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ABSTRACT

The Topp-Leone distribution is widely used for modeling lifetime data actoss many
disciplines. This paper presents the Exponentiated Cosine Topp-Leone Generalized family
(ExCTLG), which is an extension of the Topp-Leone family. The research examines the
mathematical properties of the ExCTLG, including the survival and hazard functions,
moments, moment-generating functions, and Renyi’s entropy. Parameter estimation is carried
out using the maximum likelihood estimation (MLE) techniques, and the estimated
parameters consistency is validated using the Monte Carlo simulation method, thereby
highlighting the superiority of MLE. The advantages and applicability of the proposed

distribution are shown by analyzing two-lifetime datasets.

INTRODUCTION

Statistical distributions are utilized in various fields to
represent real-world phenomena, such as life analysis,
reliability, insurance, engineering, finance, economics,
biology, medicine, and business materials (Al-Noor &
Hilal, 2021; Al-saiary & Al-jadaani, 2022). However,
classical distributions frequently found it difficult to
effectively model diverse datasets due to skewness and
multimodality. Consequently, interest in enhancing their
performance is rising. (Al-shomrani, 2022; El-morshedy et
al., 2020; Sangsanit & Bodhisuwan, 2016). This has led to
the development of extensions and generalizations.
Generators, also known as G families of distributions, are
increasingly used to enhance the flexibility of existing
distributions in modeling datasets by controlling their
characteristics(Hassan et al., 2022; Nanga et al., 2022).

The Topp-Leone (T-L) distribution, proposed by (Topp
& Leone, 1955), is a continuous unimodal distribution
with bounded support. This distribution is particularly
suitable for modeling finite support lifetimes and failure
data. Numerous studies have been carried out to examine
and explore various extensions of the Topp Leone-G
distribution (TL-G) family. (Reyad et al., 2019) proposed
the exponentiated generalized TL-G, further expanded by
(Ibrahim et al., 2020) to include two additional shape
parameters. In 2021,(Chamunorwa et al., 2021) presented

KEYWORDS

Cosine Generalized family,
Exponentiated Generalized
family, Topp-Leone distribution,
moments, parameter estimation.

(OO

© The authors. This is an Open
Access atticle distributed under

the terms of the Creative
Commons Attribution 4.0 License
(http:/ /creativecommons.org/
licenses/by/4.0)

the Exponentiated Odd Weibull-TL-G family, and
(Chipepa & Oluyede, 2021) introduced the Topp-Leone
Odd Exponential Half Logistic-G family. These studies
have demonstrated the flexibility and potential of these
extended families in modeling different types of data,
offering a wide range of mathematical features and
applications.

Most extensions of classical distributions are typically
algebraic in nature. However, researchers have recently
turned their attention towards statistical distributions
based on trigonometric functions(Nanga et al., 2022, 2023;
Souza et al, 2021, 2022; Souzay et al., 2019). These
proposed statistical distributions using trigonometric
functions could offer scholars additional options. For
instance, the extended cosine Weibull, power, and half-
logistic distributions (the extended cosine family) were
initially introduced by (Muhammad et al.,, 2021). These
distributions were found to have satisfactory performance
in parameter estimation. Kumar et al. (2015) applied the
sine function to a lifetime distribution, generating a new
distribution that better fits bladder cancer patient data
than existing distributions, as demonstrated by various
tests. (Nanga et al., 2023) combined cosine-G with Topp-
Leone to introduce the CTL-G family of distributions.
Five special cases of the distributions were developed,
with the CTL- Weibull and Cauchy distributions
outperforming others. The log-CTL Weibull model
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showed better performance in fitting the Lung cancer the Exponentiated Cosine Topp-Leone (ECTL)
dataset. distribution to lifetime data, explore extensions, and

contribute to methodological advancement in modeling

1 . : .
The study's objectives ate to explore the theoretical lifetime data.

properties, develop statistical inference methods, apply
MATERIALS AND METHODS

Exponentiated Cosine Topp-Leone G family of distribution

Using the CTL family of distribution introduced by (Nanga ct al., 2023) combined with the transformation proposed by
(Gupta & Kundu, 1999). We proposed the exponentiated CTL family(ExCTL) of distribution with cumulative distribution
function (cdf) defined below:

