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INTRODUCTION
The Gompertz distribution has garnered significant 
attention and widespread use by researchers in various 
fields over the past few decades.  This distribution was 
formulated to model human mortality, survival times, and 
actuarial tables (Gompertz, 1825).  Gompertz distribution 
has found applications in a wide range of disciplines, such 
as biological studies, reliability analysis, medical sciences, 
actuarial sciences, engineering, environmental science, 
demography, economics, and finance (Alizadeh et al., 
2017).  Essentially, it is a broadened form of the 
exponential distribution and is frequently utilized in 
examining lifespan studies (Sanku et al., 2018).  
Researchers have devised numerous additional 
distributions to better capture complex datasets by 
developing a new family of probability distributions that 
attracted the attention of dedicated scholars and 
statisticians who value the flexibility offered by these 
distributions.  Notable examples encompass the 
Exponentiated-G (E-G) class introduced by Gupta et al. 
(1998), the Beta-G class by Eugene et al. (2002), the 
Gamma-G distributions by Zografos and Balakrishnan 
(2009), and the Kumaraswamy Weibull-G family by 

Cordeiro et al., (2010), the Generalized Gompertz 
distribution by El-Gohary et al., (2013), the Weibull-G 
family of Bourguignon et al., (2014), the Kumaraswamy-G 
family by Cordeiro and Castro (2011), the Power 
Gompertz distribution by Ieren et al., (2019), Type I Half-
Logistic Exponentiated-G Family by Bello et al., (2021), 
the Transform-Transformer family introduced by 
Alzaatreh et al., (2013), New Generalized Weibull Odd 
Frechet Family by Usman et al.,(2020), Kumaraswamy-
Odd Rayleigh-G by Falgore and Doguwa (2020), Odd 
Gompertz- G Family by Kajuru et al., (2023) and New 
Generalized Odd Frechet-G by Abubakar Sadiq et 
al.,(2023).  Yet, some real datasets cannot fit so many 
existing distributions. This provides an avenue for 
developing a new family of distributions that can be used 
to generalize any parent distribution that will 
accommodate diverse behavior patterns in practical 
applications to modeling different datasets.  The 
tractability of a probability distribution is crucial since 
more adaptable models provide richer evidence compared 
to less flexible ones.  However, the manageability of these 
distributions also matters, especially when generating 
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ABSTRACT 
This research aimed at presenting a new statistical model called the Generalized Gompertz-
G family of distribution via the method of Alzaatreh, which introduces additional shape 
parameters for any baseline distribution.  We investigate various mathematical aspects of this 
model, explicitly deriving properties such as moments, moment-generating function, survival 
function, hazard function, entropies, quantile function, and order statistics distribution.  We 
explore a particular member of this family of distributions, the Generalized Gompertz-
Exponential Distribution (GGED), by defining its properties and doing a detailed analysis.  
A Monte Carlo simulation was utilized to evaluate the model's flexibility and performance, 
and the distribution family's potential utility in real-world data analysis was further highlighted 
by investigating the model's parameter estimation using the method of maximum likelihood.  
We also assess the adaptability of the Generalized Gompertz-Exponential distribution using 
a real-life dataset and relating its performance with other established models through 
information criterion.  The results show that the Generalized Gompertz-Exponential 
distribution (GGED) outperformed the compared distributions, emphasizing its potential 
applicability in diverse practical scenarios for data modeling. 
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random samples (Usman et al., 2020).  However, Alizadeh 
et al. (2017) developed the Gompertz-G (G-G) family of 
distribution using a link function without an extra shape 
parameter in the upper limit of the CDF of the random 
variable X. Therefore, this research aimed to develop a 
new generator using a link function with an extra shape 
parameter in the upper limit of the CDF of the random 
variable X known as the Generalized Gompertz-G (GG-
G) family of distributions to accommodate more flexible 
distributions in fitting real-life datasets and displaying 
different behavioral shapes in practical applications 
compared to other class of distributions.  

