 

item deteriorates at the rate 𝜃. 
3. There is no replacement or repair for 
deteriorating items. 
4. The demand rate before deterioration begins is 
assumed to be continuous time-dependent quadratic and 
is given by 

 𝑎 + 𝑏𝑡 + 𝑐𝑡2, where 𝑎 ≥ 0, 𝑏 ≠ 0, 𝑐 ≠ 0𝑐 ≠ 0. Here 𝑎 

is the initial demand rate, 𝑏 is the rate at which the demand 

rate changes and 𝑐 is the accelerated change in the demand 
rate. 
5. The demand rate after deterioration sets in is 

assumed to be constant and is given by 𝑑,𝑑 > 0. 

6. During the trade credit period 𝑀(0 < 𝑀 < 1), 
the account is not settled; generated sales revenue is 
deposited in an interest-bearing account.  At the end of 
the period, the retailer pays off all units bought and starts 
to pay the capital opportunity cost for the items in stock.  
No interest is earned after the trade credit period. 
7. The unit selling price is not the same as the unit 
purchasing cost.  It is assumed that the unit selling price 
before deterioration sets in is greater than that after 

deterioration sets in (𝑆1 > 𝑆2 > 𝐶). 
8. Shortages are allowed and partially backlogged. 

9. Holding cost 𝐶1(𝑡) per unit time is linear time-

dependent and is assumed to be 𝐶1(𝑡) = ℎ1 + ℎ2𝑡; where 

ℎ1 > 0and ℎ2 > 0. 
 

FORMULATION OF THE MODEL 

𝑄𝑚 units of items are ordered at the beginning of the cycle 

(i.e., at time 𝑡 = 0).  During the interval [0, 𝑡𝑑], the 

inventory level is depleting gradually due to market 

demand only and the demand rate is assumed to be time 

dependent quadratic.  At time interval   [𝑡𝑑 , 𝑡1], the 

inventory level is depleting due to the combined effects of 

customer demand and deterioration, and the demand rate 

reduces to 𝑑.  At time 𝑡 = 𝑡1, the inventory level depletes 

to zero.  Shortages occur at the time interval [𝑡1, 𝑇] and 

partially backlogged at the rate 𝛿, the behaviour of the 

inventory system is described in Figure 1 below: 

 

 

Figure 1: Graphical representation of the inventory system 
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During the time interval [0,  𝑡𝑑], the change of inventory at any time 𝑡 is represented by the following differential 

equations 

𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝑎 + 𝑏𝑡 + 𝑐𝑡2),                                                                                0 ≤ 𝑡 ≤  𝑡𝑑                                                      (1) 

with boundary conditions 𝐼1(0) =  𝑄𝑚 and 𝐼1(𝑡𝑑)  = 𝑄𝑑 . 

Graphical representation of the inventory system 

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃𝐼2(𝑡) = −𝑑,                                    𝑡𝑑 ≤ 𝑡 ≤  𝑡1                                                                                                        (2) 

With boundary condition 𝐼2(𝑡1) =  0 at 𝑡 = 𝑡1 and  𝐼2(𝑡𝑑) =  𝑄𝑑 at 𝑡 = 𝑡𝑑 
 𝑑𝐼3(𝑡)

𝑑𝑡
= −𝛿𝑑,                                                                                     𝑡1 ≤ 𝑡 ≤  𝑇                                                                          (3) 

With the boundary condition  𝐼3(𝑡1) =  0 at 𝑡 = 𝑡1 and  𝐼3(𝑡1) =  0 at 𝑡 = 𝑡1. 

The solution of equations (1), (2) and (3) are respectively given by     

𝐼1(𝑡) = 𝑎(𝑡𝑑 − 𝑡) +
𝑏

2
(𝑡𝑑

2 − 𝑡2) +
𝑐

3
(𝑡𝑑

3 − 𝑡3) + 𝑄𝑑                  0 ≤ 𝑡 ≤  𝑡𝑑                                                                      (4) 

𝐼2(𝑡) =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡) − 1),                                                 𝑡𝑑 ≤ 𝑡 ≤  𝑡1                                                                                       (5) 

𝐼3(𝑡) = 𝛿𝑑(𝑡1 − 𝑡)                                                   𝑡1 ≤ 𝑡 ≤  𝑇                                                                                                 (6) 

From Figure 1, using the condition 𝐼1(0) =  𝑄𝑚 in equation (4), the maximum stock level is given by 

𝑄𝑚 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)                                                                                                                     (7) 

Similarly, the value of 𝑄𝑑 can be derived at 𝑡 = 𝑡𝑑, then it follows from equation (5) that 

𝑄𝑑 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)                                                                                                                                                                 (8) 

The maximum backordered inventory 𝐵𝑚 is obtained at 𝑡 = 𝑇, and then from equation (6), it follows that 

𝐵𝑚 = 𝑑𝛿(𝑇 − 𝑡1)                                                                                                                                                                           (9) 

Therefore, the order size 𝑄 during the period [0, 𝑇] is obtained as the sum of maximum inventory level 𝑄𝑚 and maximum 

backordered inventory 𝐵𝑚 

𝑄 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝛿𝑑(𝑇 − 𝑡1)                                                                                            (10) 

(i) The total demand during the period  [𝑡𝑑 ,  𝑡1] is given by    

𝐷𝑀 = ∫ 𝑑
𝑡1

𝑡𝑑

𝑑𝑡 = 𝑑(𝑡1 − 𝑡𝑑)                                                                                                                                                      (11) 

 

(ii) The total number of deteriorated items per cycle is given by 

𝐷𝑃 =
𝑑

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)]                                                                                                                                      (12) 

(iii) Total number of items sold 

     𝑆𝑁 = 𝑄 − 𝐷𝑃 = (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑑(𝑡1 − 𝑡𝑑) + 𝛿𝑑(𝑇 − 𝑡1)                                                                          (13) 

(iv) Sale revenue (SR) 

𝑆𝑅 = 𝑆1 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

] + 𝑆2 [∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

+ ∫ 𝛿𝑑𝑑𝑡
𝑇

𝑡1

] 

= 𝑆1 (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + 𝑆2𝛿𝑑(𝑇 − 𝑡1)                                                                                              (14) 

(v) Purchasing cost (PC) 

𝑃𝐶 = 𝐶𝑄 = 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝛿𝑑(𝑇 − 𝑡1)]                                                                  (15) 

(iv) The fixed ordering cost per order is given by 𝐴 

(v) The inventory holding cost for the entire cycle is given by 
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𝐶𝐻 = ∫ (ℎ1 + ℎ2𝑡)𝐼1(𝑡)𝑑𝑡
𝑡𝑑

0

+ ∫ (ℎ1 + ℎ2𝑡)𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

                                                                                                        (16) 

Substituting equations (4) and (5) into equation (16) 

𝐶𝐻 = ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

+ ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑)

−
𝑑𝑡1

2

2𝜃
]                                                                                                                                                             (17) 

(vi) The backordered cost per cycle is given by 

𝑆𝐶 = 𝐶𝑏 ∫ −𝐼3(𝑡)𝑑𝑡
𝑇

𝑡1

=
𝐶𝑏𝛿𝑑

2
(𝑇 − 𝑡1)2                                                                                                                                          (18) 

