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INTRODUCTION
Nigeria ranks third among countries with the highest 
burden of human immune-deficiency Virus (HIV) 
infection in the world.  The 2019 Nigeria National 
HIV/AIDS Indicator and Impact Survey (NNHAIIS, 
2019) found that 1.9 million people are living with HIV 
and AIDS in Nigeria as of 2018.  Over time, this low level 
of inflammation takes a toll on the body, putting the 
person with HIV at greater risk for health conditions such 
as cardiovascular disease, kidney disease, diabetes, bone 
disease, liver disease, cognitive disorders, and some types 
of cancer.  Further, the HIV epidemic not only affects the 
health of individuals it also impacts households, 
communities, and the development and economic growth 
of a nation.  Many of the countries hardest hit by HIV also 

suffer from other infectious diseases, food insecurity, and 
other serious problems. 

With the pandemic spread of HIV/AIDs, a universally 
applicable staging system for HIV infection and disease 
became inevitable.  World Health Organization (WHO), 
charged with global health assurance, devised an 
HIV/AIDs staging system.  This system solely depends 
on clinical investigations as they exhibit on HIV-naïve 
individuals before staging them into any of WHO's four 
staging thresholds (i.e., Stages 1, 2, 3, and 4).  Like many 
developing Nations, the WHO staging system is in place 
in Nigeria because it is easier applicability.  However, with 
the availability of FACS machines for CD4 counts in most 
settings, Clinicians encourage the counselled and tested 
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ABSTRACT 
Continuous Time semi-Markov model to study the transition among the various 
categorised HIV/AIDs stages has been presented in this paper.  The model was used to 
appraise the staging of HIV- infected clients reported at General Hospital Minna, Niger 
State, Nigeria, for 10 years.  The result indicated no transition from the asymptomatic 

stage of HIV to late/advanced AIDs ( )14 0n = .  However, transition occurs among 

the other stages due to the presence of Opportunistic Infections (OIs), which translate 

to gradual increment in the graphs of interval transition probabilities for all 𝑛 ∈ 𝑁.  
Specifically, this study shows some increase in the transition probability from stages 2, 3 
and 4 to stage 1 from about 0.081718, 0.011421 and 0.003908 in the first month to about 

0.331054, 0.189427 and 0.061666 in the fifty months 50=n .  The graph derived from 

virtual transition probabilities shows the gradual monotone decrease after fifty (50) 

months.  The result indicates that ( )n
11
 , ( )n

22
 , ( )n

33
  and ( )n

44
  attained the 

values of about 0.778442, 0.490655, 0.504554, and 0.614515 for the first few months.  In 
fifty months, the percentage decrease is about 33.1%, 18.9%, and 6.1% for stages 2, 3 
and 4, respectively.  However, there is a slow drop followed by stability in the client’s 
trajectory at various better threshold stages when infinity is attained.  These underscore 
that all HIV-naïve clients eventually transition to the AIDs stage, especially when 
therapeutic intervention is lacking.  The model established in this study could assist 
Health Care Providers (HCP), Epidemiologists, Medical Statisticians, and other funding 
organisations in planning for the treatment, surveillance, management, and intervention 
for the ever-increasing scourge of HIV/AIDs. 
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HIV-naïves to go for a CD4 count before staging.  This 
scenario indicates a strong inclination to the United States 
Centre for Disease Control (US-CDC) approach to 
HIV/AIDs staging.  Observing CD4 counts could be the 
surer method because machine measuring is involved.  

