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INTRODUCTION
Statistical distributions are utilized in various fields to 

represent real-world phenomena, such as life analysis, 

reliability, insurance, engineering, finance, economics, 

biology, medicine, and business materials (Al-Noor & 

Hilal, 2021; Al-saiary & Al-jadaani, 2022). However, 

classical distributions frequently found it difficult to 

effectively model diverse datasets due to skewness and 

multimodality. Consequently, interest in enhancing their 

performance is rising. (Al-shomrani, 2022; El-morshedy et 

al., 2020; Sangsanit & Bodhisuwan, 2016). This has led to 

the development of extensions and generalizations. 

Generators, also known as G families of distributions, are 

increasingly used to enhance the flexibility of existing 

distributions in modeling datasets by controlling their 

characteristics(Hassan et al., 2022; Nanga et al., 2022). 

The Topp-Leone (T-L) distribution, proposed by (Topp 
& Leone, 1955), is a continuous unimodal distribution 
with bounded support. This distribution is particularly 
suitable for modeling finite support lifetimes and failure 
data. Numerous studies have been carried out to examine 
and explore various extensions of the Topp Leone-G 
distribution (TL-G) family. (Reyad et al., 2019) proposed 
the exponentiated generalized TL-G, further expanded by 
(Ibrahim et al., 2020) to include two additional shape 
parameters. In 2021,(Chamunorwa et al., 2021) presented 

the Exponentiated Odd Weibull-TL-G family, and 
(Chipepa & Oluyede, 2021) introduced the Topp-Leone 
Odd Exponential Half Logistic-G family. These studies 
have demonstrated the flexibility and potential of these 
extended families in modeling different types of data, 
offering a wide range of mathematical features and 
applications. 

Most extensions of classical distributions are typically 
algebraic in nature. However, researchers have recently 
turned their attention towards statistical distributions 
based on trigonometric functions(Nanga et al., 2022, 2023; 
Souza et al., 2021, 2022; Souzay et al., 2019). These 
proposed statistical distributions using trigonometric 
functions could offer scholars additional options. For 
instance, the extended cosine Weibull, power, and half-
logistic distributions (the extended cosine family) were 
initially introduced by (Muhammad et al., 2021). These 
distributions were found to have satisfactory performance 
in parameter estimation. Kumar et al. (2015) applied the 
sine function to a lifetime distribution, generating a new 
distribution that better fits bladder cancer patient data 
than existing distributions, as demonstrated by various 
tests. (Nanga et al., 2023) combined cosine-G with Topp-
Leone to introduce the CTL-G family of distributions. 
Five special cases of the distributions were developed, 
with the CTL- Weibull and Cauchy distributions 
outperforming others. The log-CTL Weibull model 
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showed better performance in fitting the Lung cancer 
dataset. 

The study's objectives are to explore the theoretical 
properties, develop statistical inference methods, apply 

the Exponentiated Cosine Topp-Leone (ECTL) 
distribution to lifetime data, explore extensions, and 
contribute to methodological advancement in modeling 
lifetime data. 

MATERIALS AND METHODS 

Exponentiated Cosine Topp-Leone G family of distribution 

Using the CTL family of distribution introduced by (Nanga et al., 2023) combined with the transformation proposed by 
(Gupta & Kundu, 1999). We proposed the exponentiated CTL family(ExCTL) of distribution with cumulative distribution 
function (cdf) defined below: 

𝐹𝐸𝑥𝐶𝐿𝑇−𝐺(𝑥; 𝛼, 𝜃, 𝜉) = [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (�̄�(𝑥; 𝜉))2)𝛼]   ]

𝜃
  ,  𝑥 ∈ ℜ, 𝜃, 𝛼 > 0    (1) 

Where  �̄�(𝑥; 𝜉) = 1 − 𝐺(𝑥; 𝜉)  

The probability density function (pdf) can obtained by taking the first derivatives of the equation (1) 

𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥; 𝛼, 𝜆, 𝜉) = 𝜋𝛼𝜃𝑔(𝑥; 𝜉)�̄�(𝑥; 𝜀)(1 − (�̄�(𝑥; 𝜉))2)𝛼−1 𝑠𝑖𝑛 [
𝜋

2
(1 − (�̄�(𝑥; 𝜉))2)𝛼] [1 − 𝑐𝑜𝑠 [

𝜋

2
(1 −

(�̄�(𝑥; 𝜉))2)𝛼]   ]
𝜃−1

              (2) 

𝐺(𝑥; 𝜉) and 𝑔(𝑥; 𝜉) represent the baseline cumulative distribution function and probability distribution function 
respectively 

The survival and hazard functions are defined, respectively, as 

𝑆𝐸𝑥𝐶𝐿𝑇−𝐺(𝑥; 𝛼, 𝜃, 𝜉) = 1 − [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (�̄�(𝑥; 𝜉))2)𝛼]   ]

𝜃
        (3) 

