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INTRODUCTION
In this research, we explore the general form of the first-
order stiff initial value problems (IVPs) presented as 
follows: 

𝑦′ = 𝑓(𝑥, 𝑦),   𝑦(𝑎) = 𝑦0,  𝑎 ≤ 𝑥 ≤ 𝑏              (1) 

It is postulated that the function 𝑓(𝑥, 𝑦) adheres to the 
Lipschitz conditions (Alhassan et al., 2023). Despite 
various attempts by researchers to apply diverse analytical 
approaches to solve equation (1), solutions to specific 
initial value problems (IVPs) have proven to be intricate 
or beyond analytical resolution. Hence, the necessity of 
advocating for numerical methods becomes apparent. If 
the solution of IVPs (1) using a specified numerical 
method becomes unstable when a large number of step 
lengths are chosen due to its physical property of causing 
rapid variation in the solution, then it is called Stiff IVPs. 
Stiff IVPs are commonly encountered in Chemical 
kinetics, electric circuits, string variations, control systems, 
and more (Musa et al., 2022). 

When employing a designated numerical method for 
solving IVPs (1), instability emerges when opting for an 
extensive number of step lengths, attributed to its inherent 
characteristic of inducing swift variation in the solution. 
This phenomenon is termed Stiff IVPs and is frequently 
encountered in chemical kinetics, electric circuits, string 
variation, control systems, and other domains (Musa et al., 
2022). 

Numerical methods for tackling stiff IVPs can be 
classified as either block or non-block, and both can be 
explicit or implicit. Implicit Linear Multistep Methods 
(LMM) have demonstrated superior effectiveness in 
addressing stiff IVPs compared to their explicit 
counterparts. Instances of non-block implicit methods are 
documented in [Cash, 1980; Curtiss & Hirschfelder, 1952; 
Dalquist, 1974; Alexander, 1977], while examples of block 
implicit methods are outlined in [Musa et al., 2012; 
Ibrahim et al., 2007a; Musa et al., 2022; Suleiman et al., 
2014; Musa & Muhammad, 2019; Alhassan et al., 2023; 
Bala et al., 2022]. Ibrahim et al. (2007b & 2019) identified 
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ABSTRACT 
Stiff initial value problems in ordinary differential equations occur when solution components 
evolve at varying rates, posing challenges for traditional computational methods. Specialized 
techniques are crucial for maintaining accuracy and stability during rapid transitions, 
emphasizing their significance in developing reliable numerical algorithms across scientific 
and engineering applications. This study aims to develop a new fixed coefficient 3-point 
diagonally implicit block backward differentiation formula for the numerical solution of first 
order stiff initial value problems. The method is constructed by integrating a triangular matrix 
into the coefficient matrix of an existing extended 3-point super class of block BDF for 
solving stiff initial value problems. The selection of a fixed coefficient within the interval 

accompanies this integration (−1,1) to ensure optimal stability. The method is found to 
order five. Stability analysis indicates that the method is consistent, zero-stable, and almost 
A-stable, validating its applicability to stiff initial value problems. Implementation of the 
method involves Newton’s iteration, and a code in the C programming language is devised 
to demonstrate its effectiveness. Comparative examination of numerical outcomes with the 
existing 3BBDF and 3ESBBDF methods highlights the proposed method's enhanced 
accuracy and reduced computation time. 
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an implicit fixed coefficient block method for solving stiff 
IVPs. 

This research proposes a new fixed coefficient diagonally 

implicit method grounded in the block backward 

differentiation formula (NFDIBBDF) for addressing stiff 

initial value problems. The subsequent sections will 

explore the derivation of the method, stability analysis, 

and implementation, highlighting the potential of our 

innovative numerical approach in overcoming this pivotal 

challenge. 

METHODOLOGY  

This section contains the derivation of the proposed 

method using Taylor’s series and the derivation of the 

predictor method, which will predict the initial 

approximation for stiff initial value problems.  

Derivation of (NFDIBBDF) Method  

Consider the extended 3-point super class of block 

backward differentiation formula for solving stiff initial 

value problems developed by Musa et al. (2019) of the 

form: 

∑ 𝛼𝑗,𝑖
5
𝐽=0 𝑦𝑛+𝑗−2 = ℎ𝛽𝑘,𝑖(𝑓𝑛+𝑘 − 𝜌𝑓𝑛+𝑘−2),   𝑘 = 1,2,3            (2) 

In this research, we will modify (2) by introducing a 

triangular matrix in the coefficient matrix of the method 

(2) and choosing the value of 𝜌 =
3

5
 from the interval 

(−1,1) which gives better stability region required for 

solving stiff IVPs. The new formula would compute the 

approximated solution values 𝑦𝑛+1, 𝑦𝑛+2and 𝑦𝑛+3 

simultaneously in a block using three previous values 

  𝑦𝑛−2, 𝑦𝑛−1 and 𝑦𝑛 with constant step size h. 

