
 
 

UMYU Scientifica, Vol. 3 NO. 3, September 2024, Pp 173 – 180 

 173 

 

https://scientifica.umyu.edu.ng/                      Abubakar et al., /USci, 3(3): 173 – 180, September 2024  
 

 
 

ORIGINAL RESEARCH ARTICLE 

Truncated Exponential Log-Topp-Leone Rayleigh Distributions: 
Properties with Application to Bladder Cancer Data 

Usman Abubakar1,2,* , Abdulhameed Ado Osi1  and Ahmed Shuaibu1  
1Department of Statistics, Aliko Dangote University of Science and Technology, 3244 Wudil, Kano. Nigeria 
2Department of Statistics, Jigawa State Polytechnic, 7040 Dutse, Nigeria 

 

 

 

 

 
 

 

 
INTRODUCTION
Currently, many statistical distributions are flexible and 
reliable in modeling and fitting real-life data sets in many 
fields, including engineering, biological sciences, 
economics, and environmental sciences, among others. As 
a result, there is a further need to develop more probability 
distributions that can handle these challenges (Yahaya and 
Abba, 2017). The existing truncated exponential top-leone 
family, introduced by (Al-Noor and Hilal, 2021), is used 
for modeling data with a bounded interval, which limits its 
ability to model different forms of data. Since the topp-
leone generalized distribution provides a more flexible 
generalized family distribution, there is more interest in 
making some transformations on it and combining it with 
the truncated exponential as a baseline distribution. 

The unimodel distribution was introduced by (Topp and 
Leone, 1955) as the Topp-Leone distribution, but the 
distribution was not popularly known until the work of 
(Nadarajah and Kozt, 2003), where they provided the 
density function of the model. The distribution gained the 
attention of many researchers, including (Al-shomrani et 
al., 2016), who provided a generalization of top-leone, and 
(Usman et al., 2023), where they extended the interval of 
the topp-leone distribution to be unbounded, leading to 
the introduction of a log top-leone distribution. 

 Continuously, several studies were introduced by 
incorporating top-leone with other existing distributions, 
including Topp Leone extended exponential distribution 

by (Aidi et al., 2022), Topp Leone odd log-logistic 
exponential distribution by (Afify et al., 2021), Topp 
Leone modified Weibull distribution by (Alyami et al., 
2022), Topp Leone-inverted Kumaraswamy distribution 
by (Behairy et al., 2020), Kumaraswamy inverted Topp-
Leone distribution by (Hassan et al., 2021). 

Truncated exponential (TE) distribution is exclusively 
specified over a specific area and is exponential in nature. 
(Akahira, 2017) considers the estimation of a truncation 
parameter with a natural parameter as a nuisance one for 
a one sided TE. The pdf of TE distribution is provided as 

f(x) =
𝛿𝑒−𝛿𝑥

1−𝑒−𝛿    0 < 𝑥 < 𝑎     (1) 

Where a is the point of truncation 

Rayleigh distribution (Rayleigh, 1980), as a special case of 
weibull distribution when 2 is the shape parameter, was 
used by many researchers due to its uniformity and 
capability of modeling continuous data with cdf and pdf  
given as, 

𝐹(𝑦) = 1 − 𝑒
−𝑦2

2𝜉2      (2) 

And 

𝑓(𝑦) =
𝑦

𝜉2 𝑒
−𝑦2

2𝜉2           y>0                                                             (3) 
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The generalized family of distribution called the truncated 
exponential log topp-leone generalized family of 
distributions (TELTL-G) introduced by (Abubakar et al., 
2024), which was derived using the cdf of topp-leone 
generalized family (Al-shomrani et al., 2016), log top-
leone family by (Usman et at., 2023) and the pdf of 
truncated exponential distribution by (Akaira, 2017) using 
the integral link function as follows; 

𝐹𝑇𝐸𝐿𝑇𝐿−𝐺(𝑧, 𝛿, 𝜃, 𝜓) = ∫
𝛿𝑒−𝛿𝑧

1−𝑒−𝛿 𝑑𝑧
(1−𝑒−2𝐺(𝑧,𝜓))

𝜃
 

0
  (4) 

Where F(z) = (1 − 𝑒−2𝐺(𝑧,𝜓))
𝜃

 is the cumulative 

distribution function (cdf) of  log top-leone generalized 

family derived from 𝐹(𝑧) = (1 − �̅�(𝑧)2)𝜃 ,  which is the 

cdf  of  topp-leone Generalized family, and f(z) =
𝛿𝑒−𝛿𝑧

1−𝑒−𝛿 

is the probability density function (pdf) of  truncated 
exponential distribution. Therefore, the pdf  and cdf  of  
TELTL-G are respectively. 

𝐹𝑇𝐸𝐿𝑇𝐿−𝐺(𝑧, 𝛿, 𝜃, 𝜓) =
1−𝑒−𝛿(1−𝑒−2𝐺(𝑧,𝜓))𝜃

1−𝑒−𝛿    (5) 

𝑓𝑇𝐸𝐿𝑇𝐿−𝐺(𝑧, 𝛿, 𝜃, 𝜓) =

2𝛿𝜃𝑔(𝑧,𝜓)𝑒−2𝐺(𝑧,𝜓)(1−𝑒−2𝐺(𝑧,𝜓))𝜃−1𝑒−𝛿(1−𝑒−2𝐺(𝑧,𝜓))𝜃

1−𝑒−𝛿    z,θ, 𝛿>0 

 (6) 

Where g(y) and G(y) are the probability density function 
and cumulative density function of the baseline 

distribution, 𝛿 is a shape parameter, θ is a second shape 
parameter, and ψ is the parameter vector of the baseline 
distribution. 