Fexcir—c (6 @,6,8) = [1— cos [5 (1 = (G(x; £)»)7| ]9 , XERO,a>0 1)
Where G(x;¢) =1—G(x;¢)

The probability density function (pdf) can obtained by taking the first derivatives of the equation (1)

foxcri-c(6 @, 2,§) = mafg(x; )G (6 )(1 — (G(x; ) sin[5(1 = (66 )| [1 = cos [ (1 -

G | @

G(x;&) and g(x; &) represent the baseline cumulative distribution function and probability distribution function
respectively

The survival and hazard functions are defined, respectively, as
n . 2\a 0
Sexcir-6(6@,6,§) = 1= [1—cos [F(1 = (G(x: D] | G

nabg(x)E(HA-(G()) sin[7(1-(G(:)H)|[1-cos[F0-(G (627 ]9_1
1—[1—cos[§(1—(@(x:f))2)u] ]9

*

hexcrr—¢(x; @, 0, €) =

Useful expansion of the pdf and cdf

To determine the mathematical properties of the ExCTL-G family, we may now obtain the mixture representation for
the ExCTL-G PDF and CDF. The cdf and pdf of the mixture representation of the ExCTL-G family can be computed
with the help of the generalized binomial expansion, Taylor series, and the Table of integral series supplied by (Gradshteyn
& Ryzhik, 2007).

The cdf is given by

F(x) = X720 X j=0 k=0 Dm0 Pi,j i1 G, (x5 €) ©)
Where @14 = (<D (1) (260 (F)and 66 O = 64,6 )

The pdf is given by

f(x) = mal Z;;O=o Yin=0 Lm=0 2l=0 2k=0 Z?:o Yico ¢i,j,k,l,m,n,pch'Ji+l ) ©)

WhereH? ™ (x) = ¢;9(x; €) (G (x; )P+ and; j g 1mnp =

w oy pe oy v e v COTTPUHE) dan 4+ 1) — 1\ (2m + 1\ (A = 1) (2aiy (2k
S Bfeo Do o Bino g B L) (2an 4 1 GG THEN G

Moment and Moment Generating Function(mgf)

Preposition: The 7 non-central moment of the Exponentiated Topp Leone G family is defined as;

' 0 0 0 0 0 0 ) © l
I'lT = nal Zp:O ZTL=O Zm=0 Zl:() Zk:() Zj:O Zi:O d)i,j,k,l,m,n,p fo er(I:)i-'— (x) dx (7)
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Proof:

By definition, the 7" moment can be expressed as;
ur = Elx f x"f(x)dx Where f(x) is the pdf.

Substitute the pdf from eqn (18)

) 0 0 ) ) 0 0 © l
Yy = mal Zp:O Yin=0 2m=0 2l=0 2uk=0 Zj:o Yizo i j kL mmp fo erfl-Jr (%) dx ®
ExCTL-G's mgf is described as;
My (t) = mald Z%O=o Xn=0 Lm=0 2120 Lk=0 Z?:o Yico Dijrimnp fooo etng-H (%) dx ©)

Rényi’s entropy

A random variable's entropy quantifies its degree of variation or uncertainty. It has diverse applications across numerous
disciplines, including data processing, statistical physics, probability theory, engineering, communication theory, and
quantum physics. Suppose X represents a random variable with a probability density function f(x). The Rényi entropy,
as defined by (Renyi, 1961), is defined as:

In(y) = 1= log[[”, f()Ydx] ¥ # 1y>0 (10)
The following is the exptession for the ExCTL distributions' Rényi entropy.:

I (1) = = 10g[ [, foxcrr-o(x)dx], v # 1y>0 (1)
By restructuring (2) algebraically, we can obtain an expression fot fgycrr—g (%)Y as:

fexeri-e(x)Y = (0a) g(x; «f)yu — Gl — (1= Gl @V sin? (301 - (1- 6D [1-
-1)

cos (g 1-Q01-G6(x; E))Z)“)] (12)