MATERIAL AND METHOD 

Generalized Gompertz-G (GG-G) Family  

The cumulative distribution function (CDF) and 
probability density function (PDF) of the Gompertz 

distribution, as described by Lanert (2012), with 𝜃 

representing the scale parameter and 𝛾 as the shape 
parameter, can be expressed in the following 
comportment: 

𝐺(𝑡; 𝜃, 𝛾) = 1 − 𝑒
−

𝜃

𝛾
(𝑒𝛾𝑡−1)

; 0 < 𝑡 < ∞, 𝜃, 𝛾 > 0    (1) 

𝑔(𝑡; 𝜃, 𝛾) = 𝜃𝑒𝛾𝑡𝑒
−

𝜃

𝛾
(𝑒𝛾𝑡−1)

; 0 < 𝑡 < ∞, 𝜃, 𝛾 > 0 (2) 

Let 𝑔(𝑡; 𝜃, 𝛾) be the PDF of the Gompertz distribution 

and let 𝐹(𝑥) be the CDF of a random variable X. We 
defined the CDF of the Generalized Gompertz-G (GG-
G) family of distribution by integrating the density 
function of equation (2) to attain the CDF as: 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = ∫ 𝑔(𝑡; 𝜃, 𝛾)𝑑𝑡
− 𝑙𝑜𝑔[1−𝐺(𝑥;𝛷)𝛼]

0
=

1 − 𝑒
−

𝜃

𝛾
[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

        (3) 

The corresponding PDF is realized by differentiating 
equation (3) as follows: 

𝑓𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 𝛼𝜃𝑔(𝑥; 𝛷)𝐺(𝑥; 𝛷)𝛼−1[1 −

𝐺(𝑥; 𝛷)𝛼]−𝛾−1𝑒
−

𝜃

𝛾
[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

                            (4)

 
Where 𝜃 > 0 is the scale parameter, and 𝛼 > 0,𝛾 > 0 are 

the shape parameters,𝑔(𝑥, 𝛷) and𝐺(𝑥; 𝛷) are the PDF 

and CDF of any parent distribution, and𝛷is the parameter 
vector in the model, therefore a random variable X with 
distribution function and density function in equations (3) 

and (4) is denoted by𝑋~𝐺𝐺 − 𝐺(𝛼, 𝜃, 𝛾, 𝛷). 

Survival and Hazard Rate Function of the GG-G 
Family 

The survival function and hazard function are provided as 
follows, respectively: 

𝑆𝐺𝐺−𝐺(𝑥) = 𝑒
−

𝜃

𝛾
[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

     (5) 

ℎ𝐺𝐺−𝐺(𝑥) = 𝛼𝜃𝑔𝐺(𝑥; 𝛷)𝛼−1[1 − 𝐺(𝑥; 𝛷)𝛼]−𝛾−1   (6) 

Quantile Function of GG-G Family 

The quantile function of the GG-G family is derived by 
reversing the cumulative distribution function (CDF) 
provided in equation (3), it is stated as: 

𝑥 = 𝑄(𝑢) = 𝐺−1

1

𝛾
𝑙𝑜𝑔(1−

𝛾

𝜃
𝑙𝑜𝑔(1−𝑢))

[1+[
1

𝛾
𝑙𝑜𝑔(1−

𝛾

𝜃
𝑙𝑜𝑔(1−𝑢))]]

  (7) 

In this context, 𝐺−1represents the quantile function of a 
continuous parent distribution, and "u" is treated as a 
random variable following a uniform distribution in the 
range of (0, 1). 

Reduced form of the CDF and PDF of GG-G Family 

In this section, we will delve into an insightful expansion 
of the cumulative distribution function of the GG-G 
family. 

