Immunotoxicity and proliferation of human peripheral blood mononuclear cells of HIV-positive patient after treatment with aqueous extract of polyherbal formulation

Usman Abubakar Babangida¹, Gana Samuel Eniola¹, Hamid Kabir Magaji¹, Abubakar Nura Kaoje¹, Aliyu Mansur¹, Samuel Eniola¹, Gana Samuel Eniola¹, Hamid Kabir Magaji¹, Abubakar Nura Kaoje¹, Aliyu Mansur¹

¹Department of Immunology, School of Medical Laboratory Science, Usman Danfodiyo University, Sokoto, Nigeria
²Department of Health Services, Federal University Birnin Kebbi, P.M.B. 1157, Kebbi, Nigeria
³Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, P.M.B. 3011, Kano, Nigeria.
⁴Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, College of Health Sciences, Bayero University, P.M.B. 3011, Kano, Nigeria.

ABSTRACT
Medicinal plants have been widely used for medicinal purposes in the treatment of various ailments including human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). This study evaluated the effect of aqueous extracts of polyherbal formulation (PHF) on peripheral blood mononuclear cells (PBMCs) of an HIV+ patient. In this study, 4 ml of blood was collected from HIV+ patient who has not commenced antiretroviral treatment. PBMCs were isolated using the Ficoll-Paque method and counted using the trypan blue assay. The isolated PBMCs were treated with different concentrations of the PHF (25, 50, 100, and 200 µg/ml). Cytotoxicity and proliferation were determined using the WST-8 assay. The percentage viability in this study was 96.74%, whereas the non-viable cell percentage was 3.26%. The lowest percentage of cytotoxicity for the PHF was 0.05% at 25 µg/ml of the extract, while the highest was 5.35% at 200 µg/ml. The mean absorbance scores of the formulation’s various concentrations and the control group did not significantly differ from one another ($F=0.622$, df = 5, $p=0.69$). There was significant difference ($t=-4.887$, df =6, 95% CI= -0.1566 to -0.0521, $p = 0.003$) in mean absorbance scores between control and treatment. The polyherbal formulation exerts the lowest cytotoxicity of 0.05% and significant proliferation on the PBMCs at 25 µg/ml. The PHF has potential immunoproliferative activity with a good safety margin. An in-depth study of the bioactivity of the PHF on individual immune cells is recommended.

INTRODUCTION
The knowledge of herbal products (leaves, seeds, bark, roots, fruits, secretions) usage for medicinal purposes stems from several years of struggle to find remedies to illnesses, which include infectious and non-infectious ailments (Petrovska, 2012; Anywar et al., 2020). The majority of therapeutic herbs are obtained locally from the wild, where they naturally thrive (Kankara et al., 2015). About 60% of the world’s population and 80% of the population of developing countries rely on traditional medicines (Mukhtar et al., 2008). Several chemicals extracted from plant species have subsequently been employed as medications in chemically altered forms, while others have served as templates for synthetic counterparts. Purified chemicals from higher plant species have been utilized directly as pharmaceuticals (Lutoti, 2020). In developing countries, the majority of people, especially those living in rural areas, are still obliged to use traditional medicines to treat their disease conditions due to poverty, ignorance, and a lack of access to modern health facilities derived components (Mukhtar et al., 2008). Several chemicals extracted from plant species have subsequently been employed as medications in chemically altered forms, while others have served as templates for synthetic counterparts. Purified chemicals from higher plant species have been utilized directly as pharmaceuticals (Lutoti, 2020). In developing countries, the majority of people, especially those living in rural areas, are still obliged to use traditional medicines to treat their disease conditions due to poverty, ignorance, and a lack of access to modern health facilities.
Several viral diseases have been treated with a range of medicinal herbs, some of which have broad-spectrum antiviral action (Mukhtar et al., 2008). In Nigeria, many patients use herbal remedies for the management of HIV/AIDS, without sufficient scientific proof that those herbs possess anti-HIV activity (Ajayioba and Ogboye, 2006). The traditional healthcare system is not only easily available but also provides an affordable, customized, and socially acceptable alternative to the expensive allopathic medical system (Isola, 2013). According to Norisugi et al. (2014), herbal medications are being on practice globally. Thus, numerous medicinal plants have been found to have biological effects, including immunomodulation of mammalian cells (Nhu et al., 2019). Many people who use plant products for medicinal purposes lack the necessary information or training for using herbal products safely (Ala et al., 2018).

The blood cells known as peripheral blood mononuclear cells (PBMCs) comprise groups of lymphocytes (T cells, B cells, and NK cells), monocytes, and dendritic cells (Pourahmad and Salimi, 2015). In humans, PBMCs subpopulation frequencies vary from person to person, but typically, lymphocyte frequencies range between 70 to 90 %, monocyte frequencies between 10 to 20 %, and dendritic cell frequencies from 1 to 2 %. The PBMCs being the major cells that constitute the body’s immune system, respond selectively to non-self (Pourahmad and Salimi, 2015).