Using the Taylor series and binomial expansion

fexcri-c (6 @, 8,8) = (m0a)Y g(x; §)Y Wir jimnpq (G (x; §))P (13)
Wikrjimnpq

SYFISS S S e 3 () (P ) ) ) e

k=071=0 j=0 l=0 n=0 m=0 p=0 q=0

Substituting the term fgycrr_g ()Y into (11), we can derive the Rényi entropy for the ExCTL distributions as:

1 ©
IR ()/) = E lOg [(7‘[(10)7’ f_wg(X; g)ywkrjlmnpq (G(X; f))pdx] Y * 1,)/>0 (14)
Parameter estimation

Here, we applied the MLE method to estimate the ExCTL-G parameters. Consider a random sampleXy, Xy, ..., X, of size
n from the ExCLT-G with parametersa,8 ande. Suppose 9 = (&, 8, €)"is a p X 1 vector of parameters. The following
is an expression for the log-likelihood function:

€—nlog(n)+nl0g(9)+nlog(a)
+Zlogg(xuf) +Zlog(1—a(xuf)) +(a- 1)Zlog(1— (1= G x5 §)%) +
i log (sin (50~ (1~ 605 £)%))) + (1~ 0) X log (1. cos (501 - (L~ 6 £))7)) (19

By taking the partial derivative of the log-likelihood function, one can determine the score function components U(9) =
(6€ se s\T

L E) as follows:
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5 C
== %Z log(1— (1 —G(x;€))?)

* (gZ(l (1= 60 ) x log (1= (1= G ) cot [5:(1 = (1 = Gxi E))Z)“D +

(G- (1= 6 §)) x log (1= (1 G(x; §)2) tan[F(1 - (1 - 6 2% (16)
=2+ T log (1—cos[5(1— (1 - 6 £)%)?)) (7
8¢ N9t N 66 G'(xi;§) NP
5~ Ly guid) _Z TG0 | ”z =60 D) +“"; LS

GG )~ (1 60 )T
cot (2(1 = (1= Gxg §)A%) = (1 = O)am Ty 6 G H(1 = G (A~ (1 = 6 e §)2) ean (S(1 -

! 5 ir ' 66 i
(1 =G 5))2)0() (18) Whete g'(x;; &) = 9(5—’16) and G'(x;; &) = E:; J)

MLE estimates can be obtained by solving for unknown parameters in the score functions (16), (17), and (18) after setting

them equal to zero. This can be accomplished using a variety of methods, such as the quasi-Newton-Raphson approach.

Some sub-distributions

The ExCTL-G family can be extended by incorporating various baseline distributions to enhance application performance
and flexibility. Using specified parameter values, these distributions' density and hazard functions are plotted to investigate
the shape flexibility of the selected distributions. The graphs were generated using R software.

Exponentiated Cosine Topp Leone Weibull distribution

Consider adopting the Weibull distribution (Weibull.1939) as the baseline distribution, with the baseline cumulative
distribution function and probability density function given respectively as; G(x;&) =1 — e B, g(x; &) =
ABxP “le=2xf x> 0; 2, B > Otespectively. The cdf and pdf of Exponentiated Cosine Topp Leone Weibull distribution
(ExCTLW).

Fercrr—w (X 2,0,4,B) = [1 - cos[ (1 - e'“xﬁ) ] ]6 , x>0; a,0,1.>0 (18)

fexcro-w(x;a,0,4,8) = ”aeﬂﬁxﬁ_le_nxﬁ (1 - 6_2“[}){1_1 sin E(l - e_z’lxﬂ)a] [1 — cos E(l -
e_mﬂ)a] ]6_1 (19)
The corresponding hazard function is

na@lﬁxﬁ_le_ZAxﬁ(1_9_2/1XB)u_1 Sin[g(l_e_zlxﬁ)a][1_Cos[g(1_e_zzxﬁ)a] ]9—1

{1_[1_505[2(1—9—2/1;56)“] ]9}

The density function plot and the hazard function graphs of the ExCTLW distribution for some arbitrary parameter

h(x) =

(20)

values are shown in Figure 1. The density exhibits both left- and right-skewed shapes, as can be observed. However, the

hazard function illustration shows bathtub increasing, and decreasing failure rates.