ℎ𝐸𝑥𝐶𝐿𝑇−𝐺(𝑥; 𝛼, 𝜃, 𝜀) =
𝜋𝛼𝜃𝑔(𝑥;𝜉)�̄�(𝑥;𝜉)(1−(�̄�(𝑥;𝜉))2)𝛼−1 𝑠𝑖𝑛[

𝜋

2
(1−(�̄�(𝑥;𝜉))2)𝛼][1−𝑐𝑜𝑠[

𝜋

2
(1−(�̄�(𝑥;𝜉))2)𝛼]  ]

𝜃−1

1−[1−𝑐𝑜𝑠[
𝜋

2
(1−(�̄�(𝑥;𝜉))2)𝛼]  ]

𝜃     (4) 

Useful expansion of the pdf and cdf 

To determine the mathematical properties of the ExCTL-G family, we may now obtain the mixture representation for 

the ExCTL-G PDF and CDF. The cdf and pdf of the mixture representation of the ExCTL-G family can be computed 

with the help of the generalized binomial expansion, Taylor series, and the Table of integral series supplied by (Gradshteyn 

& Ryzhik, 2007). 

The cdf is given by 

𝐹(𝑥) = ∑ ∑ ∑ ∑ 𝜑𝑖,𝑗,𝑘,𝑙𝐺𝑐𝑖

𝑙 (𝑥; 𝜉)∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0         (5) 

Where 𝜑𝑖,𝑗,𝑘,𝑙 = (−1)𝑖+𝑗+𝑘+𝑙 (
𝜆
𝑗
) (

2𝛼𝑖
𝑘

) (
2𝑘
𝑙

)and 𝑐𝑖[𝐺(𝑥; 𝜉)]𝑙 = 𝐺𝑐𝑖

𝑙 (𝑥; 𝜉)                                             

The pdf is given by 

𝑓(𝑥) = 𝜋𝛼𝜆 ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜙𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑝𝛨𝑐𝑖

𝑝+𝑙
(𝑥)∞

𝑖=0
∞
𝑗=0

∞
𝑘=0

∞
𝑙=0

∞
𝑚=0

∞
𝑛=0

∞
𝑝=0      (6) 

Where𝛨𝑐𝑖

𝑝+𝑙
(𝑥) = 𝑐𝑖𝑔(𝑥; 𝜉)(𝐺(𝑥; 𝜉))𝑝+𝑙and𝜙𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑝 =

∑ ∑ ∑ ∑ ∑ ∑ ∑
(−1)𝑛+𝑚+𝑝+𝑗+𝑘+𝑙(

𝜋

2
)

(2𝑛+1)!
(
2𝛼(𝑛 + 1) − 1
𝑚

)∞
𝑙

∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0

∞
𝑝=0 (

2𝑚 + 1
𝑝

)∞
𝑚=0 (

𝜆 − 1
𝑗

) (
2𝛼𝑖
𝑘

) (
2𝑘
𝑙

) 

Moment and Moment Generating Function(mgf) 

Preposition: The 𝑟𝑡ℎnon-central moment of the Exponentiated Topp Leone G family is defined as; 

𝜇𝑟
′ = 𝜋𝛼𝜆 ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜙𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑝 ∫ 𝑥𝑟𝛨𝑐𝑖

𝑝+𝑙
(𝑥) 𝑑𝑥

∞

0
∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

∞
𝑙=0

∞
𝑚=0

∞
𝑛=0

∞
𝑝=0                                    (7) 
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 Proof: 

By definition, the 𝑟𝑡ℎmoment can be expressed as; 

𝜇𝑟
′ = 𝐸[𝑥𝑟] = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞
  Where 𝑓(𝑥) is the pdf. 

Substitute the pdf from eqn (18) 

𝜇𝑟
′ = 𝜋𝛼𝜆 ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜙𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑝 ∫ 𝑥𝑟𝛨𝑐𝑖

𝑝+𝑙
(𝑥) dx

∞

0
∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

∞
𝑙=0

∞
𝑚=0

∞
𝑛=0

∞
𝑝=0                                           (8) 

ExCTL-G's mgf is described as; 

𝑀𝑋(𝑡) = 𝜋𝛼𝜆 ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜙𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑝 ∫ 𝑒𝑡𝑥𝛨𝑐𝑖

𝑝+𝑙
(𝑥) 𝑑𝑥

∞

0
∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

∞
𝑙=0

∞
𝑚=0

∞
𝑛=0

∞
𝑝=0     (9) 

Rényi’s entropy 

A random variable's entropy quantifies its degree of variation or uncertainty. It has diverse applications across numerous 
disciplines, including data processing, statistical physics, probability theory, engineering, communication theory, and 

quantum physics. Suppose X represents a random variable with a probability density function 𝑓(𝑥). The Rényi entropy, 
as defined by (Renyi, 1961), is defined as: 

𝛪𝑅(𝛾) =
1

1−𝛾
𝑙𝑜𝑔[∫ 𝑓(𝑥)𝛾𝑑𝑥

∞

−∞
] , 𝛾 ≠ 1,𝛾>0        (10) 