Qi Cao et al. (2016) asserted that representing all relevant 
stages of clinical disease processes using a standard 
Markov model have large, unwieldy structures.  In such 
situations, a more parsimonious, and therefore easier to 
grasp, model of a patient’s disease progression can often 
be obtained by assuming that the future state transitions 
do not only depend on the present state (Markov 
assumption) but also the past through time since entry in 
the present state (semi-Markov assumption).  Despite that, 
these so-called semi-Markov models are still relatively 
straightforward to specify and implement, they are not yet 
routinely applied in health economic evaluation to assess 
the cost-effectiveness of alternative interventions.  The 
best-known continuous-time STM is the Markov model, 
which is based on the premise that the future state 
transitions only depend on the present and are 
independent of any knowledge from the past, such as time 
since entry into the present state or the sequence of prior 
states leading to the present (Aalen et al., 2008; Lagatos et 
al., 1978).  

Instead of trying to represent complex clinical disease 
processes using a standard Markov model, Foucher et al. 
(2005) proposed to relax the Markov assumption by 
assuming that the future state transitions depend not only 
on the present but also on the past through time since 
entry in the present state.  These so-called semi-Markov 
models allow for a more concise representation of 
complex healthcare processes in situations where time 
dependence needs to be incorporated into the model, but 
health economics assessments for assessing the cost-
effectiveness of alternative healthcare interventions (see 
Lagatos et al., 1978; Kang et al., 2007 and Titman et al., 
2010). 

Gillaizeau et al. (2014) asserted that many chronic and non-
chronic diseases, except a few, exhibit stochastic clinical 
events.  These events may denote disease incidences, 
progression, relapse, remission, recovery, etc.  The 
biomedical dynamic processes can be stationary, 
progressive or non-progressive, respective to the adopted 
medical interventions and time index.  Stochastic 
processes entail the trajectories within and among the 
various states within time t .  The changes and duration 

among the diseased states are often unknown.  Stochastic 
modeling becomes imperative to model such dynamic 
processes to understand the underlying mechanism 
inherent in disease progression.  Thomas et al. (2006) 
showed that a semi-Markov process with sojourn times 
given as a general lifetime distribution of residence times 
can be approximated by a classical Markov process with 
an exponential distribution of residence times.  This 
means that an exponentially distributed times sum 
replaces the general lifetime distribution.  One way to 

estimate general lifetime span distributions with the semi-
Markov model is to use expert judgment.  Basta et al. 
(2008) used cross-sectional self-report data collected from 
208 HIV seropositive individuals to determine the 
accuracy of Transtheoretical model (TTM) constructs to 
predict the stages of change for exercise behaviors in 
individuals living with HIV/ AIDS.  Based on their 
sample, they discovered that predictive discriminate 
analysis classified HIV- naive individuals into the correct 
stages substantially better than chance alone, except that 
no one was accurately predicted in one of the stages out 
of four.  Cox (1972) asserted that Markov models are 
widely used in medicine, particularly in the study of 
chronic diseases, extending classical survival models to the 
analysis of multi-state processes.  In literature, 
conventional survival analysis has been used as a gold 
standard in modelling time to a single event.  Here, one 
terminal event may be the onset of diseases or death.  
Time-to-event data may incorporate comparing hazard 
rates, intensities, or survival functions between states in 
these situations.  Laird et al. (2013) asserted that the natural 
history of the disease could be modeled using a variety of 
approaches that fall under the general framework of multi-
state modes, including Markov processes, non-
homogenous Markov processes, semi-Markov processes, 
and hidden Markov processes.  The authors further said 
that the most commonly used multi-state model is the 
Markov process model.  However, to model the complex 
and stochastic duration-dependent processes usually 
encountered in epidemiology and biomedicine, the rigid 
Markovian assumption may be unrealistic and has to be 
relaxed.  In this paper, the Semi-Markov model in 
continuous time was used to study the transition and 
staging of HIV/AIDs naïve clients into their threshold 
categories to improve the surveillance, management, and 
tracking of the HIV/AIDS pandemic in Nigeria.   