The Quantile function of ExCTLW is derived as

x, =Gt [—%log 1- (%arccos (1 - u%))énﬁ, 0<su<1 1)
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Figure. 1 ExCTLW density and hazard functions plots
Exponentiated Cosine Topp Leone Frechet distribution (ExCTLF)

using the Frechet distribution (Ramos et al., 2020) as the baseline distribution. The baseline cumulative distribution

function and probability density function are:G (x; &) = e x7F g(x; &) = A,Bx_(ﬁ"'l)e_)‘x_ﬁ ,x>0; 4,8 > 0.The cdf
and pdf of (ExCTLF) are respectively defined as

2\ 1°
Foverr—w (6 @, 0,2, B) = [1 — cos [2(1 —(1-e*7) ) ] ] ,x>0; @,6,18>0 22)

- - N2
fexcri-w (6 @, 6,2, B) = nabABx~FrDe= 2" (1 —e M ﬁ) (1 - (1 —e M B) )
o-1

a a
. _ __/1—15‘2 _ n _ __A—BZ
Sln[;(l (1 e ¥ ))Hl cos[2<1 (1 e ))]] (23)
The corresponding hazard function is
na@/lﬁx_([”“)e_)‘x_ﬁ(1—e_)"‘_B)<1—(1—e_)‘x_ﬁ)z)a_1sin[ﬁ<1—(1—e_l"_ﬁ)2)a][l—cos[E(l—(l—e‘}‘x_ﬁ)z>a] ]
2 2
2] 1°
{1—[1—cos[§(1—(1—e—“_6) ) ] ] ]
The density function and hazard function plots of the ExXCTLF for various parameter values are displayed in Figure 2.

While the hazard function shows both increasing and decreasing failure rates, the probability density function (pdf)
exhibits a right skewed form.

0-1

h(x) = 24)

1
B
1 2 1
ExCTLF's quantile function is provided asx, = G ™1 —Elog \]1 - (; arccos (1 - ue)) , 0su<1l (25

]=

Exponentiated Cosine Topp Leone Lomax distribution (ExCTLLx).

The ExCTLLx is proposed using the Lomax distribution (Lomax.1954) as the baseline distribution with the cumulative
.. . . . . . x -8B B x -8 D

distribution function and probability density function are; G(x;§) = 1 — (1 + /—1) ,9(x:8) = N (1 + E) X >

0; 4,8 > 0. The cumulative distribution function and probability density function ExCTLLx distribution are defined as

-2p8 a 0
Foverr—w (6 @, 0,2, B) = [1 — cos [5(1 - (1+43) ) ] ] ,x>0; a,6,1.>0 26)

abf x\~CFHD e —28\ %71
fexcri-w(x @, 0,4, B) = T(l + z) <1 - (1 + Z) )
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" £\ 26\ . 26\ 1
sin[;(l—(1+z) ) Hl_COS[E(l_(l'{_I) ) ] ] 27)
The corresponding hazard function is
w001 (1)) i1 (00 fr-eosfa-66) ) |
il

For specified parameter values, the density function and hazard function of the ExCTLLx are plotted in Figure 3. It is
evident that the density has a skewed shape to the right, and the hazard function indicates an increasing failure rate.