The following is the expression for the ExCTL distributions' Rényi entropy.: 

𝛪𝑅(𝛾) =
1

1−𝛾
𝑙𝑜𝑔[∫ 𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥)𝛾𝑑𝑥

∞

−∞
] , 𝛾 ≠ 1,𝛾>0        (11) 

By restructuring (2) algebraically, we can obtain an expression for 𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥)𝛾 as: 

𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥)𝛾 = (𝜋𝜃𝛼)𝛾𝑔(𝑥; 𝜉)𝛾(1 − 𝐺(𝑥; 𝜉))[1 − (1 − 𝐺(𝑥; 𝜉))2]𝛾(𝛼−1) 𝑠𝑖𝑛𝛾 (
𝜋

2
(1 − (1 − 𝐺(𝑥; 𝜉))2)𝛼) [1 −

𝑐𝑜𝑠 (
𝜋

2
(1 − (1 − 𝐺(𝑥; 𝜉))2)𝛼)]

𝛾(𝜃−1)
          (12) 

Using the Taylor series and binomial expansion 

𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥; 𝛼, 𝜃, 𝜉)𝛾 = (𝜋𝜃𝛼)𝛾𝑔(𝑥; 𝜉)𝛾𝑤𝑘𝑟𝑗𝑙𝑚𝑛𝑝𝑞(𝐺(𝑥; 𝜉))𝑝      (13) 

𝑤𝑘𝑟𝑗𝑙𝑚𝑛𝑝𝑞

= ∑ ∑∑∑ ∑ ∑ ∑ ∑(−1)𝑘+𝑗+𝑙+𝑚+𝑛+𝑝+𝑞 (
𝜋

2
)

𝑘
∞

𝑞=0

∞

𝑝=0

∞

𝑚=0

∞

𝑛=0

∞

𝑙=0

∞

𝑗=0

𝑘

𝑟=0

∞

𝑘=0

(
𝑘
𝑟
) (

𝛼(𝑟 + 𝛾) − 𝛾
𝑗

) (
𝛼𝑗 + 𝛾

𝑙
) (

𝛾(𝜃 − 1)
𝑛

) (
2𝛼𝑛
𝑚

)(
2𝑚
𝑝

) 𝑐𝑞 

Substituting the term 𝑓𝐸𝑥𝐶𝑇𝐿−𝐺(𝑥)𝛾into (11), we can derive the Rényi entropy for the ExCTL distributions as: 

𝛪𝑅(𝛾) =
1

1−𝛾
𝑙𝑜𝑔[(𝜋𝛼𝜃)𝛾 ∫ 𝑔(𝑥; 𝜉)𝛾𝑤𝑘𝑟𝑗𝑙𝑚𝑛𝑝𝑞(𝐺(𝑥; 𝜉))𝑝𝑑𝑥

∞

−∞
] , 𝛾 ≠ 1,𝛾>0     (14) 

Parameter estimation 

 Here, we applied the MLE method to estimate the ExCTL-G parameters. Consider a random sample𝑥1, 𝑥2, . . . , 𝑥𝑛of size 

𝑛 from the ExCLT-G with parameters𝛼,𝜃 and𝜀. Suppose 𝜗 = (𝛼, 𝜃, 𝜀)𝑇is a p × 1 vector of parameters. The following 
is an expression for the log-likelihood function: 

ℓ = 𝑛 𝑙𝑜𝑔( 𝜋) + 𝑛 𝑙𝑜𝑔( 𝜃) + 𝑛 𝑙𝑜𝑔( 𝛼)

+ ∑𝑙𝑜𝑔 𝑔 (𝑥𝑖; 𝜉) +

𝑛

𝑖=1

∑𝑙𝑜𝑔( 1 − 𝐺(𝑥𝑖; 𝜉)) + (𝛼 − 1)∑𝑙𝑜𝑔( 1 − (1 − 𝐺(𝑥𝑖; 𝜉))
2)

𝑛

𝑖=1

+

𝑛

𝑖=1

 

∑ 𝑙𝑜𝑔 (𝑠𝑖𝑛 (
𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼))𝑛
𝑖=1 + (1 − 𝜃)∑ 𝑙𝑜𝑔 (1 − 𝑐𝑜𝑠 (

𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼))𝑛
𝑖=1  (15) 

By taking the partial derivative of the log-likelihood function, one can determine the score function components 𝑈(𝜗) =

(
𝛿ℓ

𝛿𝛼
,
𝛿ℓ

𝛿𝜃
,
𝛿ℓ

𝛿𝜀
)
𝑇
as follows: 
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𝛿ℓ

𝛿𝛼
=

𝑛

𝛼
+ ∑𝑙𝑜𝑔( 1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)

𝑛

𝑖=1

+(
𝜋

2
∑(1 − (1 − 𝐺(𝑥𝑖; 𝜉))) × 𝑙𝑜𝑔( 1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2) 𝑐𝑜𝑡 [
𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼]