Lemma: The equation that offers a linear representation 
of the GG-G family of distributions can be stated as 
follows: 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − ∑ 𝑌𝑘
∞
𝑘=0 𝐵𝛼𝑘(𝑥; 𝛷) (8) 

Proof 

𝐹(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − 𝑒
−

𝜃
𝛾

[(1−𝐺(𝑥)𝛼)−𝛾−1]
 

From the expansion using a power series 

𝑒
−

𝜃

𝛾
[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

= ∑∞
𝑖=0

(−1)𝑖

𝑖!
(

𝜃

𝛾
)

𝑖
[(1 −

𝐺(𝑥; 𝛷)𝛼)−𝛾]𝑖  

And [(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾]𝑖 = [
1

(1−𝐺(𝑥;𝛷)𝛼)𝛾 − 1]
𝑖

=

[
1−(1−𝐺(𝑥;𝛷)𝛼)𝛾

(1−𝐺(𝑥;𝛷)𝛼)𝛾 ]
𝑖

 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − ∑∞
𝑖=0

(−1)𝑖

𝑖!
(

𝜃

𝛾
)

𝑖
[1 −

(1 − 𝐺(𝑥; 𝛷)𝛼)𝛾]𝑖[(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾]𝑖    (9) 

By binomial expansion, 

[1 − (1 − 𝐺(𝑥; 𝛷)𝛼)𝛾]𝑖 = ∑ (−1)𝑗 (
𝑖
𝑗
)∞

𝑗=0 (1 −

𝐺(𝑥; 𝛷)𝛼)𝛾𝑗    

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 −

∑∞
𝑖=0 ∑∞

𝑗=0
(−1)𝑖+𝑗

𝑖!
(

𝜃

𝛾
)

𝑖
(

𝑖
𝑗

) (1 −

𝐺(𝑥; 𝛷)𝛼)𝛾𝑗(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾𝑖   

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 −

𝜃𝑖𝛾−𝑖 ∑∞
𝑖=0 ∑∞

𝑗=0
(−1)𝑖+𝑗

𝑖!
(

𝑖
𝑗

) (1 −

𝐺(𝑥; 𝛷)𝛼)−𝛾(𝑖−𝑗)         (10) 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 1, March 2024, Pp 120 – 128 

 122 

 

https://scientifica.umyu.edu.ng/                      Kajuru et al., /USci, 3(1): 120 – 128, March 2024  
 

By binomial expansion, 

 (1 − 𝐺(𝑥)𝛼)−𝛾(𝑖−𝑗) = ∑

∞

𝑘=0

𝛤(𝑘 + 𝛾(𝑖 − 𝑗))

𝑘! 𝛤𝛾(𝑖 − 𝑗)
(𝐺(𝑥; 𝛷)𝛼)𝑘 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − 𝜃𝑖𝛾−𝑖 ∑∞
𝑖=0 ∑∞

𝑗=0 ∑∞
𝑘=0

(−1)𝑖+𝑗𝛤(𝑘+𝛾(𝑖−𝑗))

𝑖!𝑘!𝛤𝛾(𝑖−𝑗)
(

𝑖
𝑗

) 𝐺(𝑥; 𝛷)𝛼𝑘     (11) 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − ∑ 𝑌𝑘

∞

𝑘=0

𝐺(𝑥; 𝛷)𝛼𝑘 

𝐹𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = 1 − ∑ 𝑌𝑘
∞
𝑘=0 𝐵𝛼𝑘(𝑥; 𝛷)         (12) 

Where 𝑌𝑘 = 𝜃𝑖𝛾−𝑖 ∑∞
𝑖=0 ∑∞

𝑗=0
(−1)𝑖+𝑗𝛤(𝑘+𝛾(𝑖−𝑗))

𝑖!𝑘!𝛤𝛾(𝑖−𝑗)
(

𝑖
𝑗

)and 𝐵(𝛼𝑘)(𝑥; 𝛷) = 𝐺(𝑥; 𝛷)𝛼𝑘 denotes the CDF of the 

Exponentiated-G distribution with power parameter𝛼𝑘 > 0.  We can express the probability density function of X in a 
linear mixture of Expt-G density function as follows: 

𝑓𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷) = ∑∞
𝑘=0 𝑌𝑘𝑏𝛼𝑘(𝑥; 𝛷)        (13)