(vii) The opportunity cost per cycle due to lost sales is given by 

𝐿𝐶 = 𝐶𝜋 ∫ 𝑑(1 − 𝛿)𝑑𝑡
𝑇

𝑡1

= 𝐶𝜋𝑑(1 − 𝛿)(𝑇 − 𝑡1)                                                                                                                  (19) 

(vii) The total profit per unit time for a replenishment cycle (denoted by 𝑇𝑃(𝑡1 ,𝑇 ) is given by 

𝑇𝑃(𝑡1 ,𝑇 ) = {

𝑇𝑃1(𝑡1 ,𝑇 )                 0 < 𝑀 ≤ 𝑡𝑑

𝑇𝑃2(𝑡1 ,𝑇 )                  𝑡𝑑 < 𝑀 ≤ 𝑡1

𝑇𝑃3(𝑡1 ,𝑇 )                           𝑀 > 𝑡1

                                                                                                                (20) 

where 𝑇𝑃1(𝑡1 ,𝑇 ), 𝑇𝑃2(𝑡1 ,𝑇 ), and  𝑇𝑃3(𝑡1 ,𝑇 ) are discussed for three different cases follows. 

Case 1: (𝟎 < 𝑀 ≤ 𝒕𝒅) 

The interest payable 

This is the period before deterioration sets in, and payment for goods is settled with the capital opportunity cost rate 𝐼𝑐 

for the items in stock.  Therefore, the interest payable is given below. 

𝐼𝑃1 = 𝐶𝐼𝑐 [∫ 𝐼1(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+ ∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

]

= 𝐶𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝑎

2
(𝑡𝑑 − 𝑀)2 +

𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2 +
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑))]                                    (21) 

The interest earned. 

In this case, the retailer can earn interest on revenue generated from the sales up to the trade credit period 𝑀.  Although 

the retailer has to settle the accounts at period 𝑀, for that, he has to arrange money at some specified rate of interest to 

get his remaining stocks financed for the period 𝑀 to𝑡𝑑 .  The interest earned is  

𝐼𝐸1 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑀

0

] 

= 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)                                                                                                                                                 (22) 

The total profit per unit time for case 1 (0 < 𝑀 ≤ 𝑡𝑑) is  

𝑇𝑃1(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost- interest payable during the permissible delay period + interest earned during the cycle} 
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=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)𝛿𝑑(𝑇 − 𝑡1) − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝛿𝑑

2
(𝑇 − 𝑡1)2 − 𝐶𝜋𝑑(1 − 𝛿)(𝑇 − 𝑡1)

− 𝑐𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝑎

2
(𝑡𝑑 − 𝑀)2 +

𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2 +
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑))]

+ 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)}                                                                                                              (23) 

Case 2: (𝒕𝒅 < 𝑀 ≤ 𝒕𝟏) 
The interest payable 
This is when the endpoint of the credit period is greater than the period with no deterioration but shorter than or equal 
to the length of the period with positive inventory stock of the items.  The interest payable is 

𝐼𝑃2 = 𝑐𝐼𝑐 [∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑀

] 

= 𝑐𝐼𝑐 [
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1 − 𝑀))]                                                                                                                                (24) 

The interest earned 

In this case, the retailer can earn interest on revenue generated from the sales up to the trade credit period 𝑀.  Although 

the retailer has to settle the accounts at period 𝑀, for that, he has to arrange money at some specified rate of interest in 

order to get his remaining stocks financed for the period 𝑀 to𝑡1.  The interest earned is  

𝐼𝐸2 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

] + 𝑆2𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑀

𝑡𝑑

] 

= 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + 𝑆2𝐼𝑒 (

𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)                                                                                                              (25) 

The total profit per unit time for case 2(𝑡𝑑 < 𝑀 ≤ 𝑡1) is 

𝑇𝑃2(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost- interest payable during the permissible delay period + interest earned during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)𝛿𝑑(𝑇 − 𝑡1) − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝛿𝑑

2
(𝑇 − 𝑡1)2 − 𝐶𝜋𝑑(1 − 𝛿)(𝑇 − 𝑡1) − 𝑐𝐼𝑐 [

𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1 − 𝑀))]

+ 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + 𝑆2𝐼𝑒 (

𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)}                                                                             (26) 

Case 3: (𝑴 > 𝒕𝟏) 
The interest payable 
In this case, the period of delay in payment is greater than period with positive inventory.  In this case the retailer pays no 

interest.  Therefore,𝐼𝑃3 = 0. 
The interest earned 

In this case, the period of delay in payment (𝑀) is greater than period with positive inventory(𝑡1).  In this case the retailer 
earns interest on the sales revenue up to the permissible delay period and no interest is payable during the period for the 

item kept in stock.  Interest earned for the time period [0, 𝑇] 

𝐼𝐸3 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ (𝑀 − 𝑡1) ∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

] + 𝑆2𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑡1

𝑡𝑑

+ (𝑀 − 𝑡1) ∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

] 
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= 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)] + 𝑆2𝐼𝑒 [−

𝑑

2
(𝑡1−𝑡𝑑)2 + 𝑀𝑑(𝑡1 − 𝑡𝑑)]               (27) 

The total profit per unit time for case 3 (𝑀 > 𝑡1) is  

𝑇𝑃3(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost + interest earned during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)𝛿𝑑(𝑇 − 𝑡1) − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

−
𝐶𝑏𝛿𝑑

2
(𝑇 − 𝑡1)2 − 𝐶𝜋𝑑(1 − 𝛿)(𝑇 − 𝑡1)

+ 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)]

+ 𝑆2𝐼𝑒 [−
𝑑

2
(𝑡1−𝑡𝑑)2 + 𝑀𝑑(𝑡1 − 𝑡𝑑)]}                                                                                                  (28) 

Since 0 < 𝜃 < 1, by utilising a quadratic approximation for the exponential terms in equations (23), (26) and (28) to 
obtain 

𝑇𝑃1(𝑡1, 𝑇) =
𝑑

𝑇
{−

1

2
𝑋1𝑡1

2 + 𝑌1𝑡1 − 𝑊1 −
𝐶𝑏𝛿𝑇2

2
+ 𝐶𝑏𝛿𝑡1𝑇 + (𝑆2 − 𝐶)𝛿𝑇 − 𝐶𝜋(1 − 𝛿)𝑇}                                     (29) 

Where 

 𝑋1 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)],  

𝑌1 = [(𝑆2 − 𝐶)(1 − 𝛿) + ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿) + 𝑐𝐼𝑐(𝑀 + (𝑡𝑑 − 𝑀)𝜃𝑡𝑑)] 

and 

𝑊1 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴 − ℎ1 (

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐 (
𝑎

2
(𝑡𝑑 − 𝑀)2 +

𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2 +

𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2 + 𝑑𝑀𝑡𝑑

−
𝑑𝑡𝑑

2

2
+

𝑑

2
(𝑡𝑑 − 𝑀)𝜃𝑡𝑑

2) + 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)] 

