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INTRODUCTION 
K-means is one of the most famous clustering 
algorithms, data clustering, sometimes called cluster 
analysis, is a technique for creating groups of objects, 
such that each cluster contains similar objects and unique 
(Guojun et al., 2007).  
Clustering methods mainly focus on pattern recognition 
for further analysis of organizational design, finding 
groups of data objects where objects in one group are 
similar to each other and differ from objects in other 
groups. Although k-means is one of the most popular 
clustering algorithms, it has some major drawbacks such 
as convergence to local minima and initializing the 
number of clusters containing noise, discrepancies, and 
outliers in the original dataset.  
Cluster analysis is common in all fields related to 
multivariate data set analysis, and k-means clustering 
algorithms are among the most popular methods for 
clustering multivariate observations (Tsai and Chiu, 
2008). It is a commonly used system for direct 
segmentation of aggregates data into k groups. The k-
means algorithm produces a quick and efficient solution. 

The basic k-means algorithm works with the goal of 
minimizing the mean squared distance between each data 
point and its nearest center.  
The cluster analysis groups objects (observations) based 
on information found in the data that describes the 
objects or their relationships (Manimekalai. et al,. 2013). 
The goal is for objects in one group to be similar (or 
related) to each other and different (or unrelated) to 
objects in another group. The greater the similarity (or 
homogeneity) within a cluster, and the greater the 
difference between clusters, the better or more distinct 
the clusters.  
The purpose of clustering is to find commonalities and 
designs from large data sets by dividing the data into 
groups. Since it is assumed that the data set is unlabelled, 
clustering is often considered as the most valuable 
unsupervised learning problem (Cios et al., 2007). 
To get the optimal solution for k-means clustering, the 
data should be pre-processed before clustering analysis 
(Chandrasekhar et al., 2011).  
This pre-processing includes data normalization, princi-
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ABSTRACT 
Clustering is a technique of creating groups of objects such that each group contains 
similar and unique objects. One of the most popular clustering techniques is the k-
means clustering algorithm. Conventional k-means techniques may not work well for 
high-dimensional datasets, due to the noise, discrepancies, and outliers associated with 
the original dataset. However, some form of transformation is required to organize 
the data for clustering. Four different data pre-processing methods are applied before 
the clustering algorithm to make the data clean, noise-free and consistent. The impact 
of data pre-processing on the basic k-means clustering algorithm was tested on real-
life data using some normalization techniques such as z-score, mean-max, decimal 
scaling, and mean absolute deviation. We find that the pre-processing before 
clustering yields good clustering results and significantly reduces the running time 
compared to the traditional techniques. We can also conclude that the mean absolute 
deviation is the best among the four normalization methods as it captures all points of 
clustering. 
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pal component analysis (PCA), single value decomposition 
(SVD) and others, all of which are intended to detect and 
remove exceptions. Distinct are points in the given data 
that are far from the rest in quantity and if not detected 
and handled correctly; clustering results will be greatly 
affected (Sairam et al., 2012).  
Pre-processing (Alshalabi et al., 2006) is really necessary 
before using data mining algorithms to improve the 
performance of the results. Data set normalization is a part 
of pre-processing in data mining, where attribute data is 
scaled to fall within a specified small range. Normalization 
before clustering is especially necessary for distance 
metrics, such as Euclidean distance, that are sensitive to 
variations in magnitude or attribute scale. In real-world 
applications, due to differences in attribute value selection, 
one property may override another.  
Therefore, it is important to pre-process the data prior to 
clustering algorithms due to the noise, discrepancies, and 
outliers associated with the original dataset.  
One approach to dealing with outliers is data 
normalization. This method rescales the dataset to fit 
within the specified range of values so that attributes with 
higher values do not dominate attributes with lower values. 
Normalization is an important pre-processing step in data 
clustering to normalize the values of all variables from 
dynamic to specific ranges (Atomi, 2012).  
There are no generally defined rules for data set 
normalization and the choice of a particular normalization 
rule is therefore largely user-determined (Karthikeyani and 
Thangavel, 2009). Some data normalization methods 
include z-score, min-max, decimal scaling and mean 
absolute deviation.  
In z-score, the values of attribute X are normalized to the 