6-1

h(x) = 28)

The quantile function of the ExCTLLx can be expressed as

1
I[ -(3) 1|
— 2 I\\a
X, =G 12 1—(;arccos(1—u9)) -1 | 0<su<1 (29)
s -
{ “ - B \\ V= weT8,6=115, =101, =i
© [ — =35, 816, 120 5=13, [ N [ “;f =21 i
=20 N ] = =05 635 i=16p=15, o ~ L ;:1'0‘
N \ \ == 0=06,6=06,i=3.88=15, — - N :3'0 B
| . N « = =10, 8=1.0,1=0.86=05, o ~. : =30, o=
= A a=15,8=22,1=1 0B=03, o 8 4 .‘i‘b"-
— l iy _ ' -
~ | = .
o ! o '
[ _ [
! o iy
o . afi.. o e — e
° o I I T I I o T | | T
0 1 2 3 4 5 0 1 2 3 4
X X
Figure 2 ExCTLF density and hazard functions plots
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Figure. 3 ExCTLLx density and hazard functions plots

RESULTS AND DISCUSSION

Simulation results

We verified the performance of the maximum likelihood estimators and maximum product spacing (MPS) estimators
using Monte Catlo simulations. We ran simulation experiments using the ExCTLW to illustrate this. Using the quantile
function of the ExCTLW distribution, we generated random numbers. One thousand iterations of the experiment were
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conducted using different sample sizesn = (20,50, 100,250,500 and 1000)and parameter values I (¢ = 1.4,6 =
1.3,A=35=15) and II (¢ =5.4,0 =4.8,1=3.8, =2.5) for the ExCTLW distribution. We obtained
estimates for the parameter estimators such as the average (mean), average bias (AB), and root mean square (RMSE). The
outcomes are presented in Tables 1 and 2 for the MPS and MLE methods. The findings in both techniques consistently
demonstrate that the AB and RMSE decrease as the sample size increases. This indicates that the methods successfully
estimate the ExCTLW distribution's parameters. In contrast, the MLE approach is considered the best method for
parameter estimation because of its approximately equal actual and iterative levels, but the MPS parameter estimates are
less reliable. The MLE approach, however, demonstrated consistency in observing and estimating parameter values across

vatious sample sizes and iteration levels.

Table 1: Results ExCTLW simulations using the MPS method

I il
Parameter n Means Bias RMSE  Parameter Means Bias RMSE

20 16203 02203 06277 56021 02021 1.0365

50 15532 0532 0.4791 56398 02398 0.9846

100 15298 01298 03750 56291 0.2291  0.8062

a (14) 250 14858 00858 02656  a(54) 56349 02349  0.7171
500 14578 00578 01972 55765 01765 05336

1000 14398 00398 01411 55386 0.1386  0.4106

20 14291 01291 06907 49723 01723 0.9405

50 13472 00472 0.5274 48910 0.0910  0.8176

100 13151 00151 03855 48795 00795  0.6933

9 (1.3) 250 12771 00229 02624 9 (48 47883  -00117 05624
500 12867 -0.0133  0.1836 48056 0.0056  0.4191

1000 12853  -00147  0.1253 48195 00195  0.3209

20 34372 00628  0.8967 37345 0.0655  0.4915

50 34379 00621 0.6228 37473 -0.0527  0.3069

100 34365  -0.0635  0.4023 37641 -0.0359  0.2140

2 (3.5) 250 34546 -0.0454 02556 A (38) 37775  -0.0225  0.1527
500 34682 -0.0318  0.1776 37807 -0.0103  0.1150

1000 34826 -00174  0.1199 37944 00016  0.0855

20 14738 00262 04934 23567 -0.1433  0.5265

50 14879 00121  0.3798 23923 -0.1077  0.3224

100 14764 -00236  0.2788 24197 00803  0.2282

B3 250 14913 -0.0087 01954 B (25 24511  -0.0489  0.1587
500 14877 -0.0123 01435 24638 -0.0362  0.1156

1000 14915 -0.0085  0.1038 24724 00276 0.0828
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Table 2: Results ExCTLW simulations using the MLE method

I 11
Parameter n Means Bias RMSE  Parameter Means Bias RMSE

20 1.5943 0.1943 0.6943 5.5538 0.1538 1.1528

50 1.5326 0.1326 0.4969 5.5291 0.1291 0.9771

100 1.5083 0.1083 0.3781 5.6194 0.2194 0.8274

a (1.4 250 1.4740 0.0740 0.2503 a (5.4 5.5971 0.1971 0.6644
500 1.4602 0.0602 0.1925 5.5970 0.1970 0.5345