Similarly,  

𝑇𝑃2(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
𝑋2𝑡1

2 + 𝑌2𝑡1 − 𝑊2 −
𝐶𝑏𝛿𝑇2

2
+ 𝐶𝑏𝛿𝑡1𝑇 + (𝑆2 − 𝐶)𝛿𝑇 − 𝐶𝜋(1 − 𝛿)𝑇}                                   (30) 

Where 

 𝑋2 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝐶𝐼𝑐],  

[ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿) + 𝑐𝐼𝑐𝑀] 

𝑌2 = [(𝑆2 − 𝐶)(1 − 𝛿) + ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿) + 𝑐𝐼𝑐𝑀] 

 and 

𝑊2 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴 − ℎ1 (

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
) − 𝐶𝐼𝑐

𝑑

2
𝑀2 + 𝑆1𝐼𝑒 (𝑎

𝑡𝑑
2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
)

+ 𝑆2𝐼𝑒 (
𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)] 

And 
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𝑇𝑃3(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
𝑋3𝑡1

2 + 𝑌3𝑡1 − 𝑊3 −
𝐶𝑏𝛿𝑇2

2
+ 𝐶𝑏𝛿𝑡1𝑇 + (𝑆2 − 𝐶)𝛿𝑇 − 𝐶𝜋(1 − 𝛿)𝑇}                                   (31) 

Where 

𝑋3 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑆2𝐼𝑒],  

𝑌3 = [(𝑆2 − 𝐶)(1 − 𝛿) + ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿) −
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)} + 𝑆2𝐼𝑒𝑡𝑑

+ 𝑆2𝐼𝑒𝑀] 

 and 

𝑊3 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴 − ℎ1 (

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
)

− ℎ2 (
𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
) + 𝑆1𝐼𝑒 [(𝑎

𝑡𝑑
2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) 𝑀]

− 𝑆2𝐼𝑒

𝑑

2
𝑡𝑑

2 − 𝑆2𝐼𝑒𝑀𝑑𝑡𝑑] 

OPTIMAL DECISION 

This section determines the optimal ordering policies that maximise the total profit per unit time.  The necessary and 
sufficient conditions for the existence and uniqueness of optimal solutions have been established.  The necessary 

conditions for the total profit per unit time 𝑇𝑃𝑖(𝑡1, 𝑇) to be maximum are 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 for 𝑖 = 1, 2, 3. 

The value of (𝑡1, 𝑇) obtained from 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 and for which the sufficient condition 

{(
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1
2 ) (

𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇2 ) − (
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 𝜕𝑇
)

2

} > 0 is satisfied gives a maximum value for the total profit per unit time 

𝑇𝑃𝑖(𝑡1, 𝑇). 

For case 1 (0 < 𝑀 ≤ 𝑡𝑑) 

The necessary condition for the total profit 𝑇𝑃1(𝑡1, 𝑇) in equation (29) to be the maximum are 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−𝑋1𝑡1 + 𝑌1 + 𝐶𝑏𝛿𝑇} 

Setting 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{−𝑋1𝑡1 + 𝑌1 + 𝐶𝑏𝛿𝑇} = 0                                                                                                                                                          (32) 
and 

𝑇 =
1

𝐶𝑏𝛿
(𝑋1𝑡1 − 𝑌1)                                                                                                                                                                    (33) 

Since  (𝑡𝑑 − 𝑀) ≥ 0, (𝑡1 − 𝑡𝑑) > 0, 𝑡1 − 𝑀 > 0 
 It should be noted that 

(𝑋1𝑡1 − 𝑌1) = [(𝐶 − 𝑆2)(1 − 𝛿) + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑)

+ 𝐶𝜋(𝛿 − 1) + 𝐶𝑏𝛿𝑡1 + 𝑐𝐼𝑐((𝑡1 − 𝑀) + 𝜃(𝑡𝑑 − 𝑀)(𝑡1 − 𝑡𝑑))] > 0 

Provided 

[𝐶 + 𝑆2𝛿 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝜋𝛿 + 𝐶𝑏𝛿𝑡1

+ 𝑐𝐼𝑐((𝑡1 − 𝑀) + 𝜃(𝑡𝑑 − 𝑀)(𝑡1 − 𝑡𝑑))] > (𝑆2 + 𝐶 𝛿 + 𝐶𝜋) 

Similarly,  

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
𝑋1𝑡1

2 + 𝑌1𝑡1 − 𝑊1 +
𝐶𝑏𝛿𝑇2

2
}                                                                                                     (34) 

Setting  
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝑋1𝑡1

2 + 𝑌1𝑡1 − 𝑊1 +
𝐶𝑏𝛿𝑇2

2
} = 0                                                                                                                         (35) 

Substituting 𝑇 from equation (33) into equation (35) yields 
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{𝑋1(𝐶𝑏𝛿 − 𝑋1)𝑡1
2 − 2𝑌1(𝐶𝑏𝛿 − 𝑋1)𝑡1 − (𝑌1

2 − 2𝐶𝑏𝛿𝑊1)} = 0                                                                                         (36) 

Let   ∆1= 𝑋1(𝐶𝑏𝛿 − 𝑋1)𝑡𝑑
2 − 2𝑌1(𝐶𝑏𝛿 − 𝑋1)𝑡𝑑 − (𝑌1

2 − 2𝐶𝑏𝛿𝑊1), then the following result is obtained. 
Lemma 1  

(i)If   ∆1≥ 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) (say 𝑡11
∗ ) which satisfies equation (36) not only exists but also is unique. 

See the proof in Appendix 1a 

(ii)If   ∆1< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) which satisfies equation (36) does not exist. 
See the proof in Appendix 1b 

Therefore, the value of 𝑡1 (denoted by 𝑡11
∗ ) can be found from equation (36) and is given by 

𝑡11
∗ =

𝑌1

𝑋1
+

1

𝑋1

√
(2𝑋1𝑊1 − 𝑌1

2)𝐶𝑏𝛿

(𝑋1 − 𝐶𝑏𝛿)
                                                                                                                                         (37) 

Once the value of 𝑡11
∗  is obtained, then the value of 𝑇 (denoted by𝑇1

∗) can be found from (33) and is given by 

𝑇1
∗ =

1

𝐶𝑏𝛿
(𝑋1𝑡11

∗ − 𝑌1)                                                                                                                                                                (38) 

Equations (37) and (38) give the optimal values of 𝑡11
∗  and 𝑇1

∗ for the profit function in equation (29) only if 𝑌1 satisfies 
the inequality given in equation (39) 

2𝑋1𝑊1 > 𝑌1
2                                                                                                                                                                                  (39) 

Theorem 1  

(i)If  ∆1≥ 0, then the total profit 𝑇𝑃1(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡11
∗ , 𝑇1

∗), where 

(𝑡11
∗ , 𝑇1

∗) is the point which satisfies equations (36) and (32), if all principal minors are positive definite i.e., if 
 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) < 0, (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

)
|

|
> 0. 