  

where 𝑏𝛼𝑘(𝑥; 𝛷) = 𝛼𝑘𝑔(𝑥; 𝛷)𝐺(𝑥; 𝛷)𝛼𝑘−1  

Moments of the GG-G Family 

The expression for the rth moment of a random variable 
X, which adheres to the GG-G family is as follows: 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)𝑑𝑥 =
∞

0

∫ 𝑥𝑟 ∑∞
𝑘=0 𝑌𝑘𝑏𝛼𝑘(𝑥; 𝛷)𝑑𝑥

∞

0
= ∑∞

𝑘=0 𝑌𝑘𝐸(𝑋𝑟
𝑘)      (14) 

Where 𝐸(𝑋𝑟
𝑘) = ∫ 𝑥𝑟𝑏𝛼𝑘(𝑥; 𝛷)𝑑𝑥

∞

0
 

Moment-Generating Function of the GG-G Family 

The moment-generating function for a random variable 
X, which belongs to the GG-G family, is expressed as: 

𝑀𝑥
𝐺𝐺−𝐺(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)𝑑𝑥

∞

0
=

∑∞
𝑘=0 𝑌𝑘𝐸(𝑒𝑡𝑥𝑘)    (15) 

Where 𝐸(𝑒𝑡𝑥𝑘) = ∫ 𝑒𝑡𝑥𝑏𝛼𝑘(𝑥; 𝛷)𝑑𝑥
∞

0
 

Entropy of the GG-G Family   

Entropy serves as a metric to gauge the level of diversity 
or unpredictability in a random variable X. Statistically, the 
(Renyi, 1961) entropy of the GG-G family is defined as 
follows: 

𝐼𝑅(𝛹) =
1

1 − 𝛹
𝑙𝑜𝑔 ∫ 𝑓𝐺𝐺−𝐺(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)𝛹𝑑𝑥

∞

0

=
1

1 − 𝛹
𝑙𝑜𝑔 ∫ (∑

∞

𝑘=0

𝑌𝑘𝑏𝛼𝑘(𝑥; 𝛷))

𝛹

𝑑𝑥
∞

0

 

𝐼𝑅(𝛹) =
1

1−𝛹
𝑙𝑜𝑔(∑∞

𝑘=0 𝑌𝑘)𝛹 ∫ (𝑏𝛼𝑘(𝑥; 𝛷))𝛹𝑑𝑥
∞

0

      (16) 

Where 𝛹 > 0 and Ψ ≠ 1 

Order Statistics of the GG-G Family 

Suppose we have a random sample with values 

𝑋1, 𝑋2, . . . , 𝑋𝑛 from the GG-G distribution, and we 

denote the corresponding order statistics as𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤

. . . 𝑋𝑛:𝑛.  In this context, the expression for the 𝑖thorder 
statistic can be stated as: 

𝑓𝑖:𝑛(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)

=
𝑛!

(𝑖 − 1)(𝑛 − 𝑖)!
[𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)][𝐹(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)]𝑖−1[1

− 𝐹(𝑥; 𝛼, 𝜃, 𝛾, 𝛷)]𝑛−𝑖 

=
𝑛!

(𝑖−1)(𝑛−𝑖)!
[∑∞

𝑘=0 𝑌𝑘ℎ𝛼𝑘(𝑥; 𝛷)][1 −

∑∞
𝑘=0 𝑌𝑘𝐵𝛼𝑘(𝑥; 𝛷)]𝑖−1[∑∞

𝑘=0 𝑌𝑘𝐵𝛼𝑘(𝑥; 𝛷)]𝑛−𝑖 (17) 

Estimation of Parameters of the GG-G Family  

Assuming we have 𝑥1, 𝑥2,  𝑥3,  . . .   ,  𝑥𝑛 observed values 

from the proposed GG-G family with 𝛼, 𝜃, 𝛾 parameters, 

and we have a [𝑚  ×  1] parameter vector.  The log-

likelihood function, denoted as𝛹 is formulated as follows: 