MATERIALS AND METHODS 

The data used in this research paper were collected at the 
Voluntary Counselling and Testing (VCT) clinic of 
General Hospital Minna, Niger State, Nigeria.  This facility 
is one of the comprehensive HIV/AIDs referral sites.  
The clinic is responsible for data collation on HIV/AIDs 
clients of General Hospital Minna and other feeder sites 
within Minna and its environs.  HIV/AIDs Patients’ 
folders were x-rayed, and vital information for ten (10) 
years, i.e., from July 2010 to February 2020, was obtained.  
Over thousands of patient files, of which we included 634 
randomly selected ART-naïve HIV-seropositive patients 
at various stages of disease progression based on the 
WHO staging system that has substantial complete 
retrospective follow-up data on Opportunistic Infections 
(OIs) were used. 

We model the trajectory of HIV/AIDs clients among 
various threshold stages according to WHO staging 
criteria and stage the HIV/AIDs-naive clients into four 
stages using the Markov chain.  We classified the stages as 
follows: 
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Stage 1: Asymptomatic stages 
Stage 2: Early HIV stage 
Stage 3: Intermediate HIV stage 
Stage 4: Late/Advance stage 

 
Figure 1 The transition diagram for the WHO staging 
criterion based on Opportunistic Infections. 
The above transition diagram shows that stages 1, 2, and 
3 communicate while stage 1 and stage 4 are transients.  
All possible transitions between stages 1, 2, 3, and 4 were 
made.  Even if the next stage is the same as the last stage, 
we want the transition to occur at the point of stay in a 
stage.  These are called virtual transitions and are 
represented by loops in Figure 1. 

In Figure 1, we record the transition probability matrix P  
for the process, as shown in Equation 1. 

11 12 13

21 22 23 24

31 32 33 34

41 42 43 44

0p p p

p p p p
P

p p p p

p p p p

 
 
 =
 
  
 

   (1) 

To analyse the process using the Markov theorem, we use 
the continuous-time semi-Markov process technique.  
Translations are easily identified from the transition 

probability matrix P .  To study this process, we specify 
the stochastic nature of the transition.  Think of this 
process as one in which the transition probabilities 
determine the occupancy of successive stages.  However, 
the fate at any stage is described by a random variable that 
depends on the stage at which the next transition occurs. 
This results in a semi-Markov model being translated. 

Holding time and waiting time 

Let ( )
ijP  be the probability that the HIV-naïve client in its 

last transition will enter the stage j of its next transition

4,3,2,1, =ji .  The transition probabilities must satisfy 

the following: 

,0ijP
4,3,2,1, =ji and 


ij

ijP =1    4,3,2,1=i .                                                            (2) 

Whenever the HIV-naïve client enters the stage i  , the 

client remains there for a time ijT  in a stage i  before 

making a transition to the stage j . ijT  This is called the 

holding time on stage i .  The holding times are positive 

integer-valued random variables, each governed by a 

probability distribution density function ( )ijf  called the 

holding time distribution function for a transition from 

stage i  to stage j  (Howard 1971). 

Thus, ( ) ( )mfmTP ijij == 4,3,2,1, =ji            (3) 

We assume that the means ij of all holding time 

distribution are finite and that all holding times are at least 

one month long.  That is, ( ) 00 =ijf . 

To completely describe the semi-Markov process in this 
study, we must specify four holding time distribution 
functions in addition to the transition probabilities. 

 For a fixed value of i , ijT  it is the same for each value of

j  ( 4,3,2,1, =ji ) 

Let ( )ijf   be the probability distribution of continuous 

random variable ijT  

( ) ( ) ( )
=

==

n

m

ijijij dmmfnTpnF
0

                 (4) 

And  

( )
−

ijF be the complementary cumulative probability 

distribution of ijT  

( ) ( ) ( ) ( )dmmfnTpnfF
nm

ijijijij 


+=

−

==−=
1

1         (5) 

Suppose the HIV-naïve client enters the stage i .  Let iY   

be the time he/she spent on stage i  before moving out 

of the stage i .  Then Yi is called the waiting time in the 

stage i .  
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We let ( )
i

W  be the probability distribution function of 

Yi 

Then: ( ) ( ) ( )mfpnYpmW
ij

j
ijii 

=

===
4

1

                (6) 