A polyherbal formulation (PHF) is a global practice that entails the use of more than one herbal product to achieve a synergistic effect with targeted efficacy and lower toxicity (Karoke et al., 2019). The PHF used for this study was previously reported by Isah et al. (2018). The PHF was locally used under the name “Garjin” where the herbalists claim it has medicinal properties, it consisted of baobab (Adansonia digitata (L.) Gaertn) leaves, orchid (Baumbia rufesens Lam: Pilostigma rufesens Lam) bark, gum Arabic Acacia senegal L. Wild. (Senegalia senegal (L.) Britton) bark, black cuch (Acacia polyacantha willid: Senegalia polyacantha (Willd) Seigler & Ebinger) bark, and garlic (Allium sativum (L): Foeniculum vulgare Kazakova) yellow bulb. Previous studies on the PHF have shown improvements in neutrophil adhesion and T-dependent antibody response (Isah et al., 2018), and exerted immunostimulatory activity on the production of Th1/Th2 cytokines and the rat cell-mediated immune response (Hamid et al., 2021a). The PHF also confers immunomodulatory activity on mice’s macrophage function and humoral immunity to sheep red blood cells (Hamid et al., 2021b). It exhibits protective activity in cyclophosphamide-induced immunosuppression (Abobakar et al., 2021). However, the effect of the PHF on the PBMCs, which form a significant part of the immune system is unknown. Leukopenia and more significantly lymphopenia due to a massive reduction of CD4+T cells characterized advanced stages of HIV/AIDS (Bhardwaj et al., 2020). Hence, drugs with the potential to induce lymphocyte proliferation might stand a chance to improve HIV/AIDS cytopenia. Consequently, the purpose of this study is to evaluate the impact of the PHF on the PBMCs of HIV+ patient by evaluating the PHF’s cytotoxic and proliferative activity.

**MATERIALS AND METHODS**

**Polyherbal Formulation**

The PHF aqueous extract described by Isah et al. (2018) was first kept and preserved at 5°C in airtight bottles and marked as PHF aqueous extracts by the Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University Sokoto. The PHF is made up of five plant extracts: baobab (Adansonia digitata (L.) Gaertn) leaves, orchid bush (Baumbia rufesens Lam: Pilostigma rufesens (Lam) bark, gum Arabic Acacia senegal L. Wild. (Senegalia senegal (L.) Britton) bark, black cuch (Acacia polyacantha willid: Senegalia polyacantha (Willd) Seigler & Ebinger) bark, and garlic (Allium sativum (L): Foeniculum vulgare Kazakova) yellow bulb.

**Source of the PBMCs**

The Monovette vacutainer system containing lithium heparin as an anticoagulant was used to collect approximately four millilitres (4 ml) of whole blood from a voluntary donor who was recently diagnosed HIV-positive, had not commenced antiretroviral treatment, and had consented to participate in the study. The blood sample collected was immediately processed. Ethical clearance for this study protocol was issued by the Hospital Ethics and Research Committee of Specialist Hospital Sokoto with reference number SHS/SUB/133/vol.1. The research was carried out in line with the Helsinki declaration (Rickham, 1964).

**Isolation of PBMCs**

The procedure for the isolation of PBMCs was carried out according to the manufacturer’s instructions and described in Hamid et al. (2021c). Briefly, a 15 ml falcon tube was loaded with 3 ml of Histopaque-1077 (Sigma-Aldrich® Co. United Kingdom) at room temperature. Then, 3 ml of whole blood was carefully transferred onto the Histopaque-1077. It was centrifuged at 400 × g for 30 min at room temperature, the PBMCs-containing middle layer was then carefully aspirated with a Pasteur pipette to within 0.5 cm of the opaque interface containing mononuclear cells and was transferred into a clean conical centrifuge tube. The cells were mixed by gently pulling in and out of a Pasteur pipette after being gently washed by adding 10 ml of isotonic phosphate-buffered saline solution. We washed the cells by centrifugation at 250 g for 10 min, and the supernatant was discarded. The cells pellets were suspended in 5 ml of isotonic phosphate-buffered saline solution and gently mixed by drawing in and out of the pipette. Following that, the cells were washed as described above and the step was repeated two more times. The cells pellets were re-suspended in 2 ml of RPMI-1640 (Beijing Solar bio Science and Technology Co. Ltd, China) and treated with 10% heat-inactivated foetal bovine serum (FBS).
Trypan blue assay
The protocol was carried out as directed by the manufacturer and described in Hamid et al. (2021c). Ten microliters (10 μl) of 0.4% trypan blue (Sigma-Aldrich® Co. United Kingdom) solution (w/v) and 10 μl of the PBMCs suspension were transferred into a cryovials tube (dilution factor = 2) and mixed, it was then allowed to stand for a maximum of 5 minutes. 10 μl of the trypan blue-PBMCs suspension mixture was added to both chambers of the haemocytometer while the cover-slip was in place. With the use of a light microscope, the number of both live and dead cells was counted. Viable cells are colourless, whereas non-viable ones were stained blue. The percentage of viable cells was calculated.