Definition 1: A New Fixed Coefficient Diagonally 
Implicit Block Backward Differentiation Formula 
(NFDIBBDF) is defined as: 

∑ 𝛼𝑗,𝑖
2+𝑘
𝑗=0 𝑦𝑛+𝑗−2 = ℎ𝛽𝑘,𝑖 (𝑓𝑛+𝑘 −

3

5
𝑓𝑛+𝑘−2) ,   𝑘 = 𝑖 =

1,2,3                                                                              (3) 

To derive the first point 𝑦𝑛+1, we define the linear 

operator of (3) associated with the first point as: 

 𝐿1[𝑦(𝑥𝑛), ℎ]: 𝛼0,1𝑦𝑛−2 + 𝛼1,1𝑦𝑛−1 + 𝛼2,1𝑦𝑛 +

𝛼3,1𝑦𝑛+1 − ℎ𝛽1,1 (𝑓𝑛+1 −
3

5
𝑓𝑛−1) = 0,                              (4) 

By expanding (4) as Taylor’s series about any point 𝑥𝑛 and 
after collecting like terms, we get: 

  𝐶0,1𝑦(𝑥𝑛) + 𝐶1,1ℎ𝑦
′(𝑥𝑛) + 𝐶2,1ℎ

2𝑦′′(𝑥𝑛) +

𝐶3,1ℎ
3𝑦′′′(𝑥𝑛) + ⋯ = 0                                                   (5) 

where,  

𝐶0,1 = 𝛼0,1 + 𝛼1,1 + 𝛼2,1 + 𝛼3,1 = 0

𝐶1,1 = −2𝛼0,1 − 𝛼1,1 + 𝛼3,1 −
2

5
𝛽1,1 = 0

𝐶2,1 = 2𝛼0,1 +
1

2
𝛼1,1 +

1

2
𝛼3,1 −

8

5
𝛽1,1 = 0

𝐶3,1 = −
4

3
𝛼0,1 −

1

6
𝛼1,1 +

1

6
𝛼3,1 −

1

5
𝛽1,1 = 0}

 
 

 
 

              (6) 

Solving the system of simultaneous equations in (6) for the 

values of 𝛼𝑗,𝑖 and 𝛽𝑗,𝑖by normalizing the coefficient of  

𝑦𝑛+1 to one and substituting the values obtained in (4) 
yields the formula for the first point as: 

𝑦𝑛+1 =
2

29
𝑦𝑛−2 −

27

29
𝑦𝑛−1 +

54

29
𝑦𝑛 +

15

29
ℎ𝑓𝑛+1 −

9

29
ℎ𝑓𝑛−1                                                                       (7) 

Similarly, to derive the second point 𝑦𝑛+2, we defined the 
linear operator associated with the second point as: 

𝐿2[𝑦(𝑥𝑛), ℎ]: 𝛼0,2𝑦𝑛−2 + 𝛼1,2𝑦𝑛−1 + 𝛼2,2𝑦𝑛 +

𝛼3,2𝑦𝑛+1 + 𝛼4,2𝑦𝑛+2 − ℎ𝛽2,2 (𝑓𝑛+2 −
3

5
𝑓𝑛) = 0,         (8) 

The corresponding approximate relationship for the 
equation (8) is given by: 

𝛼0,2𝑦(𝑥𝑛 − 2ℎ) + 𝛼1,2𝑦(𝑥𝑛 − ℎ) + 𝛼2,2𝑦(𝑥𝑛)

+ 𝛼3,2𝑦(𝑥𝑛 + ℎ) + 𝛼4,2𝑦(𝑥𝑛 + 2ℎ) 

−ℎ𝛽2,2 (𝑦
′(𝑥𝑛 + 2ℎ) −

3

5
𝑦′(𝑥𝑛)) = 0       (9) 

Again, by expanding (9) as Taylor’s series about any point 

𝑥𝑛 and collecting like terms, we get: 

𝐶0,2𝑦(𝑥𝑛) + 𝐶1,2ℎ𝑦
′(𝑥𝑛) + 𝐶2,2ℎ

2𝑦′′(𝑥𝑛) +

𝐶3,2ℎ
3𝑦′′′(𝑥𝑛) + +𝐶4,2ℎ

4𝑦′𝑣(𝑥𝑛) +⋯  = 0             (10) 

where,  

𝐶0,2 = 𝛼0,2+𝛼1,2 +𝛼2,2 +𝛼3,2+𝛼4,2 = 0

𝐶1,2 = −2𝛼0,2 −𝛼1,2 +𝛼3,2+ 2𝛼4,2 −
2

5
𝛽2,2 = 0

𝐶2,2 = 2𝛼0,2 +
1

2
𝛼1,2 +

1

2
𝛼3,2+ 2𝛼4,2 − 2𝛽2,2 = 0

𝐶3,2 = −
4

3
𝛼0,2−

1

6
𝛼1,2+

1

6
𝛼3,2 +

4

3
𝛼4,2− 𝛽2,2 = 0

𝐶4,2 =
2

3
𝛼0,2 +

1

24
𝛼1,2 +

1

24
𝛼3,2+

2

3
𝛼4,2 −

4

3
𝛽2,2 = 0}

 
 
 

 
 
 

          (11) 

The coefficient of 𝑦𝑛+2 is similarly normalized to 1, by 
adopting the same procedure as in the derivation of the 
first point, we obtain the following formula for the second 
point: 