The probability distribution ( )
i

W  and the 

complementary probability distribution ( )iW
−

  for the 

waiting times are given as follows 

( ) ( ) ( )dmmWmYpnW
n

m

iii 
=

==
1

                        (7) 

( )nFp ij

j

ij
=

=
4

1

                                                             (8) 

And ( ) ( ) ( )nWnYpmW
ii

i −==
−

1                       (9) 

( )

( )nFp

dmmW

ij

j
ij

nm

i

−

=



+=





=

=

4

1

1
                             (10) 

Interval Transition Probability in Continuous-time 

We define ( )nij  as the probability that the condition of 

an HIV-naïve client will be in stage j  in a month n   given 

that the client entered stage i in month zero.  This is called 

interval transition probability from stage i  to stage  j  in 

the interval ( n,0 .  

Then 

( ) ( ) ( ) ( ) )11(
1

4

1

dmmnmfpnWn
kj

n

ik
k

ikiijij
−+= 

=

−

  

=ij {
1   𝑖 = 𝑗

0      𝑖 ≠ 𝑗
4,3,2,1, =ji 4,3,2,1=n  

Equation (11) is the interval transition probability from 

stage i  to stage j  in the interval ( n,0  

Application 

The Voluntary Counseling and Testing (VCT) clinic at 
General Hospital Minna is one of the comprehensive 
HIV/AIDs referral sites.  The clinic is responsible for data 
collation on HIV/AIDs clients of General Hospital 
Minna and other feeder sites within Minna and its 
environs.  We included 634 randomly selected ART-naïve 
HIV-seropositive patients at various stages of disease 
progression based on the WHO staging system with 

substantial complete retrospective follow-up data on 
Opportunistic Infections (OIs).  The reported data are 
summarised in Table 1, 2, and 3 below: 

Table 1: A summary of the HIV/AIDs-naïve patients 
according to WHO staging criterion from 2010-2020. 

Class interval (MW) Stages Frequency 

Asymptomatic stage 1 138 

Early HIV stage 2 197 

Intermediate HIV 
stage 

3 214 

Advance stage           4 85 

Total  634 

Table 2: The Transition Count Matrix for the WHO 
Staging among HIV/AIDS-naive from 2010 – 2020. 

 
Stage 
1 

Stage 
2 

Stage 
3 

Stage 
4 

Total  

Stage 1 9  3 3 0 15 

Stage 2 54 62 50 12 178 

Stage 3 43 67 70 28 208           

Stage 4 32       65 91 45 233 

Grand 
total 

   138      197      214       85 
   
634 

The transition probability Matrix of Table 2 above is 
presented as follows: 



















=

5968.02742.00645.00645.0

1693.06419.01538.02000.0

.0769.01026.04872.03333.0

00943.01321.07736.0

P         (12) 

The Exponential holding time in stages (Continuous 
time) 

Suppose that the holding times in each stage before 

transitioning to another stage follow the exponential 

distribution with the parameter .  This implies that the 

mean holding time in each stage is 
1 (in months).  The 

mean holding time in each stage is presented in Table 3.  

It shows that HIV/AIDs clients recorded the highest 

mean holding time in stage 3 then, followed by stage 4, 

stage 1, and stage 2, respectively. 
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Table 3: Mean holding time in the stages. 

Stage Mean holding time 

Stage 1 13 

Stage 2 10 

Stage 3 17 

Stage 4 16 

RESULTS 

From equation (11), we obtain the interval probabilities 
presented in Tables (4), (5) and (6) 

Table 4 shows the interval transition probabilities from 
stage 1 to stage 2, 3, stage 2 to 1, 3, 4, and stage 3 to 1  in 
continuous time for =n 1, 2…….50.  This is shown in 

Figure 2. 