1000 1.4354 0.0354 0.1387 5.5442 0.1442 0.4130

20 1.5483 0.2483 0.7060 4.7953 -0.0047 0.9976

50 1.4233 0.1233 0.5033 4.8989 0.0989 0.9141

100 1.3825 0.0825 0.3942 4.8754 0.0754 0.6638

0 (1.3) 250 1.3061 0.0061 0.2666 0 (4.8) 4.8508 0.0508 0.5394
500 1.3006 0.0006 0.1824 4.8221 0.0221 0.4359

1000 1.2935 -0.0065 0.1156 4.8434 0.0434 0.3101

20 4.1190 0.6190 1.3597 4.0747 0.2747 0.6823

50 3.7698 0.2698 0.7463 3.9141 0.1941 0.3508

100 3.6325 0.1325 0.4470 3.8635 0.0635 0.2308

A (3.5 250 3.5520 0.0520 0.2673 A (3.8 3.8282 0.0282 0.1561
500 3.5200 0.0200 0.1762 3.8189 0.0189 0.1180

1000 3.5116 0.0116 0.1191 3.8169 0.0169 0.0886

20 1.6150 0.1150 0.5007 2.7419 0.2419 0.6600

50 1.5478 0.0478 0.3608 2.5844 0.0844 0.3553

100 1.5110 0.0110 0.2719 2.5236 0.0236 0.2264

B (1.5) 250 1.5095 0.0095 0.1898 B (2.5 2.4953 -0.0047 0.1492
500 1.4955 -0.0045 0.1406 2.4869 -0.0131 0.1089

1000 1.4973 -0.0027 0.0983 2.4850 -0.0150 0.0778

Application 1

In this section, we show that the ExCTLW distribution
outperforms the Weibull distribution (WD) and the
Cosine Topp Leone Weibull (CTLW) distribution when
fitting real datasets. The dataset used in this analysis
includes Egypt's actual monthly income taxes from
January 2006 to November 2010 (measured in 1000
million Egyptian pounds). The source of the data was
(Owoloko et al., 2015). The following is how the dataset
appears:

5.9,20.4,14.9,16.2, 17.2,7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5,
21.6,18.5,5.1,6.7,17,8.6,9.7,39.2, 35.7, 15.7,9.7, 10, 4.1,

https:/ /scientifica.umyu.edu.ng/

36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6,
19.1,20.5,7.1,7.7,18.1,16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2,
6.1,8.4,11,11.6,11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

The results presented in Table 3 reveal that the ExCTLW
distribution outperforms the other distributions. This is
due to its minimum goodness-of-fit (GOF) test
measurements and information criteria (IC) values. The
empirical pdf and the fitted pdfs of the candidate
distributions are plotted in Figure 4. It is clear that the
fitted pdf of the ExCTLW and the empirical pdf of the

dataset are very similar.

Osi et al,, /USci, 3(1): 157 — 167, March 2024 164


https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 3 NO. 1, March 2024, Pp 157 — 167
Table 3: Parameter estimates, IC, and GOF statistics for dataset one

Model a 7] A B AIC AICC BIC HQAIC
ExCTLW  191.77 0.7570 2.4050 0.0418 1.1780 391.5415 392.8319 397.8756 393.7523
CTLW 198.17 0.3900 0.0007 2.2483 402.3377 403.0877 407.0883 403.9953
WD 197.29 0.0066 1.8406 398.5811 398.9447 401.7481 399.6865
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Figure 4 Estimated densities over histogram for dataset one.