𝑦𝑛+2 = −
3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 −

45

32
𝑦𝑛 +

33

16
𝑦𝑛+1 +

15

32
ℎ𝑓𝑛+2 −

9

32
ℎ𝑓𝑛                                                                        (12) 

In obtaining the third point formula, a similar procedure 
is applied as in the derivation of the 

first and second point formulae yields: 

https://scientifica.umyu.edu.ng/
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 𝑦𝑛+3 =
 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛 −

720

347
𝑦𝑛+1 +

795

347
𝑦𝑛+2 +

150

347
ℎ𝑓𝑛+3 −

90

347
ℎ𝑓𝑛+1             (13) 

Thus, by combining the formulae in (7), (12), and (13), we 

have obtained a New 3-point fixed coefficient diagonally 

implicit block backward differentiation formula 

(NFDIBBDF) as:

𝑦𝑛+1 =
2

29
𝑦𝑛−2 −

27

29
𝑦𝑛−1 +

54

29
𝑦𝑛 +

15

29
ℎ𝑓𝑛+1 −

9

29
ℎ𝑓𝑛−1

𝑦𝑛+2 = −
3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 −

45

32
𝑦𝑛 +

33

16
𝑦𝑛+1 +

15

32
ℎ𝑓𝑛+2 −

9

32
ℎ𝑓𝑛

𝑦𝑛+3 =
 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛 −

720

347
𝑦𝑛+1 +

795

347
𝑦𝑛+2 +

150

347
ℎ𝑓𝑛+3 −

90

347
ℎ𝑓𝑛+1}

 
 

 
 

                                                     (14) 

It is therefore derived and established that the method is 

of order five as in Bala et al. (2022), with error constants 

given as: 









































−

−

−

=

0

0

0

694

47
5

1
290

57

6C  

Derivation of the Predictor of (NFDIBBDF) 

Method 

The prediction of initial approximation through the 

explicit block predictor method involves deriving the 

method by employing Taylor’s expansion of the following 

formula: 

 ∑ 𝛾𝑗,𝑖
6
𝐽=0 𝑦𝑛+𝑗−3 = 0   𝑘 = 1,2,3                              (15) 

The derivation of formula (15) involves setting the 

coefficient 𝛽𝑘,𝑖 = 0 in the right-hand side of the general 

K-step linear multistep method. To determine the 

coefficient of the first, second, and third points for the 

predictor method (15), we introduce the linear operator 

associated with (15) as: 

           𝛾0,𝑖𝑦𝑛−3 + 𝛾1,𝑖𝑦𝑛−2 + 𝛾2,𝑖𝑦𝑛−1 + 𝛾3,𝑖𝑦𝑛 +

𝛾4,𝑖𝑦𝑛+1 + 𝛾5,𝑖𝑦𝑛+2 + 𝛾6,𝑖𝑦𝑛+3 = 0,                                 (16) 

First Point: 𝑘 = 1. 

By setting the coefficients 𝛾5,1 = 𝛾6,1 = 0 in (16), the 

linear operator (16) becomes: 

       𝛾0,1𝑦𝑛−3 + 𝛾1,1𝑦𝑛−2 + 𝛾2,1𝑦𝑛−1 + 𝛾3,1𝑦𝑛 +

𝛾4,1𝑦𝑛+1 = 0,                                                        (17) 

The Taylors series expansion about the point 𝑥𝑛 leads to 

the following system of simultaneous linear equations as: 

𝐶0,1 = 𝛾0,1 + 𝛾1,1 + 𝛾2,1 + 𝛾3,1 + 𝛾4,1 = 0

𝐶1,1 = −3𝛾0,1 − 2𝛾1,1 − 𝛾2,1 + 𝛾4,1 = 0

𝐶2,1 =
9

2
𝛾0,1 + 2𝛾1,1 +

1

2
𝛾2,1 +

1

2
𝛾4,1 = 0

𝐶3,1 = −
9

2
𝛾0,1 −

4

3
𝛾1,1 −

1

6
𝛾2,1 +

1

6
𝛾4,1 = 0}

 
 

 
 

            (18) 

Solving these set of equations in the Maple18 environment 

after setting 𝛾4,1 = 1, we obtain the coefficient for the 

first point given in Table 1 below: 

Table 1: Coefficient of the first point 

𝛾0,1 𝛾1,1 𝛾2,1 𝛾3,1 𝛾4,1 

1 −4 6 −4 1 

By substituting these obtained coefficients in equation 
(17), the first point formula is therefore obtained as: 

𝑦𝑛−3 − 4𝑦𝑛−2 + 6𝑦𝑛−1 − 4𝑦𝑛 + 𝑦𝑛+1 = 0                  (19) 

Which is equivalent to 

 𝑦𝑛+1 = −𝑦𝑛−3 + 4𝑦𝑛−2 − 6𝑦𝑛−1 + 4𝑦𝑛                      (20) 

Second Point: 𝑘 = 2. 