Table 5  shows the transition probabilities from stage 3 to  
2, 4, stage 4 to 1,  2, and stage 4 to 3  in continuous time, 
for =n 1, 2…….50.  It is shown in Figure 3 

Table 6 shows the virtual interval transition probabilities 
from stage 1 to 1, stage 2 to 2, stage 3 to 3, and stage 4 to 
4  in continuous time,  for =n 1, 2…….50.  It is 

illustrated in Figure 4 

Table 4: Interval Transition Probabilities for ( ) ( ) ( ) ( ) ( ) ( )nandnnnnn
312423211312

,,,,   

N ( )n
12
  ( )n

13
  ( )n

21
  ( )n

23
  ( )n

24
  ( )n

31
  

1 0.009778 0.00698 0.081718 0.009764 0.007318 0.011421 

2 0.018832 0.013443 0.060417 0.018598 0.01394 0.02219 

3 0.027216 0.019428 0.086385 0.026592 0.019931 0.032343 

4 0.034979 0.02497 0.103882 0.033825 0.025352 0.041917 

5 0.042167 0.030104 0.131143 0.04037 0.030258 0.050945 

6 0.048824 0.034853 0.150381 0.046292 0.034696 0.059456 

7 0.054988 0.039253 0.167788 0.05165 0.038713 0.067482 

8 0.060696 0.043328 0.183539 0.056499 0.042347 0.07585 

9 0.065981 0.047101 0.19779 0.060886 0.045635 0.082185 

10 0.070875 0.050594 0.210686 0.064856 0.04861 0.088913 

11 0.075407 0.053829 0.222354 0.068447 0.051302 0.095256 

12 0.079603 0.056825 0.232912 0.071677 0.053738 0.101238 

13 0.083489 0.059599 0.243465 0.074638 0.055942 0.106977 

14 0.087087 0.062167 0.251109 0.077299 0.057937 0.112195 

15 0.090418 0.064545 0.258931 0.079707 0.059741 0.117209 

16 0.093504 0.066748 0.266008 0.081885 0.061374 0.121937 

17 0.09636 0.063737 0.272412 0.083857 0.062652 0.126395 

18 0.099006 0.070676 0.278206 0.08564 0.064189 0.130598 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 115 – 127 

 120 

 

https://scientifica.umyu.edu.ng/           Abdulmumini & Abdullahi, /USci, 4(1): 115 – 127, March 2025  
 