See the proof in Appendix 1c 

(ii)If  ∆1< 0, then the total profit 𝑇𝑃1(𝑡1, 𝑇) has a maximum value at the point (𝑡11
∗ , 𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

𝐶𝑏𝛿
(X1𝑡𝑑 − Y1) 

See the proof in Appendix 1d 

For case 2 (𝒕𝒅 < 𝑴 ≤ 𝒕𝟏) 

The necessary condition for the total profit 𝑇𝑃1(𝑡1, 𝑇) in equation (39) to be the maximum are 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑇𝑃2(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−𝑋2𝑡1 + 𝑌2 + 𝐶𝑏𝛿𝑇} 

Setting 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{−𝑋2𝑡1 + 𝑌2 + 𝐶𝑏𝛿𝑇} = 0                                                                                                                                                          (40) 
and 

𝑇 =
1

𝐶𝑏𝛿
(𝑋2𝑡1 − 𝑌2)                                                                                                                                                                    (41) 

Since (𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) ≥ 0, it should be noted that 

 (𝑋2𝑡1 − 𝑌2 = [(𝐶 − 𝑆2)(1 − 𝛿) + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑)

+ 𝐶𝜋(𝛿 − 1) + 𝐶𝑏𝛿𝑡1 + 𝑐𝐼𝑐(𝑡1 − 𝑀)] > 0 

Provided 

[𝐶 + 𝑆2𝛿 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝜋𝛿 + 𝐶𝑏𝛿𝑡1

+ 𝑐𝐼𝑐(𝑡1 − 𝑀)] > (𝑆2 + 𝐶 𝛿 + 𝐶𝜋) 

Similarly,  
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𝜕𝑇𝑃2(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
𝑋2𝑡1

2 + 𝑌2𝑡1 − 𝑊2 +
𝐶𝑏𝛿𝑇2

2
}                                                                                                     (42) 

Setting  
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝑋2𝑡1

2 + 𝑌2𝑡1 − 𝑊2 +
𝐶𝑏𝛿𝑇2

2
} = 0                                                                                                                         (43) 

Substituting 𝑇 from equation (41) into equation (43) yields 

     {𝑋2(𝐶𝑏𝛿 − 𝑋2)𝑡1
2 − 2𝑌2(𝐶𝑏𝛿 − 𝑋2)𝑡1 − (𝑌2

2 − 2𝐶𝑏𝛿𝑊2)} = 0                                                                                   (44) 

Let   ∆2= 𝑋2(𝐶𝑏𝛿 − 𝑋2)𝑀2 − 2𝑌2(𝐶𝑏𝛿 − 𝑋2)𝑀(𝑌2
2 − 2𝐶𝑏𝛿𝑊2), then the following result is obtained. 

Lemma 2  

(i) If   ∆2≥ 0, then the solution of 𝑡1 ∈ [𝑀, ∞) (say 𝑡12
∗ ) which satisfies equation (44) not only exists but also is unique. 

The proof is similar to Appendix 1a, hence is omitted 

(ii) If   ∆2< 0, then the solution of 𝑡1 ∈ [𝑀, ∞) which satisfies equation (44) does not exist. 
The proof is similar to Appendix 1b, hence is omitted 

Therefore, the value of 𝑡1 (denoted by 𝑡12
∗ ) can be found from equation (44) and is given by 

 𝑡12
∗ =

𝑌2

𝑋2
+

1

𝑋2
√

(2𝑋2𝑊2−𝑌2
2)𝐶𝑏𝛿

(𝑋2−𝐶𝑏𝛿)
                                                                                                                                                   (45) 

Once the value of 𝑡12
∗  is obtained, then the value of 𝑇 (denoted by 𝑇2

∗) can be found from (41) and is given by 

𝑇2
∗ =

1

𝐶𝑏𝛿
(𝑋2𝑡12

∗ − 𝑌2)                                                                                                                                                                (46) 

Equations (45) and (46) give the optimal values of 𝑡12
∗  and 𝑇2

∗ for the profit function in equation (30) only if 𝑌2 satisfies 
the inequality given in equation (47) 

2𝑋2𝑊2 > 𝑌2
2                                                                                                                                                                                  (47) 

Theorem 2  

(i) If  ∆2≥ 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡12
∗ , 𝑇2

∗), 

where (𝑡12
∗ , 𝑇2

∗) is the point which satisfies equations (44) and (40), if all principal minors are positive definite i.e., if 
 

(
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

) < 0, (
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12,   𝑇2
∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

(
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

)
|

|
> 0. 

The proof is similar to Appendix 1c, hence is omitted 

(ii) If  ∆2< 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇) has a maximum value at the point (𝑡12
∗ , 𝑇2

∗) where 𝑡12
∗ = 𝑡𝑑  and 𝑇2

∗ =
1

𝐶𝑏𝛿
(X2𝑡𝑑 − Y2) 

The proof is similar to Appendix 1d, hence is omitted 

For case 3   (M> 𝒕𝟏) 

The necessary condition for the total profit 𝑇𝑃3(𝑡1, 𝑇) in equation (40) to be the maximum are 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0, which gives 

𝜕𝑇𝑃3(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−𝑋3𝑡1 + 𝑌3 + 𝐶𝑏𝛿𝑇} 

Setting 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{−𝑋3𝑡1 + 𝑌3 + 𝐶𝑏𝛿𝑇} = 0                                                                                                                                                          (48) 
and 

𝑇 =
1

𝐶𝑏𝛿
(𝑋3𝑡1 − 𝑌3)                                                                                                                                                                    (49) 

Since(𝑡1 − 𝑡𝑑) > 0, it should be noted that 
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(𝑋3𝑡1 − 𝑌3) = [(𝐶 − 𝑆2)(1 − 𝛿) + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑)

+ 𝐶𝜋(𝛿 − 1) + 𝐶𝑏𝛿𝑡1 +
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)} − 𝑆2𝐼𝑒(𝑡𝑑 + 𝑀)] > 0 

Provided 

[𝐶 + 𝑆2𝛿 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝜋𝛿 + 𝐶𝑏𝛿𝑡1

+
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)}] > (𝑆2 + 𝐶 𝛿 + 𝐶𝜋) + 𝑆2𝐼𝑒(𝑡𝑑 + 𝑀) 

Similarly,  

𝜕𝑇𝑃3(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
𝑋3𝑡1

2 + 𝑌3𝑡1 − 𝑊3 +
𝐶𝑏𝛿𝑇2

2
}                                                                                                     (50) 

Setting  
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
𝑋3𝑡1

2 + 𝑌3𝑡1 − 𝑊3 +
𝐶𝑏𝛿𝑇2

2
} = 0                                                                                                                         (51) 

Substituting 𝑇 from equation (49) into equation (51) yields 

     {𝑋3(𝐶𝑏𝛿 − 𝑋3)𝑡1
2 − 2𝑌3(𝐶𝑏𝛿 − 𝑋3)𝑡1 − (𝑌3

2 − 2𝐶𝑏𝛿𝑊3)} = 0                                                                                   (52) 

Let ∆3𝑎= 𝑋3(𝐶𝑏𝛿 − 𝑋3)𝑡𝑑
2 − 2𝑌3(𝐶𝑏𝛿 − 𝑋3)𝑡𝑑 − (𝑌3

2 − 2𝐶𝑏𝛿𝑊3) 

and   ∆3𝑏= 𝑋3(𝐶𝑏𝛿 − 𝑋3)𝑀2 − 2𝑌3(𝐶𝑏𝛿 − 𝑋3)𝑀 − (𝑌3
2 − 2𝐶𝑏𝛿𝑊3), then the following result is obtained. 