𝑛

𝑖=1

) + 

(
𝜋

2
∑ (1 − (1 − 𝐺(𝑥𝑖; 𝜉))) × 𝑙𝑜𝑔( 1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2) 𝑡𝑎𝑛 [
𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼]𝑛
𝑖=1 )    (16) 

𝛿ℓ

𝛿𝜃
=

𝑛

𝜃
+ ∑ 𝑙𝑜𝑔 (1 − 𝑐𝑜𝑠 [

𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼])𝑛
𝑖=1        (17) 

𝛿ℓ

𝛿𝜀
= ∑

𝑔′(𝑥𝑖; 𝜉)

𝑔(𝑥𝑖; 𝜉)
−

𝑛

𝑖=1

∑
𝐺′(𝑥𝑖; 𝜉)

1 − 𝐺(𝑥𝑖; 𝜉)
+ 2(𝛼 − 1)∑

𝐺′(𝑥𝑖; 𝜉)

1 − 𝐺(𝑥𝑖; 𝜉)

𝑛

𝑖=1

+

𝑛

𝑖=1

𝛼𝜋 ∑𝐺′(𝑥𝑖; 𝜉)(1

𝑛

𝑖=1

− 𝐺(𝑥𝑖; 𝜉))(1 − (1 − 𝐺(𝑥𝑖; 𝜉))2)𝛼−1 

𝑐𝑜𝑡 (
𝜋

2
(1 − (1 − 𝐺(𝑥𝑖; 𝜉))

2)𝛼) − (1 − 𝜃)𝛼𝜋 ∑ 𝐺′(𝑥𝑖; 𝜉)(1 − 𝐺(𝑥𝑖; 𝜉))(1 − (1 − 𝐺(𝑥𝑖; 𝜉))2)𝛼−1𝑛
𝑖=1 𝑡𝑎𝑛 (

𝜋

2
(1 −

(1 − 𝐺(𝑥𝑖; 𝜉))
2)𝛼) (18) Where 𝑔′(𝑥𝑖; 𝜉) =

𝛿𝑔(𝑥𝑖;𝜉)

𝛿𝜀
 and 𝐺′(𝑥𝑖; 𝜉) =

𝛿𝐺(𝑥𝑖;𝜉)

𝛿𝜀
 

MLE estimates can be obtained by solving for unknown parameters in the score functions (16), (17), and (18) after setting 
them equal to zero. This can be accomplished using a variety of methods, such as the quasi-Newton-Raphson approach. 

Some sub-distributions 

The ExCTL-G family can be extended by incorporating various baseline distributions to enhance application performance 
and flexibility. Using specified parameter values, these distributions' density and hazard functions are plotted to investigate 
the shape flexibility of the selected distributions. The graphs were generated using R software. 

Exponentiated Cosine Topp Leone Weibull distribution  

Consider adopting the Weibull distribution (Weibull.1939) as the baseline distribution, with the baseline cumulative 

distribution function and probability density function given respectively as; 𝐺(𝑥; 𝜉) = 1 − 𝑒−𝜆𝑥𝛽
, 𝑔(𝑥; 𝜉) =

𝜆𝛽𝑥𝛽−1𝑒−𝜆𝑥𝛽
 , 𝑥 > 0;  𝜆, 𝛽 > 0respectively. The cdf and pdf of Exponentiated Cosine Topp Leone Weibull distribution 

(ExCTLW). 

𝐹𝐸𝑥𝐶𝐿𝑇−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) = [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − 𝑒−2𝜆𝑥𝛽

)
𝛼
]   ]

𝜃

  ,  𝑥 > 0;  𝛼, 𝜃, 𝜆. 𝛽 > 0    (18) 

𝑓𝐸𝑥𝐶𝑇𝐿−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) = 𝜋𝛼𝜃𝜆𝛽𝑥𝛽−1𝑒−2𝜆𝑥𝛽
(1 − 𝑒−2𝜆𝑥𝛽

)
𝛼−1

𝑠𝑖𝑛 [
𝜋

2
(1 − 𝑒−2𝜆𝑥𝛽

)
𝛼
] [1 − 𝑐𝑜𝑠 [

𝜋

2
(1 −

𝑒−2𝜆𝑥𝛽
)
𝛼
]   ]

𝜃−1

              (19) 

The corresponding hazard function is 

ℎ(𝑥) =
𝜋𝛼𝜃𝜆𝛽𝑥𝛽−1𝑒−2𝜆𝑥𝛽

(1−𝑒−2𝜆𝑥𝛽
)
𝛼−1

𝑠𝑖𝑛[
𝜋

2
(1−𝑒−2𝜆𝑥𝛽

)
𝛼

][1−𝑐𝑜𝑠[
𝜋

2
(1−𝑒−2𝜆𝑥𝛽

)
𝛼

]  ]
𝜃−1

{1−[1−𝑐𝑜𝑠[
𝜋

2
(1−𝑒−2𝜆𝑥𝛽

)
𝛼
]  ]

𝜃

}

    (20) 

The density function plot and the hazard function graphs of the ExCTLW distribution for some arbitrary parameter 

values are shown in Figure 1. The density exhibits both left- and right-skewed shapes, as can be observed. However, the 

hazard function illustration shows bathtub increasing, and decreasing failure rates. 