mean and standard deviation of X, this method is useful 

when the actual minimum and maximum values of the 

attribute X are unknown. Decimal scale, the normalized 

decimal by moving the decimal point of the X attribute 

values, the number of decimal points moved depends on 

the maximum absolute value of X. Min-max transforms 

the data set from 0.0 to 0.1 by subtracting the smallest 

value for each value divided by the range of values of each 

individual value. The mean absolute deviation of an item in 

a data set is the absolute difference between each 

observation and the mean of the dataset 

 
MATERIALS AND METHODS 
Organizing the data for clustering requires some form of 
transformation, such as normalization, principal 
component analysis, or single value decomposition (Hans-
Joachim et al. 2008). In this research we employed some 
normalization method. 
Let Y = {X1, X2,…, Xn} be a d-dimensional raw data set. 
Then, the data matrix is an n × d matrix given by: 

(𝑋1, 𝑋2, 𝑋3, … … 𝑋𝑛) = [

𝑥11 𝑥12    … 𝑥1𝑑

𝑥21 𝑥22    … 𝑥2𝑑

⋮   ⋮       … ⋮
𝑥𝑛1 𝑥𝑛2    … 𝑥𝑛𝑑

]     1 

Experiments were performed using four different 
normalization methods: z-score, decimal scaling, min-
max, and mean absolute deviation. It aims to test the 
performance using the basic k-means clustering 
algorithm and to choose the appropriate data 
normalization method from these four methods. The 
sum of squared errors, representing the distance between 
data points and their cluster centers, was used to measure 
cluster quality under four normalization approaches. 

Z-score 
Z-score is a form of normalization technique used to 
convert normal variations into standardized scoring. For 
a  raw data set Y, the  formula for normalizing the Z 
score is defined as  

 𝑍(𝑋𝑖) =
𝑥𝑖−𝜇𝑖

𝛿𝑖
                                                    2 

where 𝑥𝑖  and 𝛿𝑖  are the sample mean and standard 
deviation of the ithattribute respectively. The transformed 
variable will have a mean of 0 and a variance of 1. 
Information about the position and scale of the original 
variable has been lost (Jain and Dubes, 1988). An 
important limitation of z-score normalization is that it 
must be applied in global normalization and not in 
internal normalization (Milligan and Cooper, 1988).  

Min-max:  
Min-Max normalization is the process of taking data 
measured in its engineering units and transforming it to a 
value between (0.0 -1.0), where by the lowest (min) value 
is set equal to 0.0 and the highest (max) value is set equal 
to 1.0 respectively. This provides an easy way to compare 
values that are measured using different scales or 
different units of measurement. The normalized value is 
defined as 

 𝑀𝑀(𝑋𝑖𝑗) =
𝑋𝑖𝑗−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                       3 

Decimal scaling 
Normalization by decimal scaling normalizes by moving 
the decimal point of values of feature X, where the 
number of decimal points moved depends on the 
maximum absolute value of X. A modified value DS (X) 
corresponding to X is given by  

 𝐷𝑆(𝑋𝑖𝑗) =
𝑋𝑖𝑗

10𝑐                                         4 
 

Where c is the smallest integer such that 

𝑚𝑎𝑥[|𝐷𝑆(𝑋𝑖𝑗)|] < 1 

Mean absolute deviation: 
The Mean absolute deviation of an element of a data set 
is the absolute difference between that element and a 
given point. Typically, the deviation is reckoned from the 
central value being construed as some type of average, 
most often the median or sometimes the mean of the 
data set.  