Lemma 3  

(i) If   ∆3𝑏≤ 0 ≤ ∆3𝑎, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀] (say 𝑡13
∗ ) which satisfies equation (52) not only exists but 

also is unique. 
The proof is similar to Appendix 1a, hence is omitted. 

(ii) If ∆3𝑎< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀] which satisfies equation (52) does not exist. 
 The proof is similar to Appendix 1b, hence is omitted. 

Therefore, the value of 𝑡1 (denoted by 𝑡13
∗ ) can be found from equation (52) and is given by 

𝑡13
∗ =

𝑌3

𝑋3
+

1

𝑋3

√
(2𝑋3𝑊3 − 𝑌3

2)𝐶𝑏𝛿

(𝑋3 − 𝐶𝑏𝛿)
                                                                                                                                        (53) 

Once the value of 𝑡13
∗  is obtained, then the value of 𝑇 (denoted by 𝑇3

∗) can be found from (49) and is given by 

𝑇3
∗ =

1

𝐶𝑏𝛿
(𝑋3𝑡13

∗ − 𝑌3)                                                                                                                                                                (54) 

Equations (53) and (54) give the optimal values of 𝑡13
∗  and 𝑇3

∗ for the profit function in equation (31) only if 𝑌3 satisfies 
the inequality given in equation (55) 

2𝑋3𝑊3 > 𝑌3
2                                                                                                                                                                                  (55) 

Theorem 3  

(i) If  ∆3𝑎≥ 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡13
∗ , 𝑇3

∗), 

where (𝑡13
∗ , 𝑇3

∗) is the point which satisfies equations (52) and (48), if all principal minors are positive definite i.e., if 

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

) < 0, (
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13,   𝑇3
∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

)
|

|
> 0. 

The proof is similar to Appendix 1c, hence is omitted 

(ii) If   ∆3𝑎< 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a maximum value at the point (𝑡13
∗ , 𝑇3

∗) where  𝑡13
∗ = 𝑀 and 

𝑇3
∗ =

1

𝐶𝑏𝛿
(𝑋3𝑀 − 𝑌3). 

The proof is similar to Appendix 1d, hence is omitted 
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(iii) If  ∆3𝑏> 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a maximum value at the point (𝑡13
∗ , 𝑇3

∗) where  𝑡13
∗ = 𝑡𝑑 and 

𝑇3
∗ =

1

𝐶𝑏𝛿
(𝑋3𝑡𝑑 − 𝑌3). 

The proof is similar to Appendix 1d, hence is omitted 

After obtaining the optimal values of 𝑡1
∗ and 𝑇∗, the optimal Economic Order Quantity (denoted by 𝐸𝑂𝑄∗) can be 

computed as follows: 

𝐸𝑂𝑄∗ =Total demand before deterioration sets in+total demand after deterioration sets in+total number of deteriorated 
items + the total number of items back-ordered 

= 𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
+

𝑑

𝜃
(𝑒𝜃(𝑡1

∗−𝑡𝑑) − 1) + 𝑑𝛿(𝑇∗ − 𝑡1
∗)                                                                                                    (56) 

Note: It is obvious when 𝑡𝑑 = 𝑡1 = 𝑀 that 𝑇𝑃1(𝑡1, 𝑇) = 𝑇𝑃2(𝑡1, 𝑇) = 𝑇𝑃3(𝑡1, 𝑇).  When 𝑡𝑑 = 𝑀, 𝑇𝑃1(𝑡1, 𝑇) =

𝑇𝑃2(𝑡1, 𝑇).  When 𝑡1 = 𝑀, 𝑇𝑃2(𝑀, 𝑇) = 𝑇𝑃3(𝑀, 𝑇).  Hence, the profit function 𝑇𝑃(𝑡1, 𝑇) is continuous and well-

defined. 

NUMERICAL RESULTS 

Example 6.1 (𝑴 ≤ 𝒕𝒅) 

The following parameters are adopted from Babangida and Baraya (2021a) in addition to ℎ1, 𝛿, 𝐶𝜋 and 𝐶𝑏 which are not 

considered in their work.  The parameters and their values are as follows: 

Table 1: parameters and their values  

Parameter(s) Value(s) 

𝐴 $250/order 

ℎ1 $2 unit/year 

ℎ2 $15 unit/year 

𝜃 0.01 unit/year 

𝑎 180 unit 

𝑏 30 unit 

𝑐 15 unit 

𝑑 120 unit 

𝑡𝑑 0.1354 year 

𝑀 0.0888 year 

𝐼𝑐 0.1 

𝐼𝑒 0.08 

𝐶𝑏 $30 

𝛿 0.85 

𝐶𝜋 1 

It  is seen that 𝑀 ≤ 𝑡𝑑 , ∆1=33.9202 > 0, 2𝑋1𝑊1 =44.9517,𝑌1
2 = 1.4200 and 2𝑋1𝑊1 > 𝑌1

2.  Substituting the above 

values in equation (37), (47), (29) and (56), The result is obtained in the table below  

Table 2: Optimal Solutions for case 1 

Parameters Values 

𝑡11
∗  0.4863 (177 days) 

𝑇1
∗ 0.5479 (199 days) 

𝑇𝑃1(𝑡11
∗ , 𝑇1

∗) $303.2293 

𝐸𝑂𝑄1
∗ 73.1284 unit. 

Example 6.2 (𝑴 > 𝒕𝒅) 

The values of the parameters are same as in example 6.1 [as in Babangida and Baraya (2021)] except that 𝑀 = 0.1523.  

It is seen that  𝑀 > 𝑡𝑑 , ∆2= 32.7438 > 0, 2𝑋2𝑊2 = 44.3728,𝐵2
2 = 1.6559 and 2𝑋2𝑊2 > 𝑌2

2.  Substituting the above 

values in equation (45), (46), (30) and (56). The result is obtained in the table below  
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Table 3: Optimal Solutions for case 2 

Parameters Values 

𝑡12
∗  0.4851 (177 days) 

𝑇2
∗ 0.5428 (198 days) 

𝑇𝑃2(𝑡12
∗ , 𝑇2

∗) $315.4550 

𝐸𝑂𝑄2
∗ 72.5857 unit. 

Example 6.3 (𝑴 > 𝒕𝟏) 

The values of the parameters are same as in example 6.1 except that 𝑀 = 0.36.  It is seen that  𝑀 > 𝑡𝑑, ∆3𝑎= 16.2308 >

0, ∆3𝑏= −0.1650 < 0 2𝑋3𝑊3 = 23.9601,𝑌3
2 = 2.0736 and 2𝑋3𝑊3 > 𝑌3

2.  Substituting the above values in equation 

(53), (54), (31) and (56).The result is obtained in the table below. 

Table 4: Optimal Solutions for case 3 

Parameters Values 

𝑡13
∗  0.3585 (130 days) 

𝑇3
∗ 0.3834 (139 days) 

𝑇𝑃3(𝑡13
∗ , 𝑇3

∗) $386.9494 

𝐸𝑂𝑄3
∗ 54.0035 unit. 