Table 4 Continued 

19 0.101455 0.072424 0.283449 0.087254 0.065398 0.134581 

20 0.103724 0.074043 0.288193 0.088715 0.066493 0.138298 

21 0.105824 0.075543 0.292485 0.090036 0.067483 0.141821 

22 0.107769 0.076931 0.29637 0.091232 0.068379 0.145144 

23 0.10959 0.078217 0.299884 0.092313 0.06919 0.148276 

24 0.111237 0.079407 0.303069 0.093292 0.069924 0.15123 

25 0.112782 0.080509 0.305941 0.094178 0.070588 0.154015 

26 0.114211 0.08153 0.308545 0.09498 0.071188 0.156641 

27 0.115536 0.082475 0.3109 0.095705 0.071732 0.159117 

28 0.116762 0.083351 0.313032 0.096361 0.072224 0.161451 

29 0.117837 0.084661 0.314961 0.096955 0.072669 0.163653 

30 0.118948 0.084911 0.316706 0.097492 0.073071 0.165728 

31 0.119922 0.085606 0.318285 0.097978 0.073436 0.167685 

32 0.120823 0.08625 0.319714 0.098418 0.073765 0.169531 

33 0.121658 0.086846 0.321007 0.098816 0.074064 0.171271 

34 0.122431 0.089398 0.322177 0.099176 0.074334 0.172911 

35 0.123146 0.087908 0.323235 0.099502 0.074578 0.174458 

36 0.123809 0.088382 0.324193 0.099797 0.074799 0.175917 

37 0.124423 0.08882 0.32506 0.100063 0.074988 0.177292 

38 0.124991 0.089225 0.325843 0.100305 0.07518 0.178589 

39 0.125517 0.089601 0.326553 0.100523 0.075343 0.179811 

40 0.126004 0.089949 0.327195 0.100721 0.075492 0.180964 

41 0.126456 0.090271 0.327776 0.10081 0.075626 0.182051 

42 0.126873 0.090569 0.328302 0.101061 0.075745 0.183076 

43 0.12726 0.090845 0.328778 0.101208 0.075857 0.184043 

44 0.127618 0.091101 0.329308 0.10134 0.075956 0.184954 

45 0.12795 0.09134 0.329597 0.10146 0.076046 0.185813 

46 0.128257 0.091557 0.32995 0.101569 0.076127 0.186623 

47 0.128542 0.09176 0.330269 0.101667 0.076201 0.187384 
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Table 4 Continued 

48 0.128805 0.091918 0.330557 0.101756 0.076267 0.188107 

49 0.129049 0.092122 0.330818 0.101836 0.076327 0.188787 

50 0.129275 0.092283 0.331054 0.101909 0.076382 0.189427 

Table 5: Interval Transition Probabilities for ( ) ( ) ( ) ( )nandnnn
42413432

,,   

N ( )n
32
  ( )n

34
  ( )n

42
  ( )n

43
  

1 0.008783 0.009668 0.003908 0.016613 

2 0.017064 0.018784 0.007579 0.032219 

3 0.024872 0.027379 0.011028 0.04688 

4 0.032235 0.035483 0.014267 0.060653 

5 0.039177 0.043125 0.017311 0.073591 

6 0.045722 0.05033 0.02017 0.085745 

7 0.051321 0.057124 0.022856 0.097163 

8 0.057713 0.063529 0.026153 0.107889 

9 0.0632 0.069569 0.027749 0.117966 

10 0.068374 0.075264 0.029976 0.127431 

11 0.073252 0.085698 0.032067 0.136324 

12 0.077852 0.085698 0.034032 0.144677 

13 0.082189 0.090472 0.055878 0.152524 

14 0.086278 0.094973 0.037612 0.159896 

15 0.090134 0.099218 0.039241 0.166822 

16 0.093769 0.10322 0.040772 0.173327 

17 0.097198 0.106993 0.042709 0.179439 

18 0.10043 0.110551 0.04356 0.18518 

19 0.103477 0.113906 0.04483 0.190574 

20 0.106351 0.117069 0.04642 0.195646 

21 0.109061 0.120052 0.04714 0.2004 

22 0.111615 0.122864 0.048191 0.204871 

23 0.114024 0.125516 0.049175 0.209072 
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Table 5 Continued 

24 0.116296 0.128016 0.050108 0.213018 

25 0.118437 0.130374 0.05098 0.216725 

26 0.120457 0.132596 0.051799 0.220207 

27 0.122361 0.134692 0.052569 0.223478 

28 0.124156 0.136669 0.053292 0.226551 

29 0.125849 0.138532 0.05397 0.229438 

30 0.127445 0.140289 0.054609 0.23215 

31 0.12895 0.141946 0.055953 0.234698 

32 0.130369 0.143508 0.055771 0.237091 

33 0.131707 0.144987 0.0563 0.239339 

34 0.132969 0.146369 0.056797 0.241451 

35 0.134158 0.147679 0.057263 0.243436 

36 0.13528 0.148914 0.057702 0.2453 

37 0.136338 0.150078 0.058114 0.247051 

38 0.137335 0.151175 0.058501 0.248695 

39 0.138275 0.15221 0.058864 0.250241 

40 0.139162 0.153186 0.059206 0.251692 

41 0.139997 0.154106 0.059526 0.253056 

42 0.140786 0.154974 0.059828 0.254337 

43 0.141529 0.155792 0.060111 0.25554 

44 0.14223 0.156563 0.060377 0.256671 

45 0.14289 0.157291 0.060626 0.257733 

46 0.143513 0.157977 0.060881 0.258731 

47 0.144101 0.158623 0.061082 0.259668 

48 0.144655 0.159233 0.061289 0.260548 

49 0.145177 0.159808 0.061483 0.261375 

50 0.145669 0.16035 0.061666 0.262152 
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Table 6: Virtual transition probabilities ( ) ( ) ( ) ( )nandnnn
44332211