𝐿(𝜓) = 𝑙𝑜𝑔 ∏ 𝑓(𝑥) = 𝑛 𝑙𝑜𝑔 𝛼 + 𝑛 𝑙𝑜𝑔 𝜃 +𝑛
𝑖=1

∑𝑛
𝑖=1 𝑙𝑜𝑔(𝑔(𝑥; 𝛷)) + (𝛼 −

1) ∑𝑛
𝑖=1 𝑙𝑜𝑔(𝐺(𝑥; 𝛷)) − (𝛾 + 1) ∑𝑛

𝑖=1 𝑙𝑜𝑔(1 −

𝐺(𝑥; 𝛷)𝛼) −
𝜃

𝛾
∑𝑛

𝑖=1 𝑙𝑜𝑔[(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾 − 1]

        
       

(18)

 

The partial derivatives of equation (18) with respect to the 

 (𝛼, 𝜃,  𝛾, 𝛷) parameters are provided as follows:  
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𝜕𝐿(𝜓)

𝜕𝛼
=

𝑛

𝛼
+ ∑𝑛

𝑖=1 𝑙𝑜𝑔 𝐺 (𝑥; 𝛷) − (𝛾 +

1) ∑𝑛
𝑖=1

𝐺(𝑥;𝛷)𝛼 𝑙𝑛 𝐺(𝑥;𝛷)

(1−𝐺(𝑥;𝛷)𝛼)
+

𝜃

𝛾
∑𝑛

𝑖=1
𝐺(𝑥;𝛷)𝛼 𝑙𝑛 𝐺(𝑥;𝛷)

[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]
   

      (19) 

𝜕𝐿(𝜓)

𝜕𝜃
=

𝑛

𝜃
−

1

𝛾
∑𝑛

𝑖=1 𝑙𝑜𝑔[(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾 − 1] 

      (20) 

𝜕𝐿(𝜓)

𝜕𝛾
= − ∑𝑛

𝑖=1 [𝑙𝑜𝑔( 1 − 𝐺(𝑥; 𝛷)𝛼)] +

𝜃

𝛾2
∑𝑛

𝑖=1 𝑙𝑜𝑔[(1 − 𝐺(𝑥; 𝛷)𝛼)−𝛾 − 1] +

𝜃 ∑𝑛
𝑖=1

(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1

[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

        

(21) 

𝜕𝐿(𝜓)

𝜕𝛷
= ∑𝑛

𝑖=1
𝑔′(𝑥;𝛷)

𝑔(𝑥;𝛷)
+ (𝛼 − 1) ∑𝑛

𝑖=1
𝑔(𝑥;𝛷)

𝐺(𝑥;𝛷)
+ (𝛾 +

1) ∑𝑛
𝑖=1

𝛼𝑔(𝑥;𝛷)𝐺(𝑥;𝛷)𝛼−1

(1−𝐺(𝑥;𝛷)𝛼)
+

𝜃

𝛾
∑𝑛

𝑖=1
𝛼𝑔(𝑥;𝛷)𝐺(𝑥;𝛷)𝛼−1

[(1−𝐺(𝑥;𝛷)𝛼)−𝛾−1]

 

      

(22) 

Sub-Model of the GG-G Family  

When you introduce an Exponential distribution into the 

GG-G family, you generate a new distribution.  The 

cumulative distribution function (CDF) and probability 

density function (PDF) of the Exponential distribution, 

which serves as the foundational distribution with a 

parameter𝜇, are expressed as follows: 

𝑃(𝑥; 𝜇) = 1 − 𝑒−𝜇𝑥    (23) 

𝑝(𝑥; 𝜇) = 𝜇𝑒−𝜇𝑥𝑥 > 0, 𝜇 > 0   (24) 

Inducing equations (23) and (24) into equations (3), (4), 

(5), (6), and (7), will provide the distribution 

function𝐹(𝑥), density function𝑓(𝑥), survival 

function𝑆(𝑥), hazard functionℎ(𝑥), and quantile 

function𝑄(𝑢) of the Generalized Gompertz-Exponential 

distribution (GG-ED). 