Table 5: Comparison table 

Comparison of our model with Babangida and Bature (2021a) 

Models Average total 

profit  

per unit for case 1 

Average total profit  

per unit for case 2 

Average total 

profit  

per unit for case 3 

Babangida and Baraya 

(2021) 

$4.1341 $4.3176 - 

Proposed Model  $4.1465 $4.3460 $7.1653 

It is clearly seen from the table above that the average total profit for case 1 and case 2 of the proposed model is greater 

than that of Babangida and Baraya (2021).  Hence the proposed model is more optimal than Babangida and Baraya (2021). 

SENSITIVITY ANALYSIS 

The sensitivity analysis of some model parameters is performed by changing each of the parameters from 

−6%, −3%, +6% to +3% taking one parameter at a time and keeping the remaining parameters unchanged.  The effects 

of these changes of parameters on cycle length, optimal time with positive inventory, total profit and economic order 

quantity per cycle are discussed and summarised in table 6, 7 and 8 below: 
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Table 6: Effect of changes of some model parameters from −6%, −3%, +3% to +6%  on decision variables for 
example 6.1 

Parameter % change 

in 

Parameter 

% change in 

𝒕𝟏𝟏
∗  

% change in 

𝑻𝟏𝟏
∗  

% change in 

𝑬𝑶𝑸𝟏
∗  

% change in 

𝑻𝑷𝟏(𝒕𝟏𝟏
∗ , 𝑻𝟏

∗ ) 

𝜽 −6% 0.0802 0.0637 0.0524 0.0413 

−3% 0.0401 0.0318 0.0262 0.0206 

3% -0.0400 -0.0318 -0.0262 -0.0206 

6% -0.0800 -0.0636 -0.0523 -0.0413 

𝑪 −6% -2.8843 -4.3652 -3.6894 40.2585 

−3% -1.3988 -2.1381 -1.8054 20.0960 

3% 1.3186 2.0558 1.7327 -20.0341 

6% 2.5627 4.0350 3.3979 -40.0105 

𝑺𝟏 −6% 18.5309 20.1113 17.6472 -20.2750 

−3% 9.6879 10.5141 9.2242 -10.5997 

3% -10.8341 -11.7581 -10.3113 11.8538 

6% -23.3539 -25.3456 -22.2212 25.5520 

𝑺𝟐 −6% -12.1440 -11.8915 -10.5731 -34.2018 

−3% -5.8899 -5.7481 -5.1140 -17.3001 

3% 5.5853 5.4176 4.8253 17.6334 

6% 10.9108 10.5531 9.4044 35.5510 

𝑰𝒄 −6% 0.8314 0.6436 0.5938 0.5209 

−3% 0.4132 0.3198 0.2950 0.2596 

3% -0.4083 -0.3157 -0.2913 -0.2578 

6% -0.8118 -0.6275 -0.5790 -0.5139 

𝑰𝒆 −6% 0.0473 0.0513 0.0450 -0.0518 

−3% 0.0237 0.0257 0.0225 -0.0259 

3% -0.0237 -0.0257 -0.0225 0.0259 

6% -0.0473 -0.0514 -0.0451 0.0518 

𝑨 −6% -8.6580 -9.3964 -8.2405 9.4729 

−3% -4.2223 -4.5824 -4.0191 4.6198 

3% 4.0372 4.3815 3.8435 -4.4171 

6% 7.9115 8.5863 7.5326 -8.6562 

𝑪𝒃 −6% -0.2032 0.4955 0.3538 0.2223 

−3% -0.0988 0.2404 0.1716 0.1081 

3% 0.0935 -0.2269 -0.1620 -0.1024 

6% 0.1823 -0.4415 -0.3151 -0.1994 

𝑪𝝅 −6% -0.0367 0.0245 0.0143 0.0402 

−3% -0.0183 0.0123 0.0071 0.0201 

3% 0.0183 -0.0123 -0.0072 -0.0200 

6% 0.0366 -0.0247 -0.0144 -0.0400 

𝜹 −6% 1.0029 -0.5101 -0.7191 -1.0973 

−3% 0.5146 -0.2191 -0.3470 -0.5630 

3% -0.5386 0.1537 0.3241 0.5893 

6% -1.0994 0.2480 0.6273 1.2028 
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Table 7: Effect of changes of some model parameters from −6%, −3%, +3% to +6%  on decision variables for 
example 6.2 

Parameter % change in 

Parameter 

% change in 

𝒕𝟏𝟐
∗  

% change in 

𝑻𝟏𝟐
∗  

% change in 

𝑬𝑶𝑸𝟐
∗  

% change in 

𝑻𝑷𝟏(𝒕𝟏𝟐
∗ , 𝑻𝟐

∗ ) 

𝜽 −6% 0.0796 0.0636 0.0522 0.0397 

−3% 0.0398 0.0318 0.0261 0.0198 

3% -0.0397 -0.0317 -0.0261 -0.0198 

6% -0.0794 -0.0634 -0.0521 -0.0396 

𝑪 −6% -3.0386 -4.5250 -3.8256 38.6280 

−3% -1.4742 -2.2159 -1.8718 19.2810 

3% 1.3910 2.1299 1.7960 -19.2198 

6% 2.7047 4.1800 3.5216 -38.3826 

𝑺𝟏 −6% 18.7746 20.5200 17.9709 -19.6975 

−3% 9.8231 10.7363 9.4009 -10.3060 

3% -11.0133 -12.0371 -10.5354 11.5547 

6% -23.7951 -26.0072 -22.7568 24.9648 

𝑺𝟐 −6% -12.2319 -12.0686 -10.7089 -32.8152 

−3% -5.9296 -5.8307 -5.1770 -16.6031 

3% 5.6188 5.4910 4.8809 16.9291 

6% 10.9731 10.6928 9.5098 34.1358 

𝑰𝒄 −6% 0.7625 0.6146 0.5627 0.3521 

−3% 0.3789 0.3053 0.2796 0.1754 

3% -0.3743 -0.3014 -0.2760 -0.17340 

6% -0.7440 -0.5991 -0.5486 -0.3466 

𝑰𝒆 −6% 0.1275 0.1393 0.1219 -0.1337 

−3% 0.0637 0.0697 0.0610 -0.0669 

3% -0.06378 -0.0697 -0.0610 0.0669 

6% -0.1276 -0.1395 -0.1221 0.1339 

𝑨 −6% -8.7696 -9.5848 -8.3895 9.2007 

−3% -4.2745 -4.6719 -4.0896 4.4846 

3% 4.0835 4.4632 3.9076 -4.2843 

6% 7.9996 8.7433 7.6555 -8.3929 

𝑪𝒃 −6% -0.1799 0.4795 0.3436 0.1887 

−3% -0.0874 0.2326 0.1667 0.0917 

3% 0.0828 -0.2120 -0.1573 -0.0869 

6% 0.1613 -0.4272 -0.3060 -0.1692 

𝑪𝝅 −6% -0.0348 0.0270 0.0163 0.0365 

−3% -0.0174 0.0135 0.0082 0.0182 

3% 0.0173 -0.0136 -0.0082 -0.0182 

6% 0.0346 -0.0272 -0.0165 -0.0363 

𝜹 −6% 0.9540 -0.6185 -0.7734 -1.0009 

−3% 0.4912 -0.2709 -0.3731 -0.5154 

3% -0.5171 0.2013 0.3483 0.5426 

6% -1.0581 0.3394 0.6739 1.1101 

 
 