,,   

N ( )n
11
  ( )n

22
  ( )n

33
  ( )n

44
  

1 0.983243 0.951201 0.970129 0.975571 

2 0.967725 0.907045 0.941963 0.952623 

3 0.953356 0.867092 0.915406 0.931065 

4 0.940051 0.83694 0.890365 0.910812 

5 0.927731 0.798229 0.866754 0.891787 

6 0.916323 0.768631 0.844492 0.873915 

7 0.905759 0.741849 0.824073 0.857125 

8 0.895977 0.717676 0.802908 0.839904 

9 0.886916 0.695689 0.775046 0.826545 

10 0.878531 0.674849 0.767449 0.812617 

11 0.870764 0.657396 0.750857 0.799544 

12 0.863572 0.641652 0.735213 0.787258 

13 0.856913 0.625954 0.720362 0.775719 

14 0.850746 0.613655 0.706554 0.764879 

15 0.845036 0.601621 0.693439 0.7553 

16 0.839749 0.590733 0.681074 0.745129 

17 0.834852 0.58106 0.669415 0.735142 

18 0.830319 0.571965 0.658421 0.72764 

19 0.82612 0.563899 0.649036 0.719767 

20 0.822233 0.5566 0.638282 0.711513 

21 0.818875 0.549957 0.629066 0.705319 

22 0.815301 0.544019 0.620377 0.698745 

23 0.812194 0.538613 0.612184 0.692578 
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Table 6 Continued 

24 0.809355 0.533715 0.604458 0.686766 

25 0.806707 0.529293 0.597174 0.681315 

26 0.804258 0.525287 0.590306 0.676195 

27 0.801989 0.521663 0.58383 0.671585 

28 0.799888 0.518383 0.577724 0.666866 

29 0.796002 0.516416 0.571966 0.662621 

30 0.79614 0.512731 0.566537 0.659633 

31 0.794472 0.510301 0.561419 0.653394 

32 0.792927 0.508103 0.556592 0.651367 

33 0.791496 0.506114 0.552041 0.648061 

34 0.790172 0.504314 0.547751 0.644955 

35 0.788945 0.502685 0.543705 0.642038 

36 0.787809 0.501212 0.53989 0.639297 

37 0.786758 0.499889 0.536293 0.636722 

38 0.785784 0.498672 0.532901 0.634303 

39 0.784882 0.49758 0.529703 0.632031 

40 0.784047 0.496592 0.526688 0.629897 

41 0.783274 0.495698 0.523848 0.627891 

42 0.782558 0.49489 0.521164 0.626008 

43 0.781895 0.49416 0.518636 0.624238 

44 0.781281 0.493396 0.516253 0.622576 

45 0.780712 0.492897 0.514006 0.621014 

46 0.780186 0.492355 0.511887 0.619507 

47 0.779698 0.499186 0.509889 0.618169 

48 0.779247 0.49142 0.508005 0.616874 

49 0.778829 0.491019 0.506229 0.615658 

50 0.778442 0.490655 0.504554 0.614515 
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Figure 2: Interval Transition Probabilities Graph for  ( ) ( ) ( ) ( ) ( )nnnnn
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Figure 3: Interval Transition Probabilities Graph for ( ) ( ) ( ) ( )nnnn
42413432
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Figure 4: Virtual Transition Probabilities Graph ( )n
11
 , ( )n

22
 ,  ( )n

33
  for =n 1, 2, . . .,50.