Likewise, when the coefficients 𝛾4,2 and 𝛾6,2 are set to 

zero in equation (16), the linear operator (16) transforms 
into: 

𝑦𝑛−3 + 𝛾1,2𝑦𝑛−2 + 𝛾2,2𝑦𝑛−1 + 𝛾3,2𝑦𝑛 + 𝛾5,2𝑦𝑛+2 = 0,          (21) 

The following system of simultaneous linear equations is 
derived by expanding the Taylor series around the point 

𝑥𝑛, resulting in: 

𝐶0,2 = 𝛾0,2 + 𝛾1,2 + 𝛾2,2 + 𝛾3,2 + 𝛾5,2 = 0

𝐶1,2 = −3𝛾0,1 − 2𝛾1,1 − 𝛾2,1 + 2𝛾5,2 = 0

𝐶2,2 =
9

2
𝛾0,1 + 2𝛾1,1 +

1

2
𝛾2,1 + 2𝛾5,2 = 0

𝐶3,2 = −
9

2
𝛾0,2 −

4

3
𝛾1,2 −

1

6
𝛾2,2 +

4

3
𝛾5,2 = 0}

 
 

 
 

             (22) 

After setting 𝛾5,2 = 1 and solving this set of equations in 

the Maple 18 environment, we acquire the coefficients for 
the second point as presented in Table 2 below: 

https://scientifica.umyu.edu.ng/
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Table 2: Coefficient of the second point 

𝛾0,2 𝛾1,2 𝛾2,2 𝛾3,2 𝛾5,2 

4 −15 20 −10 1 

By substituting these acquired coefficients into equation 

(17), we derive the formula for the second point as follows 

4𝑦𝑛−3 − 15𝑦𝑛−2 + 20𝑦𝑛−1 − 10𝑦𝑛 + 𝑦𝑛+2 = 0       (23) 

This is, therefore, equivalent to 

    𝑦𝑛+2 = −4𝑦𝑛−3 + 15𝑦𝑛−2 − 20𝑦𝑛−1 + 10𝑦𝑛     (24) 

Third Point: 𝑘 = 3 

To obtain the formula for the third point, we apply the 
same procedure as in the derivation of the first and second 
point formulas, resulting in: 

𝑦𝑛+3 = −10𝑦𝑛−3 + 36𝑦𝑛−2 − 45𝑦𝑛−1 + 20𝑦𝑛        (25) 

Hence, the 3-point explicit block predictor method is 
therefore given by 

𝑦𝑛+1 = −𝑦𝑛−3 + 4𝑦𝑛−2 − 6𝑦𝑛−1 + 4𝑦𝑛
𝑦𝑛+2 = −4𝑦𝑛−3 + 15𝑦𝑛−2 − 20𝑦𝑛−1 + 10𝑦𝑛
𝑦𝑛+3 = −10𝑦𝑛−3 + 36𝑦𝑛−2 − 45𝑦𝑛−1 + 20𝑦𝑛

}       (26) 

STABILITY OF THE (NFDIBBDF) METHOD 

The stability of implicit numerical methods for stiff initial 
value problems is essential for preventing numerical 
instabilities and obtaining accurate and reliable solutions. 
Zero and A-stability are key criteria in assessing the 
robustness of this method (14), allowing for efficient 
simulations of problems with disparate timescales (Cash, 
2015). 

Definition 2 (Zero stability): A block method (14) is said 
to be zero stable if all the roots of first characteristics 

polynomial 𝜌(𝜉) have modulus less than or equal to one 
and if every root with modulus one is simple (Lambert, 
1973). 

Definition 3 (A- stability): A block method (14) is said 
to be A-stable if the stability region covers the entire 
negative half plane (Lambert, 1991). 

A-stability, short for absolute stability, is a desirable 
property of numerical methods for solving ordinary 
differential equations (ODEs). Specifically, it pertains to 
implicit methods used in the numerical integration of 
ODEs. A-stability ensures that the numerical method 
remains stable over a wide range of problem 
characteristics and time step sizes (Lambert, 1973). 

For an implicit numerical method to be A-stable, its 
stability region in the complex plane should include the 
entire left-half plane (Abasi et al., 2014). In other words, 
the method should be unconditionally stable, regardless of 
the eigenvalues of the underlying differential equation, and 
without imposing stringent restrictions on the size of the 
time step. 

A-stability is crucial when dealing with stiff ODEs, where 
the variables have significant differences in timescales. 
Stiff problems can be challenging for numerical methods, 
and A-stable methods provide robustness by allowing for 
larger time steps without sacrificing stability (Cash, 1980). 

Implicit methods involve solving algebraic equations at 
each time step and often possess A-stability. This property 
makes them particularly well-suited for stiff problems, as 
they can efficiently handle the numerical integration 
without being overly sensitive to the choice of time step 
(Suleiman et al., 2014). 