 
 
 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 2, June 2024, Pp 016 – 035 

 31 

 

https://scientifica.umyu.edu.ng/                      Ahmed et al., /USci, 3(2): 016 – 035, June 2024  
 

Table 8:Effect of changes of some model parameters from −6%, −3%, +3% to +6%  on decision variables for 
example 6.3 

Parameter % change in 
Parameter 

% change in 

𝒕𝟏𝟑
∗  

% change in 

𝑻𝟏𝟑
∗  

% change in 

𝑬𝑶𝑸𝟑
∗  

% change in 

𝑻𝑷𝟑(𝒕𝟏𝟑
∗ , 𝑻𝟑

∗ ) 

𝜽 −6% 0.0706 0.0599 0.0486 0.02589 

−3% 0.0351 0.0299 0.0243 0.0129 

3% -0.0352 -0.0299 -0.0243 -0.0129 

6% -0.0704 -0.0597 -0.0485 -0.0259 

𝑪 −6% -7.9762 -10.5496 -8.6064 31.6647 

−3% -3.8471 -5.1138 -4.1697 15.8053 

3% 3.6065 4.8389 3.9418 -15.7481 

6% 7.0041 9.4394 7.6861 -31.4389 

𝑺𝟏 −6% 35.1471 40.0715 33.2997 -18.3728 

−3% 19.0213 21.6967 18.0246 -9.6900 

3% -24.4804 -27.9599 -23.2087 10.6559 

6% -70.4044 -80.5217 -66.7806 -5.6315 

𝑺𝟐 −6% -24.3021 -25.8205 -21.6378 -26.4717 

−3% -11.1971 -11.8389 -9.92978 -13.2972 

3% 9.9040 10.3924 8.7287 13.5293 

6% 18.8523 19.7199 16.5725 27.2920 

𝑰𝒄 −6% 0 0 0 0 

−3% 0 0 0 0 

3% 0 0 0 0 

6% 0 0 0 0 

𝑰𝒆 −6% 3.4180 3.7915 3.1605 -1.3616 

−3% 1.7102 1.9001 1.5835 -0.6861 

3% -1.7135 -1.9099 -1.5910 0.6964 

6% -3.4315 -3.8311 -3.1905 1.4033 

𝑨 −6% -17.4680 -20.0407 -16.6274 8.1955 

−3% -8.2492 -9.4641 -7.8533 4.0380 

3% 7.5333 8.6428 7.1735 -3.8806 

6% 14.5099 16.6470 13.8183 -7.6021 

𝑪𝒃 −6% -0.0631 0.3408 0.2392 0.0818 

−3% -0.0306 0.1653 0.1160 0.0397 

3% 0.0289 -0.1559 -0.1094 -0.0376 

6% 0.0563 -0.3032 -0.2128 -0.0731 

𝑪𝝅 −6% -0.0283 0.0596 0.0397 0.4738 

−3% -0.0141 0.0298 0.0199 0.2370 

3% 0.0140 -0.0299 -0.0120 -0.2372 

6% 0.0278 -0.0560 -0.0400 -0.4745 

𝜹 −6% 0.7273 -2.0713 -1.5741 -3.3551 

−3% 0.3949 -0.9057 -0.7172 -1.6010 

3% -0.4866 0.7752 0.6670 1.6621 

6% -1.0436 1.4006 1.2729 3.3254 

RESULTS AND DISCUSSION 

The following managerial insights are obtained based on 

the results shown in Tables 6, 7 and 8. 

(i)It is obviously seen that the higher the rate of 

deterioration (𝜃), the lower the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗), order quantity 

(𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) and vice versa.  This 

implies that the retailer needs to take all the necessary 

measures to avoid or reduce deterioration to maximise 

higher profit. 

(ii)It is visibly seen that as the unit purchasing cost (𝐶) 

increases, the total profit  𝑇𝑃(𝑇∗) decreases while the 

optimal time with positive inventory (𝑡1
∗) , cycle length 

(𝑇∗) and order quantity  (𝐸𝑂𝑄∗) increase and vice versa.  

This result reveals that when the unit purchasing cost 

increases, the retailer will order smaller quantity to enjoy 

the benefits of permissible delay in payments more 
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frequently, which will consequently shorten the cycle 

length. 

(iii)It is apparently seen that as the unit selling price before 

deterioration sets in (𝑆1) increases, the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗) and order 

quantity (𝐸𝑂𝑄∗) decrease while the total profit 𝑇𝑃(𝑇∗) 

increases and vice versa.  This implies that as the selling 

price increases the retailer will order less quantity to enjoy 

the benefits of trade credit more frequently. 

(iv)It is evidently seen that as the unit selling price after 

deterioration sets in (𝑆2) increases, the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗), order quantity 

(𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) increase and vice 

versa.  This implies that as the selling price increases, the 

retailer maximises higher profit. 

(v) It is obviously seen that the lower the interest charged 

(𝐼𝑐) the higher the optimal time with positive inventory 

(𝑡1
∗), cycle length (𝑇∗), order quantity (𝐸𝑂𝑄∗) and total 

profit 𝑇𝑃(𝑇∗) and vice versa.  This implies that when the 

interest charged is high the retailer is expected to order 

less quantity of inventory to enjoy the benefits of trade 

credit more frequently.  As for case 3 (𝑀 > 𝑡1), any 

increase or decrease in the interest charged does not 

affect the optimal time with positive inventory (𝑡1
∗), cycle 

length (𝑇∗), order quantity (𝐸𝑂𝑄∗) and total profit 

𝑇𝑃(𝑇∗), this is because the interest charged in this case is 

zero. 

(vi)It is clearly seen that as the interest earned (𝐼𝑒) is 

increasing, the total profit 𝑇𝑃(𝑇∗) is also increasing while 

the optimal time with positive inventory (𝑡1
∗), cycle length 

(𝑇∗) and order quantity (𝐸𝑂𝑄∗) are decreasing and vice 

versa.  This implies that when the interest earned is high 

the retailer should order less quantity of inventory to 

enjoy the benefits of trade credit more frequently. 

(vii)It is obviously seen that as the ordering cost (A) is 

increasing the total profit 𝑇𝑃(𝑇∗) is decreasing while the 

optimal time with positive inventory (𝑡1
∗), cycle length 

(𝑇∗) and order quantity (𝐸𝑂𝑄∗) increase.  This implies 

that the retailer should order large quantity when the 

ordering cost per order is high. 

(viii)It is clearly seen that as the shortage cost (𝐶𝑏) increases 

the total profit 𝑇𝑃(𝑇∗), the economic order quantity 

(𝐸𝑂𝑄∗), the optimal cycle length (𝑇∗)  decreases while 

the time with positive inventory increases. 

(ix)It is evidently seen that as the unit cost of lost sales per 

unit  (𝐶𝜋)  increases the optimal time with positive 

inventory (𝑡1
∗) also increases while cycle length (𝑇∗), 

order quantity (𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) 

decrease.This implies that the retailer should order less 

quantity when the unit cost of lost sales is high. 