MAD =  
1

𝑛
∑ |𝑥𝑖 − 𝑚(𝑋)|𝑛

𝑖=1                           5 
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where 𝑛 is the number of obsevations, X𝒊 is the data 
element. 
 

K-means Cluster Analysis 
The k-means algorithm always converges to a local 
minimum (Telgarsky and Vattani, 2010). The specific local 
minimum found depends on the clustering method 
(Manpreet and Usvir, 2013). The k-means algorithm 
performs an iterative update of the cluster centers until the 
local minimum is reached. Before the k-means algorithm 
converged, the distance and centroid (centre) calculations 
were performed many times in a loop.. The calculation 
procedure of the o(nkl) algorithm  is very complicated, 
where n is the total number of objects in the data set, k is 
the number of clusters required, and l is the number of 
iterations. The time complexity for the high dimensional 
dataset is o(nmkl), where m is the number of dimensions. 

Given a set of observations, 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) where 

each observation is a  𝑝-dimensional real vector, k-means 

clustering aims to divide the 𝑛 observations into 𝑘 sets 

(𝑘 ≤ 𝑛),  

𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑘) to minimize the sum of squares 
within the cluster (SSWC). 

𝑎𝑟𝑔𝑔𝑚𝑖𝑛 ∑ ∑ ||𝑋𝑗 − 𝜇𝑗||2
𝑥𝑗𝜖𝐶𝑗

𝑘
𝑗=1                             6 

where 𝜇𝑗 =
1

𝑛
∑ 𝑋𝑗𝑋𝑗𝜖𝐶𝑗

denotes the centroid of a cluster 𝑐𝑗 . 

The weakness of this algorithm is that it can converge to a 
local minimum of the value of the criterion function if the 
original data is not pre-processed correctly. The local 
minimum is the minimum value in the set of points that 
may or may not be a common minimum and is not the 
lowest value in the set. Its computation time is also very 
high, especially for large datasets. Therefore, to get the 
optimal solution for k-means cluster analysis, the data need 
to be pre-processed before k-means cluster analysis 
(Chandrasekhar et al., 2011).   

Basic K-means Method 
The steps in the basic k-means method are to scale the 
data to fall within a specific range of values such that no 
variable with a larger domain overwhelms a variable with a 
smaller domain using four methods: z -score, min- max, 
decimal rate and mean absolute deviation. Then, the 
reduced data set obtained will be applied to the k-means 
clustering algorithm and the method that gives the smallest 
total error of a square and captures all  points in the cluster 
formation will be considered  the best method among 
others. The steps of the technique are as follows:  

1st Step   
Consider four methods of normalizing data: z-score, min-
max, decimal scaling, and mean absolute deviation. For 

convenience, For convenience, let 𝑋 = (𝑋1
′ , 𝑋2

′ , … , 𝑋𝑛
′ ) is 

the 𝑑-dimensional raw dataset. This results in an 𝑛 × 𝑑 
data matrix given by  

𝑋 = (𝑋1
′ , 𝑋2

′ , … , 𝑋𝑛
′ ) = [

𝑥11 𝑥12    … 𝑥1𝑑

𝑥21 𝑥22    … 𝑥2𝑑

⋮   ⋮       … ⋮
𝑥𝑛1 𝑥𝑛2    … 𝑥𝑛𝑑

] 7

   

The z-score of 𝑋𝑖is given as  

 𝑍(𝑋𝑖) =
𝑥𝑖𝑗−𝜇𝑖

𝛿𝑖
                  8 

Where𝑥𝑖𝑗’s are the normalized raw score, 𝜇 and 𝜎 are the 

population mean and population standard deviation of 
the dataset respectively. Since both values are unknown, 

they will be represented by the sample mean�̅� and 

sample standard deviation𝑠. 

The min-max of 𝑋𝑖is given by 

𝑀𝑀(𝑋𝑖𝑗) =
𝑋𝑖𝑗−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    9 

where the lowest (minimum) value is set equal to 0.0 and 
the highest (maximum) value is set equal to 1.0 
respectively. 
 