The Quantile function of ExCTLW is derived as 

𝑥𝑢 = 𝐺−1 [−
1

2𝜆
𝑙𝑜𝑔 [1 − (

2

𝜋
𝑎𝑟𝑐𝑐𝑜𝑠 (1 − 𝑢

1

𝜃))

1

𝛼
]]

1

𝛽

,     0 ≤ 𝑢 ≤ 1      (21) 
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Figure. 1 ExCTLW density and hazard functions plots 

Exponentiated Cosine Topp Leone Frechet distribution (ExCTLF) 

using the Frechet distribution (Ramos et al., 2020) as the baseline distribution. The baseline cumulative distribution 

function and probability density function are:𝐺(𝑥; 𝜉) = 𝑒−𝜆𝑥−𝛽
 𝑔(𝑥; 𝜉) = 𝜆𝛽𝑥−(𝛽+1)𝑒−𝜆𝑥−𝛽

 , 𝑥 > 0;  𝜆, 𝛽 > 0. The cdf 
and pdf of (ExCTLF) are respectively defined as 

𝐹𝐸𝑥𝐶𝐿𝑇−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) = [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (1 − 𝑒−𝜆𝑥−𝛽

)
2
)
𝛼

]   ]
𝜃

  ,  𝑥 > 0;  𝛼, 𝜃, 𝜆. 𝛽 > 0   (22) 

𝑓𝐸𝑥𝐶𝑇𝐿−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) = 𝜋𝛼𝜃𝜆𝛽𝑥−(𝛽+1)𝑒−𝜆𝑥−𝛽
(1 − 𝑒−𝜆𝑥−𝛽

) (1 − (1 − 𝑒−𝜆𝑥−𝛽
)
2
)
𝛼−1

 

𝑠𝑖𝑛 [
𝜋

2
(1 − (1 − 𝑒−𝜆𝑥−𝛽

)
2
)
𝛼

] [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (1 − 𝑒−𝜆𝑥−𝛽

)
2
)
𝛼

]   ]
𝜃−1

        (23) 

The corresponding hazard function is 

ℎ(𝑥) =
𝜋𝛼𝜃𝜆𝛽𝑥−(𝛽+1)𝑒−𝜆𝑥−𝛽

(1−𝑒−𝜆𝑥−𝛽
)(1−(1−𝑒−𝜆𝑥−𝛽

)
2

)

𝛼−1

𝑠𝑖𝑛[
𝜋

2
(1−(1−𝑒−𝜆𝑥−𝛽

)
2

)

𝛼

][1−𝑐𝑜𝑠[
𝜋

2
(1−(1−𝑒−𝜆𝑥−𝛽

)
2

)

𝛼

]  ]

𝜃−1

{1−[1−𝑐𝑜𝑠[
𝜋

2
(1−(1−𝑒−𝜆𝑥−𝛽

)
2
)
𝛼

]  ]

𝜃

}

  (24) 

The density function and hazard function plots of the ExCTLF for various parameter values are displayed in Figure 2. 
While the hazard function shows both increasing and decreasing failure rates, the probability density function (pdf) 
exhibits a right skewed form. 

ExCTLF's quantile function is provided as𝑥𝑢 = 𝐺−1 [−
1

𝜆
𝑙𝑜𝑔 [√1 − (

2

𝜋
𝑎𝑟𝑐𝑐𝑜𝑠 (1 − 𝑢

1

𝜃))

1

𝛼
]]

1

𝛽

,     0 ≤ 𝑢 ≤ 1 (25) 

Exponentiated Cosine Topp Leone Lomax distribution (ExCTLLx). 

The ExCTLLx is proposed using the Lomax distribution (Lomax.1954) as the baseline distribution with the cumulative 

distribution function and probability density function are; 𝐺(𝑥; 𝜉) = 1 − (1 +
𝑥

𝜆
)
−𝛽

, 𝑔(𝑥; 𝜉) =
𝛽

𝜆
(1 +

𝑥

𝜆
)
−(𝛽+1)

 , 𝑥 >

0;  𝜆, 𝛽 > 0. The cumulative distribution function and probability density function ExCTLLx distribution are defined as 

𝐹𝐸𝑥𝐶𝐿𝑇−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) = [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (1 +

𝑥

𝜆
)
−2𝛽

)
𝛼

]   ]

𝜃

  ,  𝑥 > 0;  𝛼, 𝜃, 𝜆. 𝛽 > 0   (26) 