(x)It is clearly seen that as the backlogging parameter is 

increasing, the cycle length (𝑇∗), order quantity (𝐸𝑂𝑄∗) 

and the total profit 𝑇𝑃(𝑇∗) are also increasing while the 

optimal time with positive inventory (𝑡1
∗) is decreasing 

and vice versa.  This implies that when the backlogging 

parameter is increasing, the retailer should order large 

quantity to get large profit. 
 

CONCLUSION 

This research developed an economic order quantity 
model for non-instantaneous deteriorating items with 
two phase demand rates ,linear holding cost, complete 
backlogging rate and two-level pricing strategies under 
trade credit policy.  The purpose of the model is to 
determine the optimal time with positive inventory, cycle 
length and order quantity such that the total profit of the 
inventory system has a maximum value.  Some numerical 
examples have been given to illustrate the theoretical 
result of the model.  Sensitivity analysis of some model 
parameters on the decision variables has been carried out 
and suggestions towards maximising the total profit were 
also given.  The retailer can maximise the total profit by 
ordering less quantity and shorten the cycle length if the 
rate of deterioration, unit purchasing cost, interest 
charged, ordering cost, backlogging parameter and 
shortage cost increase and unit selling price before 
deterioration start, unit selling price after deterioration 
start interest earned and unit cost of lost sales per unit 
decrease.  The model can be used in inventory control 
and management of items such as food items (e.g., beans, 
maise, corns, millet), electronics (e.g., mobile phones, 
computers), automobiles, fashionable items, etc. The 
proposed model can be extended by considering factors 
such as variable deterioration, inflation and time value of 
money, quantity discount, order size dependent trade 
credit, etc. 
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APPENDIX 1a:  
proof of lemma 1(i) 

From equation (45), a new function 𝐹1(𝑡1) is defined as follows 
 

𝐹1(𝑡1) = {𝑋1(𝐶𝑏𝛿 − 𝑋1)𝑡1
2 − 2𝑌1(𝐶𝑏𝛿 − 𝑋1)𝑡1(𝑌1

2 − 2𝐶𝑏𝛿𝑊1)},    𝑡1

∈ [𝑡𝑑 , ∞)                                                                  (66) 

Taking the first-order derivative of 𝐹1(𝑡1) with respect to 𝑡1 ∈ [𝑡𝑑 , ∞), it follows that 

𝐹1(𝑡1)

𝑑𝑡1
= {2𝑋1(𝐶𝑏𝛿 − 𝑋1)𝑡1 − 2𝑌1(𝐶𝑏𝛿 − 𝑋1)} 

= 2(𝐶𝑏𝛿 − 𝑋1)(𝑋1𝑡1 − 𝑌1) < 0 

Because (𝑋1𝑡1 − 𝑌1) > 0 
and 

(𝐶𝑏𝛿 − 𝑋1) = 𝐶𝑏𝛿 − [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +
𝑡𝑑𝜃

2
) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)]  

= − [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +
𝑡𝑑𝜃

2
) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] < 0 

Hence 𝐹1(𝑡1) is a strictly decreasing function of 𝑡1 in the interval [𝑡𝑑 , ∞).  Moreover, lim
𝑡1→∞

𝐹1(𝑡1) = −∞ and 

𝐹1(𝑡𝑑)  = ∆1≥ 0.  Therefore, by applying intermediate value theorem, there exists a unique 𝑡1 say 𝑡11
∗ ∈ [𝑡𝑑 , ∞) such 

that 𝐹1(𝑡11
∗ ) = 0.  Hence 𝑡11

∗  is the unique solution of equation (45). 

APPENDIX 1b:  

proof of lemma 1(ii) 

If ∆1< 0, then from equation (46), 𝐹1(𝑡1) < 0.  Since 𝐹1( 𝑡1) is a strictly decreasing function of 𝑡1 ∈ [𝑡𝑑 , ∞) and 

𝐹1(𝑡1) < 0 for all 𝑇 ∈ [𝑡𝑑 , ∞). Therefore, a value of 𝑇 ∈ [𝑡𝑑 , ∞) such that 𝐹1(𝑡1) = 0 cannot found.  This 
completes the proof. 
APPENDIX 1c: proof of Theorem 1(i) 

When ∆1≥ 0, it is seen that 𝑡11
∗  and 𝑇1

∗ are the unique solutions of equations (44) and (40) respectively from Lemma 

l(i).  Taking the second derivative of 𝑇𝑃1(𝑡1, 𝑇) with respect to 𝑡1 and 𝑇, and then finding the values of these 

functions at the point (𝑡11
∗ , 𝑇1

∗), it follows that 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗ X1 < 0 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗2

{−X1𝑡11
∗ + Y1 + 𝐶𝑏𝛿𝑇1

∗} +
𝑑

𝑇1
∗ {𝐶𝑏𝛿} 

=
𝑑

𝑇1
∗ 𝐶𝑏𝛿 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

=
2𝑑

𝑇1
∗3 {−

1

2
X1𝑡11

∗2 + Y1𝑡11
∗ − W1 +

𝐶𝑏𝛿𝑇1
∗2

2
} −

𝑑

𝑇1
∗2

{𝐶𝑏𝛿𝑇1
∗} 

= −
𝑑

𝑇1
∗ 𝐶𝑏𝛿 < 0 

 
 
and 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) − (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

)

2

= (−
𝑑

𝑇1
∗ X1) (−

𝑑

𝑇1
∗ 𝐶𝑏𝛿) − (

𝑑

𝑇1
∗ 𝐶𝑏𝛿)

2

 

=
𝑑2

𝑇1
∗2 X1𝐶𝑏𝛿 −

𝑑2

𝑇1
∗2 𝐶𝑏

2𝛿2 
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=
𝑑2𝐶𝑏𝛿

𝑇1
∗2

(X1 − 𝐶𝑏𝛿) 

=
𝑑2𝐶𝑏𝛿

𝑇1
∗2 ([ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +

𝑡𝑑𝜃

2
) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] − 𝐶𝑏𝛿) 

 

=
𝑑2𝐶𝑏

𝑇1
∗2 ([ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (1 +

𝑡𝑑𝜃

2
) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)])

> 0                                                                                                                                       (67) 

It is therefore conclude from (48) and Lemma 1 that 𝑇𝑃1(𝑡11
∗ ,   𝑇1

∗) is concave and (𝑡11
∗ ,   𝑇1

∗) is the global maximum 

point of 𝑇𝑃1(𝑡1, 𝑇).  Hence the values of 𝑡1 and 𝑇 in (45) and (46) are optimal. 

APPENDIX 1d:  

proof of Theorem 1(ii) 

When  ∆1< 0, then 𝐹1(𝑡1) < 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞). Therefore, 
𝜕𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇
=

𝐹1(𝑡1)

𝑇2 < 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞) which 

implies 𝑇𝑃1(𝑡1,   𝑇) is a strictly decreasing function of 𝑡1.  Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value when 𝑡1 is 

minimum.  Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value at the point (𝑡11
∗ ,   𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

𝐶𝑏𝛿
(X1𝑡𝑑 − Y1).  This completes the proof. 
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