The Decimal scaling of 𝑋𝑖is given by 

𝐷𝑆(𝑋𝑖𝑗) =
𝑋𝑖𝑗

10𝑐                 10 

Where 10𝑐  is the smallest integer such that 

𝑚𝑎𝑥[|𝐷𝑆(𝑋𝑖𝑗)|] < 1 

The Mean absolute deviation of 𝑋𝑖is given by 

 MAD =  
1

𝑛
∑ |𝑥𝑖 − 𝑚(𝑋)|𝑛

𝑖=1                 11 

where n is the number of observation, X𝒊is the row 
vector 

2nd Step  

Consider a set of observations 𝑋 = (𝑋1
′ , 𝑋2

′ , … , 𝑋𝑛
′ ) 

where each observation is a real vector of  𝑝-dimensions. 

To divide the observations into 𝑘 sets (𝑘 ≤ 𝑛), 

𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑘), Calculate 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑋𝑌) = 

√(𝑥𝑖 − 𝑦𝑖)2 = [(𝑥 − 𝑦)(𝑥 − 𝑦)′]
1

2 .             12 

Where𝑋and 𝑌are m-dimensional vectors and denoted as 

𝑋 = (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑚)ԑℝ𝑚  

And 𝑌 = (𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑚)ԑℝ𝑚 represent m attribute 
values of two records (Larose, 2005). 
The algorithm proceeds by alternating between two steps 

𝐺𝑖 = {𝑥𝑝: ||𝑥𝑝 − 𝜇𝑖||
2 ≤ ||𝑥𝑝 − 𝜇𝑗||2 ∀ 𝑗, 1 ≤ 𝑗 ≤ 𝑘}    13  

                                                                                  

Where each 𝑥𝑝 is assign to exactly one  𝐺, then update 

the process by computing new centers in the new 
clusters. The algorithm converges when this assignment 
no longer changes. Then calculate the total sum of 
squares error (SSE) as 

𝑆𝑆𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ‖𝑥𝑖𝑗 − 𝜇𝑖‖
2𝑝

𝑗=1
𝑘
𝑖=1                       14

      
where 
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𝜇𝑖 =
1

𝑝
∑ 𝑋𝑖𝑗

𝑝
𝑗=1  Represents the centre of a cluster and p 

represents the number of individuals. 
 
RESULTS AND DISCUSSION 
Here the technical method of data preprocessing through 
normalization method is presented. The performance of 
this pretreatment technique on the basic k-means 
clustering method was evaluated using actual malaria 
secondary data consisting of six variables and fourteen 
sample size selected from Katsina State Health Services 
Management Board (KTSHSMB), The six variables are 
uncomplicated malaria, clinical malaria and severe malaria 

from January 2016 to February 2016 denoted by 𝑋1 to 

𝑋6 respectively and the sample sizes are Bakori (BKR), 
Batagarawa (BTG), Batsari (BTR), Baure (BAU), 
Bindawa (BDW), Charanchi (CRC), Dandume (DDM), 
Danja (DNJ), Daura (DRA), Dutsi (DTS), Dutsinma 
(DTM), Faskari (FKR), Funtua (FTA) and Ingawa (IGW) 
local government areas respectively. The initial data is 
presented in Table 4.1 below. 
 
Table 4.0: The initial dataset consisting of six variables 
and fourteen sample size  

LGA X1 X2 X3 X4 X5 X6 

BKR 919 567 25 56 303 0 

BTG 502 1153 147 1035 1530 41 
BTR 229 1027 0 739 1111 26 

BAU 326 443 273 780 1130 133 

BDW 797 1233 7 388 160 0 

CRC 835 1087 33 513 711 7 

DDM 924 1167 29 1591 1743 33 

DNJ  544 526 0 782 1125 2 

DRA 834 860 260 1119 1556 274 
DTS  1003 1582 231 878 1035 160 

DTM 114 238 36 1238 1595 38 

FKR 872 1989 19 876 2277 94 

FTA 761 948 80 1604 1628 251 

IGW 355 920 8 402 707 7 

 

The formation of clusters and the corresponding centers 
are shown in Figure 4.0. 