Determination of percentage cytotoxicity
Cytotoxicity of the PHF extracts on PBMCs was determined using WST-8 cell proliferation assay kit (Beijing Solar bio Science and Technology Co. Ltd, China) and the procedure was carried out according to manufacturers’ instructions. The cells (100 μl/well) were seeded in a 48-well microplate with RPMI-1640 medium at a concentration of 1 x 10⁵ cells/well and then kept for 24 hours in a humid incubator at 37°C with 5% CO₂. The 48-well microplate's cells were then exposed to various amounts of treatment (10 μl/well) of the PHF extract (25, 50, 100, and 200 μg/ml). The treated cells were then placed in a humidified incubator and incubated for 4 hours at 37°C and 5% CO₂. After the incubation period, 10 μl of WST-8 reagent was added to the treated cells also the control and was incubated for 1 hour at 37°C and 5% CO₂ in a humidified incubator. The absorbance was read using an ELISA microplate reader at 450 nm and cytotoxicity was calculated. All steps for the cytotoxicity test were done in duplicate, as described in the manufacturer’s protocol. The PBMCs suspended in RPMI-1640 were used as the control and was incubated for 1 hour at 37°C. The PBMCs not treated with the extract, RPMI-1640, FBS, and PBS were considered controls. All treatments were performed in duplicate, as described in the manufacturer’s protocol. The absorbance was read using an ELISA microplate reader at 450 nm. The amount of absorbance is proportional to cell number (proliferation).

Statistical analysis
The acquired results were entered into IBM’s SPSS version 21 (US) for analysis. While categorical data were expressed in percentages, continuous variables were expressed as mean and standard deviation (SD). To compare across groups, a one-way analysis of variance (ANOVA) with a post-hoc test (Bonferroni) was used. To compare the mean absorbance of the control and treatment groups on PBMC proliferation, an independent sample t-test was used. Statistical significance was defined as a p-value of less than 0.05.

RESULTS

PBMCs count and percentage viability
The total number of viable PBMCs counted before treatment with the PHF was 1664 x 10⁴ cells/ml (96.74%), whereas non-viable cells were 56 x 10⁴ cells/ml (3.26%).

Immunotoxicity of PBMCs
The lowest percentage of cytotoxicity for the PHF was 0.05% at 25 μg/ml of the extract concentration, while the highest was 5.35% at 200 μg/ml. The percentage of cytotoxicity tends to increase with an increase in extract concentration. The minimum concentration with the lowest cytotoxicity was 25 μg/ml of the extract and this is equivalent to inhibitory concentration (IC₅₀) (Figure 1).

![Figure 1: Percentage cytotoxicity of different concentrations of the PHF on PBMCs.](https://scientifica.umyu.edu.ng/)

<table>
<thead>
<tr>
<th>Formulation concentration (μg/ml)</th>
<th>Percentage Cytotoxicity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>

% cytotoxicity = \[ \frac{100 \times (\text{Control} - \text{Sample})}{\text{Control}} \]

Determination of PBMCs proliferation
For the proliferation of PBMCs, a WST-8 cell proliferation assay kit (Beijing Solar bio Science and Technology Co. Ltd, China) was used. The experiment was carried out as directed by the manufacturer. The PBMCs suspension (100 μl) was dispensed in 48-well microplates at a density of 1 x 10⁵ cells/well in RPMI-1640 and kept at 37°C in a 5% CO₂ humidified incubator for 24 hours. Phytohaemagglutinin (Sigma-Aldrich® Co., United Kingdom) (PHA: 10 μg/ml) was added to each of the PBMCs cultures with 10 μl of the PHF extracts at IC₅₀ concentration (25 μg/ml) incubated at 37°C and 5% CO₂ in a humidified incubator for 4 hours. Then 10 μl/well of WST-8 cell proliferation assay reagent was added and then incubated for 1 hour at 37°C and 5% CO₂ in a humidified incubator. The PBMCs not treated with the extract, RPMI-1640, FBS, and PBS were considered controls. All treatments were performed in duplicate, as described in the manufacturer’s protocol. The absorbance was read using an ELISA microplate reader at 450 nm. The amount of absorbance is proportional to cell number (proliferation).

https://scientifica.umyu.edu.ng/
Comparison of different concentrations of the PHF on the PBMCs