Graph for the Sub-Model of the GG-G Family 

Here, we display graphs (Figure 1, 2, 3 and 4) depicting the 

density function, distribution function, survival function, 

and hazard function of the GG- Exponential distribution 

across various parameter values; 

 

Figure 1: PDF of the Generalized Gompertz-Exponential Distribution 
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Figure 2: CDF of the Generalized Gompertz-Exponential Distribution 

 

Figure 3: Survival function of the Generalized Gompertz-Exponential Distribution 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 1, March 2024, Pp 120 – 128 

 125 

 

https://scientifica.umyu.edu.ng/                      Kajuru et al., /USci, 3(1): 120 – 128, March 2024  
 

 

Figure 4: Hazard function of the Generalized Gompertz-Exponential Distribution 

MONTE CARLO SIMULATION AND 
APPLICATION  

Monte Carlo Simulation  

The widely used category of computational techniques 
called "Monte Carlo simulation" is utilized to generate 
numerical outcomes from replicated random samples.  
This approach is employed to tackle the issue of assessing 
risk in modeling lifetime data. 

Simulation Study 

To assess the reliability of the GG-ED, a simulation study 

was conducted using the Monte Carlo Simulation 

technique.  The objective of this study was to compute the 

average, bias, and root mean square error of the model 

parameters estimated through maximum likelihood 

estimation.  Simulated data was created by applying the 

quantile function defined in equation (7), and this 

procedure was reiterated 1,000 times across different 

sample sizes: n = 20, 50, 100, 250, 500, and 1,000.  The 

parameters remained fixed at a specific value for each of 

these simulation runs. 

The result from Table 1 proves that the bias and root 

mean square errors (RMSEs) become smaller as the 

sample size increases.  This pattern indicates that the 

estimates are getting closer to the true values, suggesting 

they are becoming more accurate and dependable. It 

demonstrates that the estimates exhibit both efficiency 

and consistency as the sample size increases. 

Application 

In this context, we demonstrate the applicability of the 

Generalized Gompertz-Exponential Distribution (GG-

ED) using a real dataset obtained from previous research, 

as outlined in Arshad et al. (2021).  We computed the 

maximum likelihood estimates and assessed goodness-of-

fit measures using R software.  We then compared the 

results with those of other distributions, namely the 

Weibull Exponential (WE), Gompertz Exponential (GE), 

Kumaraswamy Exponential (KE), Exponentiated 

Weibull-Exponential (EW-E), and Exponential (E) 

distributions. 
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In determining the best out of the competing models, the 

Akaike Information Criterion, Akaike (1974) "AIC" was 

employed and is statistically expressed as:  

AIC = −2𝐿𝐿 + 2𝐾. Where "LL" stands for log-likelihood 

function and K is the number of model parameters in the 

model. 

The data describes the 85 hailing times of civil engineering 

dataset obtained from Arshad et al. (2021) as follows; 

4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 4.80, 6.70, 6.00, 

4.95, 7.90, 5.40, 3.50, 4.54, 6.90, 5.80, 5.40, 5.70, 8.00, 5.40, 

5.60, 7.50, 7.00, 4.60, 3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 4.40, 

5.20, 7.40, 5.70, 6.00, 3.60, 6.20, 5.70, 5.80, 5.90, 6.00, 5.15, 

6.00, 4.82, 5.90, 6.00, 7.30, 7.10, 4.73, 5.90, 3.60, 6.30, 7.00, 

5.10, 6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90, 8.60, 6.00, 5.80, 

5.40, 6.50, 4.80, 6.40, 4.15, 4.90, 6.50, 8.20, 7.00, 8.50, 5.90, 

4.40, 5.80, 4.30, 5.10, 5.90, 4.70, 3.50, 6.80 

Table 1: Results of the simulated data from the GG-ED for some values of parameters 