𝑓𝐸𝑥𝐶𝑇𝐿−𝑊(𝑥; 𝛼, 𝜃, 𝜆, 𝛽) =
𝜋𝛼𝜃𝛽

𝜆
(1 +

𝑥

𝜆
)
−(2𝛽+1)

(1 − (1 +
𝑥

𝜆
)
−2𝛽

)

𝛼−1
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𝑠𝑖𝑛 [
𝜋

2
(1 − (1 +

𝑥

𝜆
)
−2𝛽

)
𝛼

] [1 − 𝑐𝑜𝑠 [
𝜋

2
(1 − (1 +

𝑥

𝜆
)
−2𝛽

)
𝛼

]   ]

𝜃−1

        (27) 

The corresponding hazard function is 

ℎ(𝑥) =

𝜋𝛼𝜃𝛽

𝜆
(1+

𝑥

𝜆
)
−(2𝛽+1)

(1−(1+
𝑥

𝜆
)
−2𝛽

)
𝛼−1

𝑠𝑖𝑛[
𝜋

2
(1−(1+

𝑥

𝜆
)
−2𝛽

)
𝛼

][1−𝑐𝑜𝑠[
𝜋

2
(1−(1+

𝑥

𝜆
)
−2𝛽

)
𝛼

]  ]

𝜃−1

{1−[1−𝑐𝑜𝑠[
𝜋

2
(1−(1+

𝑥

𝜆
)
−2𝛽

)
𝛼

]  ]

𝜃

}

     (28) 

For specified parameter values, the density function and hazard function of the ExCTLLx are plotted in Figure 3. It is 
evident that the density has a skewed shape to the right, and the hazard function indicates an increasing failure rate. 

The quantile function of the ExCTLLx can be expressed as 

𝑥𝑢 = 𝐺−1

[
 
 
 
 

𝜆

(

 
 

(√1 − (
2

𝜋
𝑎𝑟𝑐𝑐𝑜𝑠 (1 − 𝑢

1

𝜃))

1

𝛼
)

−(
1

𝛽
)

− 1

)

 
 

]
 
 
 
 

,     0 ≤ 𝑢 ≤ 1     (29) 

 

    Figure 2  ExCTLF  density and hazard functions plots 

 

Figure. 3  ExCTLLx  density and hazard functions plots 

RESULTS AND DISCUSSION  

Simulation results 

We verified the performance of the maximum likelihood estimators and maximum product spacing (MPS) estimators 

using Monte Carlo simulations. We ran simulation experiments using the ExCTLW to illustrate this. Using the quantile 

function of the ExCTLW distribution, we generated random numbers. One thousand iterations of the experiment were 
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conducted using different sample sizes𝑛 = (20, 50, 100, 250, 500 𝑎𝑛𝑑 1000)and parameter values I (𝛼 = 1.4, 𝜃 =

1.3, 𝜆 = 3.5, 𝛽 = 1.5) and II (𝛼 = 5.4, 𝜃 = 4.8, 𝜆 = 3.8, 𝛽 = 2.5) for the ExCTLW distribution. We obtained 

estimates for the parameter estimators such as the average (mean), average bias (AB), and root mean square (RMSE). The 

outcomes are presented in Tables 1 and 2 for the MPS and MLE methods. The findings in both techniques consistently 

demonstrate that the AB and RMSE decrease as the sample size increases. This indicates that the methods successfully 

estimate the ExCTLW distribution's parameters. In contrast, the MLE approach is considered the best method for 

parameter estimation because of its approximately equal actual and iterative levels, but the MPS parameter estimates are 

less reliable. The MLE approach, however, demonstrated consistency in observing and estimating parameter values across 

various sample sizes and iteration levels. 

Table 1: Results ExCTLW simulations using the MPS method  

  I  II 

Parameter n Means Bias RMSE Parameter Means Bias RMSE 

 

 

 

𝛼 (1.4) 

20 1.6203 0.2203 0.6277  

 

 

𝛼 (5.4) 

5.6021 0.2021 1.0365 

50 1.5532 0.1532 0.4791 5.6398 0.2398 0.9846 

100 1.5298 0.1298 03750 5.6291 0.2291 0.8062 

250 1.4858 0.0858 0.2656 5.6349 0.2349 0.7171 

500 1.4578 0.0578 0.1972 5.5765 0.1765 0.5336 

1000 1.4398 0.0398 0.1411 5.5386 0.1386 0.4106 

 

 

 

𝜃 (1.3) 

20 1.4291 0.1291 0.6907  

 

 

𝜃 (4.8) 

4.9723 0.1723 0.9405 

50 1.3472 0.0472 0.5274 4.8910 0.0910 0.8176 

100 1.3151 0.0151 0.3855 4.8795 0.0795 0.6933 

250 1.2771 -0.0229 0.2624 4.7883 -0.0117 0.5624 

500 1.2867 -0.0133 0.1836 4.8056 0.0056 0.4191 

1000 1.2853 -0.0147 0.1253 4.8195 0.0195 0.3209 

 