Application 2

The second dataset consists of the red cell counts (RCC) of 202 Australian athletes. The red cell count data can be
found in the "sn" package in the R software. This dataset is easily accessible and is provided below:

3.80, 3.90, 3.90, 3.91, 3.95, 3.95, 3.96, 3.96, 4.00, 4.02, 4.03, 4.06, 4.07, 4.08, 4.09, 4.09, 4.10, 4.11, 4.11, 4.12, 4.13, 4.13,
414, 415, 416, 4.16, 4.17, 4.17, 4.19, 420, 4.20, 4.21, 4.23, 423, 424, 424, 4.25, 4.26, 4.26, 4.27, 4.27, 4.30, 4.31, 4.31,
432, 4.32, 4.32, 4.35, 4.36, 4.36, 4.37, 4.38, 4.38, 4.39, 4.40, 4.40, 4.40, 4,41, 4.41, 4.41, 4.42, 4.42, 4.44, 4.44, 4.44, 445,
4.45, 4.46, 4.46, 4.46, 4.46, 4.46, 4.48, 449, 4.50, 4.50, 4.51, 4.51, 4.51, 4.51, 4.52, 4.53, 4.54, 4.55, 4.56, 4.57, 4.58, 4.62,
4.63, 4.63, 4.63, 4.64, 4.66, 4.68, 4.71, 4.71, 4.71, 4.71, 4.73, 4.75, 4.75, 4.76, 4.77, 4.77, 4.78, 4.81, 4.81, 4.82, 4.82, 4.83,
4.83, 4.83, 4.83, 4.84, 4.86, 4.86, 4.87, 4.87, 4.87, 4.87, 4.87, 4.87, 4.88, 4.89, 4.89, 4.90, 4.90, 4.91, 4.91, 4.92, 4.93, 4.93,
4.94, 495, 4.95, 496, 4.97, 497, 4.98, 4.99, 5.00, 5.00, 5.00, 5.01, 5.01, 5.01, 5.02, 5.02, 5.03, 5.03, 5.03, 5.03, 5.04, 5.04,
5.08, 5.0, 5.09, 5.09, 5.10, 5.11, 5.11, 5.11, 5.11, 5.1, 5.13, 5.13, 5.13, 5.13, 5.16, 5.16, 5.16, 5.16, 5.17, 5.17, 5.18, 5.21,
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5.21, 5.22, 5.22, 5.24, 5.24, 5.25, 5.29, 5.31, 5.32, 5.33, 5.33, 5.34, 5.34, 5.34, 5.34, 5.38, 5.40, 5.48, 5.48, 5.49, 5.50, 5.59,
5.66, 5.69, 5.93, 6.72.

Table 4: Parameter estimates, IC, and GOF statistics for dataset two

Model a 0 A B AIC AICC BIC HQAIC

ExCTLW 12622 52593 52629  0.0291 27710  260.4594  261.7497  266.7935 = 262.6702
CTLW 131.58 1.4721 0.00002 6.6759  269.1559 2699059  273.9064  270.8140
WD 148.66 0.0000002  9.7931  301.3332  301.6968  304.5002  302.4386

The ExCTLW distribution was compated to the WD and CTLW distributions. The results of the goodness-of-fit test,
information criterion values, and maximum likelihood estimates for dataset two are shown in Table 4. Since the ExCTTW
distribution produces the minimum values for all IC and GOF metrics, it outperforms the competing models in fitting
the RCC dataset. This is corroborated by the plot of the fitted pdfs of the candidate distributions and the empirical pdfs,
as shown in Figure 5. It is evident that the fitted pdf of the ExCTLW distribution and the empirical pdf of the RCC
sample are quite similar.

(e}
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(=}
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=
[72]
o
(<5}
o = |
o
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o
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I I I I I I I I
3.5 4.0 45 5.0 5.5 6.0 6.5 7.0
Data

Figure 5 Estimated densities over histogram for dataset two.

CONCLUSION estimate the model parameters. Using Monte Catlo
simulations, we validate the performance of the MPS and
the MLE estimators. The results show that the MLE is
more consistent. Using two real datasets, we illustrate an

In this work, we proposed the ExCTL family, which
combines the trigonometric transformation and the
exponentiation technique. We extract its mathematical o ]
. . . . . application of a sub-model generated from the family. Our
properties, including entropies, moments, quantile, and A :
results reveal that sub-distributions derived from the
ExCTL-G family better fit these datasets than the other

two distributions.

moment-generating functions. We investigate the shapes
of the density and hazard functions using three different
sub-distributions. The MLE approach is applied to
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