 (𝜃 =0.5, 𝛼 =1.5, 𝜆 =0.5, 𝛾 =2) 

n Parameters Estimates Bais RMSE 

20 𝜃 

𝛼 

𝜆 

𝛾 

0.5879 

1.7168 

0.5432 

2.0389 

0.0879 

0.2168 

0.0432 

0.0389 

0.4008 

0.5765 

0.1301 

0.5071 

50 𝜃 

𝛼 

𝜆 

𝛾 

0.5829 

1.6265 

0.5083 

2.0482 

0.0829 

0.1265 

0.0083 

0.0482 

0.2878 

0.4159 

0.0848 

0.3810 

100 𝜃 

𝛼 

𝜆 

𝛾 

0.5712 

1.5898 

0.4973 

2.0522 

0.0712 

0.0898 

-0.0027 

0.0522 

0.2156 

0.2881 

0.0558 

0.2657 

250 𝜃 

𝛼 

𝜆 

𝛾 

0.5543 

1.5535 

0.4929 

2.0457 

0.0543 

0.0535 

-0.0071 

0.0457 

0.1650 

0.1899 

0.0327 

0.1721 

500 𝜃 

𝛼 

𝜆 

𝛾 

0.5444 

1.5351 

0.4918 

2.0392 

0.0444 

0.0351 

-0.0082 

0.0392 

0.1277 

0.1306 

0.0259 

0.1182 

1000 𝜃 

𝛼 

𝜆 

𝛾 

0.5342 

1.5254 

0.4928 

2.0302 

0.0342 

0.0254 

-0.0072 

0.0302 

0.0941 

0.0967 

0.0195 

0.0947 
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Table 2: Parameters Estimates and Goodness of Fit Measures for civil engineering data with 85 hailing times.  

Model                                    Parameter Estimates and Goodness of Fit 

      𝜃                     �̂�              �̂�          �̂�                           -LL                         AIC 

GGE 8.1706 3.2261 0.2771 3.1506  136.5066 281.0133 

WE 0.0073 1.0193 0.7737 -  141.584 289.1680 

OGE 0.1168 0.1358 2.2030 -  147.5815 301.1631 

GE 0.0163 0.8348 0.7680 -  145.4489 296.8978 

Ex 0.1757 - - -  232.7956 467.5913 

EWE 0.8696 0.0068 1.0046 0.7831  143.6837 295.3674 

 

Figure 5: Histogram Plot of the Distributions on the civil engineering data with 85 hailing times  

Table 2 showcases the outcomes of maximum likelihood 
estimation for the parameters of the new distribution and 
five other reference distributions.  When assessing the 
goodness of fit, it was observed that the proposed 
distribution GG-ED exhibited the lowest AIC value, with 
EWE closely following.  A visual examination of the fit, 
depicted in Figure 5, further corroborates that the 
proposed distribution outperformed the compared 
distributions.  Consequently, among the distributions 
under consideration, the Generalized Gompertz-
Exponential Distribution (GG-ED) is recognized as the 

most suitable for modeling data related to civil 
engineering, particularly the 85-hailing times. 

CONCLUSION 

This paper introduces and investigates a newly developed 
continuous probability distribution called the Generalized 
Gompertz-G (GG-G) Family of Distribution.  We 
examined various statistical aspects of this innovative 
distribution, including the explicit moment, quantile 
function, entropies, reliability function, hazard function, 
and order statistics.  The distribution parameters were 
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estimated using the maximum likelihood technique.  
Simulation results were presented to evaluate the 
performance of this novel distribution.  Additionally, we 
extend the exponential distribution by inducing it to the 
GG-G, develop the Generalized Gompertz- Exponential 
distribution (GG-ED), and apply the distribution to 
analyze a real dataset of 85 hailing times of an engine.  The 
results show that the Generalized Gompertz-Exponential 
distribution (GG-ED) outperformed the compared 
distributions, highlighting the distribution's potential 
utility and applicability in a diverse range of practical 
scenarios for modeling data related to civil engineering. 
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