 

 

𝜆 (3.5) 

20 3.4372 -0.0628 0.8967  

 

 

𝜆 (3.8) 

3.7345 -0.0655 0.4915 

50 3.4379 -0.0621 0.6228 3.7473 -0.0527 0.3069 

100 3.4365 -0.0635 0.4023 3.7641 -0.0359 0.2140 

250 3.4546 -0.0454 0.2556 3.7775 -0.0225 0.1527 

500 3.4682 -0.0318 0.1776 3.7897 -0.0103 0.1150 

1000 3.4826 -0.0174 0.1199 3.7944 -0.0016 0.0855 

 

 

 

𝛽 (1.5) 

20 1.4738 -0.0262 0.4934  

 

 

𝛽 (2.5) 

2.3567 -0.1433 0.5265 

50 1.4879 -0.0121 0.3798 2.3923 -0.1077 0.3224 

100 1.4764 -0.0236 0.2788 2.4197 -0.0803 0.2282 

250 1.4913 -0.0087 0.1954 2.4511 -0.0489 0.1587 

500 1.4877 -0.0123 0.1435 2.4638 -0.0362 0.1156 

1000 1.4915 -0.0085 0.1038 2.4724 -0.0276 0.0828 
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Table 2: Results ExCTLW simulations using the MLE method 

  I  II 

Parameter n Means Bias RMSE Parameter Means Bias RMSE 

 

 

 

𝛼 (1.4) 

20 1.5943 0.1943 0.6943  

 

 

𝛼 (5.4) 

5.5538 0.1538 1.1528 

50 1.5326 0.1326 0.4969 5.5291 0.1291 0.9771 

100 1.5083 0.1083 0.3781 5.6194 0.2194 0.8274 

250 1.4740 0.0740 0.2503 5.5971 0.1971 0.6644 

500 1.4602 0.0602 0.1925 5.5970 0.1970 0.5345 

1000 1.4354 0.0354 0.1387 5.5442 0.1442 0.4130 

 

 

 

𝜃 (1.3) 

20 1.5483 0.2483 0.7060  

 

 

𝜃 (4.8) 

4.7953 -0.0047 0.9976 

50 1.4233 0.1233 0.5033 4.8989 0.0989 0.9141 

100 1.3825 0.0825 0.3942 4.8754 0.0754 0.6638 

250 1.3061 0.0061 0.2666 4.8508 0.0508 0.5394 

500 1.3006 0.0006 0.1824 4.8221 0.0221 0.4359 

1000 1.2935 -0.0065 0.1156 4.8434 0.0434 0.3101 

 

 

 

𝜆 (3.5) 

20 4.1190 0.6190 1.3597  

 

 

𝜆 (3.8) 

4.0747 0.2747 0.6823 

50 3.7698 0.2698 0.7463 3.9141 0.1941 0.3508 

100 3.6325 0.1325 0.4470 3.8635 0.0635 0.2308 

250 3.5520 0.0520 0.2673 3.8282 0.0282 0.1561 

500 3.5200 0.0200 0.1762 3.8189 0.0189 0.1180 

1000 3.5116 0.0116 0.1191 3.8169 0.0169 0.0886 

 

 

 

𝛽 (1.5) 

20 1.6150 0.1150 0.5007  

 

 

𝛽 (2.5) 

2.7419 0.2419 0.6600 

50 1.5478 0.0478 0.3608 2.5844 0.0844 0.3553 

100 1.5110 0.0110 0.2719 2.5236 0.0236 0.2264 

250 1.5095 0.0095 0.1898 2.4953 -0.0047 0.1492 

500 1.4955 -0.0045 0.1406 2.4869 -0.0131 0.1089 

1000 1.4973 -0.0027 0.0983 2.4850 -0.0150 0.0778 

Application 1 

In this section, we show that the ExCTLW distribution 
outperforms the Weibull distribution (WD) and the 
Cosine Topp Leone Weibull (CTLW) distribution when 
fitting real datasets. The dataset used in this analysis 
includes Egypt's actual monthly income taxes from 
January 2006 to November 2010 (measured in 1000 
million Egyptian pounds). The source of the data was 
(Owoloko et al., 2015). The following is how the dataset 
appears: 

5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 
21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 

36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 
19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 
6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.  

The results presented in Table 3 reveal that the ExCTLW 

distribution outperforms the other distributions. This is 

due to its minimum goodness-of-fit (GOF) test 

measurements and information criteria (IC) values. The 

empirical pdf and the fitted pdfs of the candidate 

distributions are plotted in Figure 4. It is clear that the 

fitted pdf of the ExCTLW and the empirical pdf of the 

dataset are very similar. 
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Table 3: Parameter estimates, IC, and GOF statistics for dataset one 

Model  𝛼 𝜃 𝜆 𝛽 AIC AICC BIC HQAIC 

ExCTLW 191.77 0.7570 2.4050 0.0418 1.1780 391.5415 392.8319 397.8756 393.7523 
CTLW 198.17 0.3900  0.0007 2.2483 402.3377 403.0877 407.0883 403.9953 
WD 197.29   0.0066 1.8406 398.5811 398.9447 401.7481 399.6865 

 

 

Figure 4 Estimated densities over histogram for dataset one. 