Hence, in this section, we will examine the zero-stability 
and A-stability of our method. This analysis will be 
conducted using a first-order scalar differential equation 

represented as yy =' . By applying this equation to the 

expressions in formula (14), we obtain: 

𝑦𝑛+1 =
2

29
𝑦𝑛−2 −

27

29
𝑦𝑛−1 +

54

29
𝑦𝑛 +

15

29
ℎ𝜆𝑦𝑛+1 −

9

29
ℎ𝜆𝑦𝑛−1

𝑦𝑛+2 = −
3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 −

45

32
𝑦𝑛 +

33

16
𝑦𝑛+1 +

15

32
ℎ𝜆𝑦𝑛+2 −

9

32
ℎ𝜆𝑦𝑛

𝑦𝑛+3 =
 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛 −

720

347
𝑦𝑛+1 +

795

347
𝑦𝑛+2 +

150

347
ℎ𝜆𝑦𝑛+3 −

90

347
ℎ𝜆𝑦𝑛+1}

 
 

 
 

     (27) 

Rearranging and collecting the like terms of equation (27) leads to 

(1 −
15

29
ℎ𝜆)𝑦𝑛+1 =

2

29
𝑦𝑛−2 + (−

27

29
−

9

29
ℎ𝜆)𝑦𝑛−1 +

54

29
𝑦𝑛

(1 −
15

32
ℎ𝜆)𝑦𝑛+2 −

33

16
𝑦𝑛+1 = −

3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 + (−

45

32
−

9

32
ℎ𝜆) 𝑦𝑛

(1 −
150

347
ℎ𝜆) 𝑦𝑛+3 −

795

347
𝑦𝑛+2 + (

720

347
+

90

347
ℎ𝜆) 𝑦𝑛+1 =

 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛}
 
 

 
 

          (28) 

The matrix formulation of these equations is written as: 
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
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



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
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

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

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
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

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
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

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
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(29) 

Putting ℎ̅ = ℎ𝜆 in matrix equation (29), we have 
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

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
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
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
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



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
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
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

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
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



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 (30) 

If 𝑚 is the number of block and 𝑟 is the number of points in the block, then 𝑛 = 𝑚𝑟, where 𝑟 = 3 and 𝑛 = 3𝑚. By 
(Bala et al., 2022), we let 
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
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
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Equation (30) can also be expressed in the following form: 

𝐶0𝑌𝑚 = 𝐶1𝑌𝑚−1                                                                       (31) 

where, 
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
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
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



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=
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h

h

C

347

150
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0
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15
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0
,

























−









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






−−

=
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32

9

32

45
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7
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3

29
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9
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27
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2

1 h

h

C  

The characteristic polynomial of the method is obtained by evaluating 

𝜋(𝑢, ℎ̅) = 𝑑𝑒𝑡(𝐶0𝑢 − 𝐶1) = 0,                                                         (32) 

 we obtain: 

( ) ,0

347

410

347

165

347

27
32

9

32

45

16

7

32

3

29

54

29

9

29

27

29

2

347

150
1

347

795

347

90

347

720

0
32

15
1

16

33

00
29

15
1

, =

























−









−−−









−−

−

































−−








+









−−









−

= h

h

u

hh

h

h

hu  

hhuhuhuhuhuuhu
10063

108

161008

16875

11104

7425

322016

456705

322016

397575

161008

144531

322016

476961

11104

8289 332332222 −−+−−−−=     

0
322016

2187

322016

142965

161008

3645

322016

2543

20126

9843 3223

=+−++−+ uhhuhuu
                                                    

(33) 
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For absolute stability of the method, the stability region is obtained by substituting𝑢 = 𝑒𝑖𝜃 , into (33). The graph of stability 

region for the method is given below: 

 

 

Figure 1: Stability region of the method. 

Following the definition of A-stability, the method (14) is nearly A-stable, as its stability region encompasses the entire 

negative half-plane. Hence, the method is suitable for the numerical integration of stiff ordinary differential equations. 

For zero stability, we set ℎ̅ = 0 in equation (33) to obtain 

( ) ,0

347

410

347

165

347

27
32

45

16

7

32

3
29

54

29

27

29

2

1
347

795

347

720

01
16

33
001

det0, =













































−

−−

−

−























−

−= uu

                                         

(34) 

Evaluating the above determinant leads to the first characteristic polynomial as: 

0
322016

2543

20126

9843

322016

476961 32 =+−+− uuu
                                                 

(35) 

By solving the cubic equation (35), we obtained the roots of the first characteristic polynomial as: 

u=0.0170138731, u=0.4641578699, u=1 

And whose modulus are; 0.0170138731, 0.4641578699and 1. Hence, from definition (3), we conclude that the 

method (14) is zero stable. 

 

IMPLEMENTATION OF THE (NFDIBBDF) METHOD 

The NFDIBBDF method is implemented by applying the idea of Newton’s iteration. We start by writing the formula (14) 
in the form: 
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𝐹1 = 𝑦𝑛+1 −
15

29
ℎ𝑓𝑛+1 +

9

29
ℎ𝑓𝑛−1 − 𝜀1

𝐹2 = 𝑦𝑛+2 −
33

16
𝑦𝑛+1 −

15

32
ℎ𝑓𝑛+2 +

9

32
ℎ𝑓𝑛 − 𝜀2

𝐹2 = 𝑦𝑛+3 +
720

347
𝑦𝑛+1 −

795

347
𝑦𝑛+2 −

150

347
ℎ𝑓𝑛+3 +

90

347
ℎ𝑓𝑛+1 − 𝜀3}

 
 

 
 

                                                             (36) 

Where 𝜀1, 𝜀2 and 𝜀3 are the back values defined as: 