 Figure 4. 0 Basic k-means method 

Figure 4.0 shows the basic k-means method using the 
initial dataset consisting of fourteen sample size and six 
variables as contained in Table 4.0.  
From Figure 4.0, six points lie outside the formation of 
the cluster, and six points lie on the boundary denoted by 
coordinates (2, 13), (2, 9), (2, 2), (3, 2). (6, 2) and (7, 2) 
are in cluster 2. This is one of the fundamental 
drawbacks of basic k-means. This method does not 
capture all variable points in forming clusters. 
Normalization of data 
Some tests have been done using four different 
normalization methods, z-score, min-max, decimal 
scaling, and mean absolute deviation. This is to test the 
performance using the basic k-means clustering 
algorithm and choose the appropriate data normalization 
method from these four data normalization methods. We 
measured the cluster quality among the four 
normalization methods using the sum-of-squares error, 
which represents the distance between data points and 
their cluster centers. The data set used for this purpose is 
presented in Table 4.0 above. 
In the z-score, data are normalized to mean and standard 
deviation. The  z-score normalization formula used in 
this research is given in equation 2 above.

    Table 4.1: The normalized z-score dataset 
LGA X1 X2 X3 X4 X5 X6 

BKR -0.3554 0.6497 -0.6749 0.5904 0.6035 -0.8173 

BTG 1.0116 1.4372 0.8677 -0.9332 1.2559 1.1058 

BTR -1.1756 -0.5316 0.0964 -0.9332 0.9297 0.1442 

BAU -0.9022 2.6184 -1.0605 1.3522 -0.7014 1.1058 

BDW 0.1914 0.6497 -1.0605 0.5904 -0.3751 -0.8173 

CRC -0.3554 1.0434 1.6390 -0.9332 -0.7014 -0.8173 

DDM -0.9022 -0.1378 -0.6749 0.9713 0.9297 -0.8173 

DNJ  -1.1756 -0.5316 0.0964 -0.5523 1.9083 0.1442 

DRA 1.8317 -1.3191 -1.0605 -0.9332 -0.7014 1.1058 

DTS  1.2850 -0.5316 -0.2892 0.2095 -1.0276 -0.8173 

DTM 0.4648 -1.3191 0.8677 -0.5523 -0.3751 -0.8173 

FKR 1.8317 -0.9253 -1.0605 2.1141 -1.0276 0.1442 

FTA -1.1756 -0.5316 1.2534 0.2095 -0.7014 0.1442 

IGW -0.3554 1.0434 -1.4462 2.1141 -0.7014 -0.8173 
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Table 4.1 gives scaled values using the z-score method 
containing six variables and 14 sample sizes. The 
formation of clusters and the corresponding centers are 
shown in Figure 4.1.  

 
 

Figure 4.1 shows cluster formation obtained using 
normalized z-score data. It can be observed that no point 
is outside the cluster formation. This implies that this 
method is good for grouping points. However, it can be 
observed that most of the points are located far from the 
C1 and C2 centers. Moreover, the distance between the 
two centers C1 and C2 is very close.   
 
Min-Max performs a linear modification of the original 
data set, transforming it into a rolling range from 0 to 1. 
i. e by subtracting the minimum value of each 
observation, the result is then divided by the difference 
between the maximum and minimum values. The 
formula used for min-max is given in equation 3 above. 
Table 4.2 gives scaled values using the min-max method 
containing six variables and 14 sample sizes. The 
formation of clusters and the corresponding centers are 
shown in Figure 4.2  

 