Application 2 

The second dataset consists of the red cell counts (RCC) of 202 Australian athletes. The red cell count data can be 

found in the "sn" package in the R software. This dataset is easily accessible and is provided below: 

3.80, 3.90, 3.90, 3.91, 3.95, 3.95, 3.96, 3.96, 4.00, 4.02, 4.03, 4.06, 4.07, 4.08, 4.09, 4.09, 4.10, 4.11, 4.11, 4.12, 4.13, 4.13, 

4.14, 4.15, 4.16, 4.16, 4.17, 4.17, 4.19, 4.20, 4.20, 4.21, 4.23, 4.23, 4.24, 4.24, 4.25, 4.26, 4.26, 4.27, 4.27, 4.30, 4.31, 4.31, 

4.32, 4.32, 4.32, 4.35, 4.36, 4.36, 4.37, 4.38, 4.38, 4.39, 4.40, 4.40, 4.40, 4.41, 4.41, 4.41, 4.42, 4.42, 4.44, 4.44, 4.44, 4.45, 

4.45, 4.46, 4.46, 4.46, 4.46, 4.46, 4.48, 4.49, 4.50, 4.50, 4.51, 4.51, 4.51, 4.51, 4.52, 4.53, 4.54, 4.55, 4.56, 4.57, 4.58, 4.62, 

4.63, 4.63, 4.63, 4.64, 4.66, 4.68, 4.71, 4.71, 4.71, 4.71, 4.73, 4.75, 4.75, 4.76, 4.77, 4.77, 4.78, 4.81, 4.81, 4.82, 4.82, 4.83, 

4.83, 4.83, 4.83, 4.84, 4.86, 4.86, 4.87, 4.87, 4.87, 4.87, 4.87, 4.87, 4.88, 4.89, 4.89, 4.90, 4.90, 4.91, 4.91, 4.92, 4.93, 4.93, 

4.94, 4.95, 4.95, 4.96, 4.97, 4.97, 4.98, 4.99, 5.00, 5.00, 5.00, 5.01, 5.01, 5.01, 5.02, 5.02, 5.03, 5.03, 5.03, 5.03, 5.04, 5.04, 

5.08, 5.09, 5.09, 5.09, 5.10, 5.11, 5.11, 5.11, 5.11, 5.11, 5.13, 5.13, 5.13, 5.13, 5.16, 5.16, 5.16, 5.16, 5.17, 5.17, 5.18, 5.21, 
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5.21, 5.22, 5.22, 5.24, 5.24, 5.25, 5.29, 5.31, 5.32, 5.33, 5.33, 5.34, 5.34, 5.34, 5.34, 5.38, 5.40, 5.48, 5.48, 5.49, 5.50, 5.59, 

5.66, 5.69, 5.93, 6.72.  

Table 4: Parameter estimates, IC, and GOF statistics for dataset two 

Model  𝛼 𝜃 𝜆 𝛽 AIC AICC BIC HQAIC 

ExCTLW 126.22 5.2593 5.2629 0.0291 2.7710 260.4594 261.7497 266.7935 262.6702 
CTLW 131.58 1.4721  0.00002 6.6759 269.1559 269.9059 273.9064 270.8140 
WD 148.66   0.0000002 9.7931 301.3332 301.6968 304.5002 302.4386 

The ExCTLW distribution was compared to the WD and CTLW distributions. The results of the goodness-of-fit test, 
information criterion values, and maximum likelihood estimates for dataset two are shown in Table 4. Since the ExCTLW 
distribution produces the minimum values for all IC and GOF metrics, it outperforms the competing models in fitting 
the RCC dataset. This is corroborated by the plot of the fitted pdfs of the candidate distributions and the empirical pdfs, 
as shown in Figure 5. It is evident that the fitted pdf of the ExCTLW distribution and the empirical pdf of the RCC 
sample are quite similar. 

 

Figure 5 Estimated densities over histogram for dataset two.

CONCLUSION 

In this work, we proposed the ExCTL family, which 

combines the trigonometric transformation and the 

exponentiation technique. We extract its mathematical 

properties, including entropies, moments, quantile, and 

moment-generating functions. We investigate the shapes 

of the density and hazard functions using three different 

sub-distributions. The MLE approach is applied to 

estimate the model parameters. Using Monte Carlo 

simulations, we validate the performance of the MPS and 

the MLE estimators. The results show that the MLE is 

more consistent. Using two real datasets, we illustrate an 

application of a sub-model generated from the family. Our 

results reveal that sub-distributions derived from the 

ExCTL-G family better fit these datasets than the other 

two distributions. 
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