𝜀1 =
2

29
𝑦𝑛−2 −

27

29
𝑦𝑛−1 +

54

29
𝑦𝑛

𝜀2 = −
3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 −

45

32
𝑦𝑛

𝜀3 =
 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛}
 
 

 
 

                                  (37) 

Definition 4: Let 𝑦𝑖 and 𝑦(𝑥𝑖) be the approximate and exact solution of the system of first order stiff IVP (1), 

respectively. Then, the absolute error in the (𝑖)𝑡ℎ iteration is defined as; 

(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡 = |(𝑦𝑖)𝑡 − 𝑦(𝑥𝑖)𝑡|                                                                       (38) 

The maximum error is defined as; 

𝑀𝐴𝑋𝐸 = 𝑚𝑎𝑥⏟
1≤𝑖≤𝑇

(𝑚𝑎𝑥(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡⏟        
1≤𝑖≤𝑁

)                                                          (39) 

Where T denotes the total number of steps and N denotes the number of the equations. 

Then, let𝑦𝑛+1
(𝑖+1)

 denote the (𝑖 + 1)𝑡ℎ iteration 

           𝑒𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+1
(𝑖+1)

− 𝑦𝑛+1
(𝑖)
,          𝑗 = 1,2,3                                                                   (40) 

Applying the Newton’s iteration, we get: 

     𝑦𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖)

− (𝐹𝑗 ′(𝑦𝑛+𝑗
(𝑖)
))
−1

(𝐹𝑗(𝑦𝑛+𝑗
(𝑖)
)) ,   𝑗 = 1,2,3                                            (41) 

This implies: 

(𝐹𝑗 ′(𝑦𝑛+𝑗
(𝑖)
)) 𝑒𝑛+𝑗

(𝑖+1)
= −(𝐹𝑗(𝑦𝑛+𝑗

(𝑖)
)) ,    𝑗 = 1,2,3                                                              (42) 

The matrix representation (42) is given by: 

  
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(43) 

The implementation of the equation (43) will be carried out using a C programming language code. 
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TEST PROBLEMS USED 

The following stiff initial value problems show the performance of the method developed. 

Problem 1:  

                                       𝑦′ = −9𝑦,  𝑦(0) = 𝑒,  0 ≤ 𝑥 ≤ 1 

Exact Solution:           𝑦(𝑥) = 𝑒(1−9𝑥) 

Source: (Musa et al, 2012) 

Problem 2: 

𝑦′ = 5𝑒5𝑥(𝑦 − 1)2 + 1, 𝑦(0) = −1,   0 ≤ 𝑥 ≤ 1 

Exact Solution: 𝑦(𝑥) = 𝑥 − 𝑒−5𝑥 

Source: (Lee et al., 2002) 

Problem 3:  

             𝑦′ = −20𝑦 + 20𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥, 𝑦(0) = 1,     0 ≤ 𝑥 ≤ 2 

Exact Solution: 𝑦(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑒−20𝑥 

Source: (Musa et al., 2015) 

Problem 4: 

                                   𝑦′
1
= −20𝑦1 − 19𝑦2,  𝑦1(0) = 2 

                                                                                                      0 ≤ 𝑥 ≤ 20 

                                  𝑦′
2
= −19𝑦1 − 20𝑦2, 𝑦2(0) = 0 

Exact Solution:               𝑦1(𝑥) = 𝑒
−39𝑥 + 𝑒−𝑥 

                                            𝑦2(𝑥) = 𝑒
−39𝑥 − 𝑒−𝑥 

Eigenvalues: -1 and -39 

Source: (Musa et al, 2014) 

Problem 5: 

                                 𝑦′
1
= 198𝑦1 + 199𝑦2, 𝑦1(0) = 1 

                                                                                                             0 ≤ 𝑥 ≤ 10 

                                𝑦′
2
= −398𝑦1 − 399𝑦2, 𝑦2(0) = −1 

Exact Solution:    𝑦1(𝑥) = 𝑒
−𝑥 

                                         𝑦2(𝑥) = −𝑒
−𝑥  

Eigenvalues:  -1 and -200 

Source: (Musa et al., 2014) 

NUMERICAL COMPUTATIONS 

The three (3) selected test problems will now be solved numerically using the 3-point BBDF, 3-point Extended SBBDF, 
and NFDIBBDF methods. This is to compare the efficiency and accuracy of the methods; the maximum absolute errors 
obtained from different step lengths H are given in each problem. The tables below also show the number of steps taken 
to solve each problem and computational time. For easy referencing, the existing 3-point block backward differentiation 
formula developed by Ibrahim et al. (2007a) is given by: 
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𝑦𝑛+1 =
1

10
𝑦𝑛−2 −

3

4
𝑦𝑛−1 + 3𝑦𝑛 −

3

2
𝑦𝑛+2 +

3

20
𝑦𝑛+3 + 3ℎ𝑓𝑛+1

𝑦𝑛+2 = −
3

65
𝑦𝑛−2 +

4

13
𝑦𝑛−1 −

12

13
𝑦𝑛 +

24

13
𝑦𝑛+1 −

12

65
𝑦𝑛+3 +

12

13
ℎ𝑓𝑛+2

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+1}

 
 

 
 

                                                             (44) 