Figure 4.1 z-score k-means method 

 
Table 4.2: The normalized min-max dataset 

LGA X1 X2 X3 X4 X5 X6 

BKR 0.0050 0.0060 0.0030 0.0050 0.0060 0.0010 

BTG 0.0100 0.0080 0.0070 0.0010 0.0080 0.0030 

BTR 0.0020 0.0030 0.0050 0.0010 0.0070 0.0020 

BAU 0.0030 0.0110 0.0020 0.0070 0.0020 0.0030 

BDW 0.0070 0.0060 0.0020 0.0050 0.0030 0.0010 

CRC 0.0050 0.0070 0.0090 0.0010 0.0020 0.0010 

DDM 0.0030 0.0040 0.0030 0.0060 0.0070 0.0010 

DNJ  0.0020 0.0030 0.0050 0.0020 0.0100 0.0020 

DRA 0.0130 0.0010 0.0020 0.0010 0.0020 0.0030 

DTS  0.0110 0.0030 0.0040 0.0040 0.0010 0.0010 

DTM 0.0080 0.0010 0.0070 0.0020 0.0030 0.0010 

FKR 0.0130 0.0020 0.0020 0.0090 0.0010 0.0020 

FTA 0.0020 0.0030 0.0080 0.0040 0.0020 0.0020 

IGW 0.0050 0.0070 0.0010 0.0090 0.0020 0.0010 

 

Figure 4.2 Min-Max k-means method 

. 
Figure 4.2 shows the cluster formation obtained using 
normalized min-max data. The corresponding data set is 
shown in Table 4.3. It can be observed that the three 
points are outside the cluster formation. These three 
points lie on the contour marked with the coordinates (0, 
0.005), (0.003, 0) found in cluster 2 and (0.012, 0.005) in 
cluster 1.   
Decimal scaling moves the decimal point but always keep 
the original numeric value. The typical scale holds values 
in the range [-1, 1], and the decimal point numbers are 
shifted by the absolute largest values in the data set. The 
formula used for decimal scaling is given in equation 4 
above. 
Table 4.3 gives the values scaled using the decimal scaling 
method containing six variables and 14 sample sizes. The 
formation of clusters and the corresponding centers are 
shown in Figure 4.3. 

16 
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Table 4.3: The normalized decimal scaling dataset 

LGA X1 X2 X3 X4 X5 X6 

BKR 0.2857 0.3571 0.1429 0.2857 0.3571 0.0000 
BTG 0.6429 0.5000 0.4286 0.0000 0.5000 0.1429 
BTR 0.0714 0.1429 0.2857 0.0000 0.4286 0.0714 

BAU 0.1429 0.7143 0.0714 0.4286 0.0714 0.1429 
BDW 0.4286 0.3571 0.0714 0.2857 0.1429 0.0000 

CRC 0.2857 0.4286 0.5714 0.0000 0.0714 0.0000 
DDM 0.1429 0.2143 0.1429 0.3571 0.4286 0.0000 
DNJ  0.0714 0.1429 0.2857 0.0714 0.6429 0.0714 

DRA 0.8571 0.0000 0.0714 0.0000 0.0714 0.1429 
DTS  0.7143 0.1429 0.2143 0.2143 0.0000 0.0000 
DTM 0.5000 0.0000 0.4286 0.0714 0.1429 0.0000 

FKR 0.8571 0.0714 0.0714 0.5714 0.0000 0.0714 

FTA 0.0714 0.1429 0.5000 0.2143 0.0714 0.0714 

IGW 0.2857 0.4286 0.0000 0.5714 0.0714 0.0000 

 

 
Figure 4.3 Decimal scaling k-means method 
 

Figure 4.3 shows the cluster formation obtained using 
normalized decimal rate data. The corresponding data set 
is shown in Table 4.3. It can be observed that six points 
are outside the cluster formation. These six points lie on 
the boundary marked by the coordinates (0, 13), (0, .9), 
(2, 2), (6, .0), (7, .0) found in cluster 1 and (0 , 3) in 
cluster 2, where the x and y are coordinates  multiplied 

by 10−3.  
The mean absolute deviation of an element of a data set is 
the absolute difference between this element and a given 
point. The formula used for mean absolute deviation is 
given in equation 5 above. 
Table 4.4 gives scaled values using the mean absolute 
deviation method containing six variables and 14 sample 
sizes. The formation of clusters and the corresponding 
centers are shown in Figure 4.4.  
 