As shown in Figure 2, the mean absorbance scores and SD of control were $M=1.842$, and $SD=0.107$. While the mean absorbance of the different concentration of the PHF were 25 $\mu$g/ml ($M=1.841$, $SD=0.104$), 50 $\mu$g/ml ($M=1.839$, $SD=0.102$), 100 $\mu$g/ml ($M=1.796$, $SD=0.103$), and 200 $\mu$g/ml ($M=1.743$, $SD=0.106$). A one-way between-groups analysis of variance was conducted to compare the effect of different concentrations of the PHF on PBMCs. There was no significant difference in the mean absorbance scores of control and that of different concentration of the (i.e. 25, 50, 100 and 200 $\mu$g/ml) ($F = 0.622, p = 0.69$).

DISCUSSION

In the current study, we investigated the in vitro activity of aqueous extract of the PHF on human PBMCs of a patient with confirmed HIV infection. The PBMCs viability reported in this study was within the expected normal range. Our viability score is in agreement with previous studies (Hamid et al., 2021c; Kalgo et al., 2020; Nguyen and Le, 2021). This also agrees with the viability test done by Kim et al. (2011) using the trypan blue dye exclusion method which says that the manual method of viability testing gives accurate results as with other techniques such as microscopic cell counter with microchip and flow cytometry for assessing cell viability.

This study demonstrated that there was no cytotoxic difference between control PBMCs and those PBMCs treated with different concentrations of the PHF. The indifference, as well as the toxicity at the lowest PHF concentration, indicated that the PHF possesses potentially safe constituents that can be used safely in future drug formulation. The PHF has minimal toxicity on the PBMCs even at the highest concentration. This contradicts the studies done by Sudeep et al. (2017) and Kalgo et al. (2019) where different plant extracts of similar concentrations caused a decrease in the viability of the normal neutrophils and lymphocytes showing that the extracts were toxic to the cells.

When the PBMCs were exposed to the lowest PHF concentration, we recorded significantly higher cells number in comparison to the control. Besides, a research has shown that a lower concentration of a plant extract can cause an increase in cell viability while a higher concentration can lead to the cytotoxicity of cells (Nemudzivhadi and Masoko, 2014). This might be a result of low dose-concentration of PHF on the cells which did not exert cytotoxicity as reported by Aldbass et al. (2021) who observed that the dose concentration of plant extracts is a function of cytotoxicity. A test substance's potential toxicity, including that of plant extracts or biologically active compounds isolated from plants, could be determined through cytotoxicity studies. The successful development of a pharmaceutical or cosmetic preparation depends on the test substance having little to no toxicity. In this context, studies on cellular toxicity are essential for determining a safe dose that is not harmful to cells (McGaw et al., 2014).

Accordingly, the concentration of the studied PHF induces proliferation in the cells, hence increasing their viability. Our finding is in line with the findings of Swee et al. (2011) who reported that Rhaphidophora korthalsii methanol extract induced proliferation and activation of PBMCs, which in turn induce apoptosis of effector cancer cell (K562). Another study has shown that Echinacea purpurea extract (Cichoric acid) increased the proliferation and cell cycle activities of PBMCs (Wang et al., 2020). Makgatho et al. (2015) reported that leaf extract of Albizia gummifera had growth-promoting activities on PBMCs. Furthermore,

Figure 3: Effect of PHF on human PBMCs proliferation.
scientists reported varying effects of different plants extracts on PBMCs, some promote proliferation (Glycyrrhiza glabra L. and Astragalus membranaceus), and some inhibit proliferation (Cassia alata L. Wedelia chinesis, Loniceria japonica, Caesalpinia sappan L., Schefflera heptaphylla, and Piper betle) (Nguyen and Le, 2021).

Furthermore, different plant extracts have different effect(s) on the proliferation and cytotoxic effects on PBMCs at possibly different concentration. This phenomenon could be based on the phytochemical content and combination in the studied plant products. As such, these individual constituents need to be studied in more detail, in order to have a specific therapeutic agent with desired activity against the desired target condition.

CONCLUSION
The polyherbal formulation exerts the lowest cytotoxicity of 0.05% and significant proliferation at 25 µg/ml concentration. The PHF has potential immunoproliferative activity on the PBMCs with a good safety margin. These qualities indicated that the PHF has potential for therapeutic formulation. An in-depth study of the bioactivity of the individual immune cells will invariably provide an avenue for drug development.

CONFLICT OF INTEREST
Authors declare no competing interest

ACKNOWLEDGEMENT
The Garjin® PHF was initially donated by Mr. Sani Muhammad Umar (Nagge) of Al-Mustakshif Medical Health Centre, Kano, Nigeria (RC: 1393615), and the authors appreciate his cooperation.

REFERENCES