However, the extended 3-point super class of block backward differentiation formula developed by Musa et al. (2019) is 
given by: 

𝑦𝑛+1 = −
29

70
𝑦𝑛−2 −

37

28
𝑦𝑛−1 +

9

7
𝑦𝑛 +

23

14
𝑦𝑛+2 −

27

140
𝑦𝑛+3 −

15

7
ℎ𝑓𝑛+1 −

12

7
ℎ𝑓𝑛−1

𝑦𝑛+2 = −
27

265
𝑦𝑛−2 +

44

53
𝑦𝑛−1 −

44

53
𝑦𝑛 +

72

53
𝑦𝑛+1 −

68

265
𝑦𝑛+3 +

60

53
ℎ𝑓𝑛+2 +

48

53
ℎ𝑓𝑛

𝑦𝑛+3 =
68

673
𝑦𝑛−2 −

435

673
𝑦𝑛−1 +

1240

673
𝑦𝑛 −

1580

673
𝑦𝑛+1 +

1380

673
𝑦𝑛+2 +

300

673
ℎ𝑓𝑛+3 +

240

673
ℎ𝑓𝑛+1}

 
 

 
 

                                      (45) 

Tables 3 4, 5, 6, through 7 below give the numerical results. The following notations are used in the tables: 

H:   Step length/size 

METHOD:  Methods used  

NS:   Number of steps 

3BBDF:   3-point Block BDF method  

3ESBBDF:  3-point Extended Superclass of Block BDF method 

NFDIBBDF:  A New Fixed Coefficient Diagonally Implicit Block BDF method 

MAXE:   Maximum Error   

CPU TIME:  Computation Time (in seconds). 

Table 3: Numerical Result for Problem 1. 

H METHOD NS MAXE CPU TIME 

10−2 
 
 

3BBDF 
3ESBBDF 

NFDIBBDF 

33 
33 
33 

1.75664e-001 
6.50071e-002 
3.52244e-002 

2.00833e-004 
6.56100e-002 
2.70300e-002 

10−3 3BBDF 
3ESBBDF 

NFDIBBDF 

333 
333 
333 

2.63192e-002 
6.50122e-004 
6.19415e-004 

1.36950e-003 
1.88100e-001 
2.53900e-002 

10−4 3BBDF 
3ESBBDF 

NFDIBBDF 

3,333 
3,333 
3,333 

2.69331e-003 
6.50122e-006 
6.93783e-006 

1.29261e-002 
1.13100e-002 
1.10700e-002 

10−5 3BBDF 
3ESBBDF 

NFDIBBDF 

33,333 
33,333 
33,333 

2.69933e-004 
6.50123e-008 
7.06579e-008 

1.28720e-001 
9.13000e+000 
1.80500e-001 

10−6 3BBDF 
3ESBBDF 

NFDIBBDF 

333,333 
333,333 
333,333 

2.69993e-005 
6.50123e-010 
7.08360e-010 

1.30950e+000 
9.62100e+001 
1.13500e+001 

Table 4: Numerical Result for Problem 2. 

H METHOD NS MAXE CPU TIME 

10−2 
 
 

3BBDF 
3ESBBDF 

NFDIBBDF 

33 
33 
33 

2.80735e-002 
4.83217e-003 
4.16232e-003 

2.76330e-004 
6.23441e-005 
6.20100e-005 

10−3 3BBDF 
3ESBBDF 

NFDIBBDF 

333 
333 
333 

3.71852e-003 
5.95338e-005 
7.01937e-005 

1.81850e-003 
1.88100e-001 
1.79400e-001 

10−4 3BBDF 
3ESBBDF 

3,333 
3,333 

3.74700e-005 
5.95692e-007 

1.71443e-002 
6.48433e-003 
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NFDIBBDF 3,333 7.86945e-007 5.55800e-003 

10−5 3BBDF 
3ESBBDF 

NFDIBBDF 

33,333 
33,333 
33,333 

3.74970e-005 
5.95974e-009 
8.02119e-009 

1.70042e-001 
6.58687e-002 
6.55600e-002 

10−6 3BBDF 
3ESBBDF 

NFDIBBDF 

333,333 
333,333 
333,333 

3.74997e-006 
6.18636e-011 
8.04294e-011 

1.70308e+000 
9.62100e+001 
1.49600e+001 

Table 5: Numerical Result for Problem 3. 

H METHOD NS MAXE CPU TIME 

10−2 
 
 

3BBDF 
3ESBBDF 

NFDIBBDF 

666 
666 
666 

9.15007e-002 
4.49329e-002 
3.93265e-002 

5.69750e-004 
3.37200e-002 
1.93500e-002 

10−3 3BBDF 
3ESBBDF 

NFDIBBDF 

6,666 
6,666 
6,666 

2.08350e-002 
9.23116e-004 
1.00816e-003 

4.54233e-003 
1.05100e-002 
1.04300e-002 

10−4 3BBDF 
3ESBBDF 

NFDIBBDF 

66,666 
66,666 
66,666 

2.19484e-003 
9.92032e-006 
1.23565e-005 

4.34752e-002 
7.45800e-002 
7.12400e-002 

10−5 3BBDF 
3ESBBDF 

NFDIBBDF 

666,666 
666,666 
666,666 

2.20579e-004 
9.99200e-008 
1.27985e-007 

4.34533e-002 
3.36900e+000 
3.68200e-001 

10−6 3BBDF 
3ESBBDF 

NFDIBBDF 

6,666,666 
6,666,666 
6,666,666 

2.20688e-005 
9.99920e-010 
1.28640e-009 

4.33535e+000 
2.96100e+001 
7.45500e+000 

Table 6: Numerical Result for Problem 4. 