 

Table 4.4: The normalized Mean Absolute deviation dataset 

LGA X1 X2 X3 X4 X5 X6 

BKR 0.2857 0.1429 0.5000 0.2143 0.0714 0.0714 

BTG 0.0000 0.4286 0.0000 0.5714 0.0714 0.0000 
BTR 0.0000 0.2857 0.2143 0.1429 0.0714 0.2857 

BAU 0.4286 0.2143 0.1429 0.3571 0.4286 0.0714 

BDW 0.2857 0.2143 0.1429 0.3571 0.4286 0.0714 
CRC 0.0000 0.1429 0.2857 0.0714 0.6429 0.5714 

DDM 0.3571 0.1429 0.2143 0.2143 0.0000 0.1429 

DNJ  0.0714 0.0000 0.4286 0.0714 0.1429 0.2857 
DRA 0.0000 0.0714 0.0714 0.5714 0.0000 0.0714 

DTS  0.2143 0.1429 0.5000 0.2143 0.0714 0.2143 

DTM 0.0714 0.0714 0.0000 0.2857 0.1429 0.4286 
FKR 0.5714 0.3571 0.1429 0.2857 0.3571 0.0714 

FTA 0.2143 0.1429 0.4286 0.1429 0.0000 0.5000 

IGW 0.5714 0.0714 0.0714 0.0000 0.2143 0.0000 

 
Figure 4.4 shows cluster formation using normalized mean 
absolute deviation data. It can be observed that no point is 
outside the cluster formation. This implies that this 
method is also good for grouping points. However, it can 

be observed that most of the points are located far from 
the C1 and C2 centers. Moreover, the distance between the 
two centers C1 and C2 is very close. This is not the desired 
goal for clustering, but since all points fit into the 
formation, this is not the case with the other three 
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methods and has less total squared error and less time 
taken, when compared with the z-score normalization 
method; this makes the mean absolute deviation 
normalized method acceptable in this study. In this way, 
we infer that the mean absolute deviation is a good 
method for data pre-processing. 
Table 4.5 summarizes clustering results from basic k-
means and using four different normalization methods (z-
score, min-max, decimal scaling, and mean absolute 
deviation). Experimental results show that the mean 
absolute deviation is the best among the four methods. In 
fact, this method finds that none of the points in the 
cluster are outside the cluster formation, as shown in 
Figure 4.4 

 
 
Figure 4.4: Mean absolute deviation k-means method 

Table 4.5: Summary of cluster formation results 

Method of Cluster formation Points out of cluster formations  
SSE 

CPU time 
taken (Sec) 

cluster 1 cluster 2 

Basic k-means 0 6 233.08 30.00 
Z-score  0 0 87.53 17.00 
Min-Max  1 2 98.41 19.00 

Decimal scaling  5 1 106.29 21.00 

Mean absolute deviation 0 0 78.26 16.00 

 

CONCLUSIONS 
The idea behind pre-processing is to reduce the 
dimensionality of data that consists of a large number of 
variables. Therefore, the k-means results using the pre-
processed data provide the expected results with improved 
cluster quality and detection of some clustered points. This 
is further supported by the sum of the squared errors and 
the runtime obtained by the four normalization methods 
compared with the basic k-means method. Therefore, 
based on the experimental results of this research, we can 
conclude that the mean absolute deviation is the best 
among the four normalization methods as it captures all 
points of clustering. Hence, the three methods of z-score, 
min-max and decimal scaling cannot be chosen as suitable 
data pre-processing methods as they cannot capture all 
points of clustering. 
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