DISCUSSION 

This paper presented a Semi-Markov model to examine 

the validity of the WHO staging system for HIV/AIDs–

naïves patients reported in Nigeria using a continuous 

time Semi-Markov model.  From the empirical analysis of 

the collected data, the results indicate no transition from 

stage 1 to stage 4: that is ( )14 0n = .  This applies to the 

nth period under consideration.  In other words, there is 

no transition from the asymptomatic stage of HIV to 

late/advanced AIDs.  The holding time in each stage is 

presented in Table 3.  It shows that HIV/AIDs clients 

recorded the highest mean holding time in stage 3 then, 

followed by stage 4, stage 1, and stage 2, respectively. 

Furthermore, if an HIV-naïves uninfected patient were in 
stage 1, he or she would more likely go to stage 2 more 
times than stage 3, and incidentally, there is no transition 
to stage 4.  This is reasonable in the medical sense as there 
is rarely a case of HIV- naïve patient shunting directly to 
advance AIDs stage 4.  Also, when HIV/AIDs patients 
were in virtual stages (i.e., transiting to the same stage), 
patients were in transient stages more of the time than any 
other stages. 

In the continuous time, the results in Tables 4 and 5 and 
Figures 2 and 3  show that the transition probabilities from 
stages 2, 3, and 4 to state 1 increase by about 0.081718, 

0.011421, and 0.003908 in the first month )1( =n , 

indicating that it rises to  0.331054, 0.189427 and 0.061666 

in the fifty months 50=n .  The reduction rates are 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 115 – 127 

 127 

 

https://scientifica.umyu.edu.ng/           Abdulmumini & Abdullahi, /USci, 4(1): 115 – 127, March 2025  
 

approximately 33.1%, 18.9%, and 6.1% over fifty months 
for stages 2,3 and 4, respectively.  Table 6 and Figure 4 

show that in the first few months and years,  ( )n
11
 ,

( )n
22

 , ( )n
33

  and ( )n
44

  reached values of 

approximately 0.778442, 0.490655, 0.504554, and 
0.614515, respectively.  However, they decay slowly, 
returning to zero at infinity.  These indicate that, from a 
medical point of view, every HIV-naïve patient progresses 
to her AIDs stage, especially if no therapeutic intervention 
is performed.  The results also suggest that if a patient 
translations to one of these stages, they will remain/persist 
in that HIV/AIDs stage for several days before an actual 
or hypothetical transition takes place.  I’m here.  Tier 
changes, therefore, occur less frequently over time.  The 

behaviour of ( )n
11
 , ( )n

22
 , ( )n

33
  and ( )n

44
 for

 
1, 2,3,...n = are very interesting.  This is because they 

produced nearly identical probability values.  This is 
evident in the graph as it forms an almost straight line 

1=y .  

Therefore, the Continuous Time Semi-Markov Model 

(CTSMM) can be used to determine prognosis and 

therapeutic adherence to treatment regimens by HIV-

infected individuals.  The model can also be used to 

predict the expected stage(s) that newly infected, HIV-

naïve clients are likely to enter.  Prediction model 

information may help track, monitor, and manage 

HIV/AIDs patients undergoing treatment. 

CONCLUSION 

A continuous time semi-Markov model was presented to 

assess the efficacy and staging of HIV-naïves patients 

using WHO criteria.  This model determined the 

longitudinal staging of HIV/AIDs clients.  It has also been 

shown that Predictions for each stage are well captured 

during a retrospective cohort study according to the 

opportunistic infection (01s) threshold.  (OIs).  This study 

showed that HIV-naïve patients stay longer in certain 

stages where therapeutic intervention is not readily 

available but can be easily obtained by applying.  The 

results also indicate that, from a medical point of view, 

every HIV-naïve patient progresses to her AIDs stage, 

especially if no therapeutic intervention is performed. The 

prediction model information could be useful in the 

tracking, surveillance, and management of HIV/AIDs 

individuals undergoing treatment. 
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