H METHOD NS MAXE CPU TIME 

10−2 
 
 

3BBDF 
3ESBBDF 

NFDIBBDF 

666 
666 
666 

6.23032e-002 
8.83217e-004 
7.44133e-002 

2.77590e-002 
7.68676e-002 

2.81100e-002 

10−3 3BBDF 
3ESBBDF 

NFDIBBDF 

6,666 
6,666 
6,666 

3.76165e-002 
6.05338e-005 

3.30107e-003 

7.66636e-002 
7.64515e-001 

3.24500e-002 

10−4 3BBDF 
3ESBBDF 

NFDIBBDF 

66,666 
66,666 
66,666 

4.26516e-003 
6.26692e-006 

4.56593e-005 

7.64385e-001 
7.68143e-001 

5.44100e-001 

10−5 3BBDF 
3ESBBDF 

NFDIBBDF 

666,666 
666,666 
666,666 

4.30707e-004 
6.32740e-008 

4.84759e-007 

7.63788e+000 
7.59821e+000 

6.97890e+000 

10−6 3BBDF 
3ESBBDF 

NFDIBBDF 

6,666,666 
6,666,666 
6,666,666 

4.31123e-005 
6.33362e-010 

4.89169e-009 

7.65356e+001 
7.53567e+001 

7.20100e+001 

Table 7: Numerical Result for Problem 5. 

H METHOD NS MAXE CPU TIME 

10−2 
 
 

3BBDF 
3ESBBDF 

NFDIBBDF 

333 
333 
333 

1.07308e-002 
1.83217e-002 

2.78034e-004 

1.37500e-002 
7.36289e-002 
1.41100e-002 

10−3 3BBDF 
3ESBBDF 

NFDIBBDF 

3,333 
3,333 
3,333 

1.10060e-002 
8.05338e-002 

3.14469e-006 

2.72200e-002 
5.81512e-002 
1.91300e-002 

10−4 3BBDF 
3ESBBDF 

33,333 
33,333 

1.10333e-004 
1.26692e-008 

2.02700e-001 
5.81491e-001 
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NFDIBBDF 33,333 3.20816e-008 5.57300e-002 

10−5 3BBDF 
3ESBBDF 

NFDIBBDF 

333,333 
333,333 
333,333 

1.10361e-005 
1.32740e-010 

3.21710e-010 

1.92600e+000 
5.81122e+000 
4.40900e+000 

10−6 3BBDF 
3ESBBDF 

NFDIBBDF 

3,333,333 
3,333,333 
3,333,333 

1.10363e-006 
1.33362e-012 

2.38012e-011 

1.91700e+001 
5.79987e+001 

4.23200e+001 

The visual impact on the performance of the method developed is presented blow. 𝐿𝑜𝑔10(𝑀𝐴𝑋𝐸) against 𝐿𝑜𝑔10(𝐻)each 
test problem is plotted with the aid of MATLAB (Figure 2-6). 

 

Figure 2: Efficiency Curve for Problem 1

 
Figure 3: Efficiency Curve for problem 2 
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Figure 4: Efficiency Curve for problem 3

 

Figure 5: Efficiency Curve for problem 4 

 

Figure 6: Efficiency Curve for problem 5 
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DISCUSSION:  

From tables 3, 4, 5, 6, and 7 above, the comparative 
assessment of three numerical methods, 3-point BBDF, 3-
point Extended SBBDF, and the newly introduced 
NFDIBBDF, is applied to five distinct test problems. The 
primary objective is to gauge the effectiveness and 
precision of these methods through an analysis of 
Maximum Errors (MAXE), the Number of Steps (NS), 
and Computational Time (CPU Time) for each problem. 
Key findings indicate that NFDIBBDF consistently 
outperforms 3BBDF and 3ESBBDF across various step 
sizes in terms of maximum error and computational time, 
showcasing its overall superiority in solving the specified 
problems. 

The graphical portrayal of Log10MAXE  against Log10H 
further underscores the heightened performance of the 
NFDIBBDF method in contrast to 3BBDF and 
3ESBBDF. The downward trends in NFDIBBDF's 
graphs signify enhanced scalability and accuracy as the 
step size varies. 

CONCLUSION 

The New Fixed coefficient Diagonally Implicit Block 
Backward Differentiation Formula (NFDIBBDF) is 
developed to solve stiff initial value problems. The 
NFDIBBDF method emerges as a resilient and effective 
approach for tackling stiff initial value problems, 
surpassing or competently matching existing methods in 
terms of accuracy and computational efficiency. The 
comprehensive analysis and visual representation 
reinforce the credibility of the NFDIBBDF method as a 
valuable addition to numerical techniques for stiff ODEs. 
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