This paper aims to introduce a new family member of 
TELTL-G called the truncated exponential log top-leone 
rayleigh distribution, and the objectives are to: 

• Derive the statistical properties of the proposed 
distribution. 

• Estimate the parameter of the distribution using 
maximum likelihood, least squares, and cramer 
von-mises. 

•  Examine the performance of the distribution 
using bladder cancer patients data. 

METHODOLOGY 

In this section, we focus on the exploration of the new 
distribution, understanding its properties, and estimating 
the parameters, which enable us to accurately describe the 
characteristics of the proposed distribution. 

Truncated exponential log top-leone rayleigh 
distribution. 

The pdf and the cdf of truncated exponential log top-
leone rayleigh distribution would be introduced with three 
parameters by substituting equations (2) and (3) into 
equations (5) and (6). We have the cdf and pdf of 

truncated exponential log topp-leone rayleigh distribution 
as; 

𝐹(𝑦, 𝛿, 𝜃, 𝜉) =
1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿    y, θ, 𝛿, 𝜉 >0      (7) 

And the corresponding probability function is; 

𝑓(𝑦, 𝛿, 𝜃, 𝜉) =

2𝛿𝜃𝑦𝑒

−𝑦2

2𝜉2
𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

𝜉2(1−𝑒−𝛿)
     

y, θ, 𝛿, 𝜉 >0         (8) 

The pdf plot of the TELTL-R distribution is illustrated in 
Figure 1, which shows that the distribution has a positive 
skewed distribution with a monotonic increasing cdf in 
Figure 2, showing an increasing upward. 

Properties of TELTL-R Distribution 

Some summarized properties of TELTL-R Distribution, 
which comprises the survival function, Hazard function, 
and quantile are given in the following equations 

𝑆(𝑦) =
𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

−𝑒−𝛿

1−𝑒−𝛿    (9) 

𝐻(𝑦) =

2𝛿𝜃𝑦𝑒

−𝑦2

2𝜉2
𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

−𝑒−𝛿

                  (10) 

𝑦𝜆 = √−2𝜉2ln {1 +
1

2
ln {1 − {−

ln (1−𝜆(1−𝑒−𝛿))

𝛿
}

1

𝜃
}}   

             (11) 

Likewise, the Renyi’s entropy, moment, moment 
generating function, and Order Statistics of TELTL-R 
Distribution were drived as; 

𝑅𝐸 = 𝐼𝑥(𝑦) =
1

1−𝑧
𝑙𝑜𝑔 ∫ 𝑓(𝑦)𝑧∞

−∞
𝑑𝑦              (12) 

For the TELTL-R Distribution, the entropy is given by: 

𝑓(𝑦)𝑧 = (𝜔𝛼)𝑧                 (13) 

Where 

𝜔 = 𝑦𝑒
−𝑦2

2𝜉2 𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1 −

𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

    

and      𝛼 =
2𝛿𝜃

𝜉2(1−𝑒−𝛿)
    

𝐼𝑥(𝑦) =
1

1−𝑧
[𝑙𝑜𝑔𝛼𝑧 + 𝑙𝑜𝑔 ∫ 𝛿𝑧𝑑𝑦

∞

0
]                             (14) 

Implies that 
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𝐼𝑥(𝑦) =
1

1−𝑧
[𝑧𝑙𝑜𝑔𝛼 + 𝑙𝑜𝑔 ∫ 𝛿𝑧𝑑𝑦

∞

0
]                          (15) 

The rth moment of a continuous distribution is given by; 

𝐸(𝑦𝑟) = µ𝑟 = ∫ 𝑦𝑟𝑓(𝑦, 𝛿, 𝜃, 𝜉)𝑑𝑦
∞

−∞
              (16) 

µ𝑟 = 𝛼 ∫ 𝑦𝑟𝜔𝑑𝑦
∞

0
                                                        (17) 

Where 𝜔 and 𝛼 are given above 

The moment generating function 𝑀𝑦(𝑡) is; 

𝑀𝑦(𝑡) = 𝐸(𝑒𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑓(𝑦, 𝛿, 𝜃, 𝜉)𝑑𝑦
∞

−∞
              (18) 

𝑀𝑦(𝑡) = ∫ 𝑒𝑡𝑦𝛿𝛼𝑑𝑦
∞

0
                                                (19) 

But       𝑒𝑡𝑦 = ∑
𝑡𝑖𝑦𝑖

𝑖!

∞
𝑖=0      

Implies that 

𝑀𝑦(𝑡) = ∑ 𝑔𝑘∞
𝑖=0                                                                        (20) 

Where 

𝑔 = ∫ 𝑦𝑖+1𝑒
−𝑦2

2𝜉2 𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1 −

∞

0

𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

𝑑𝑦  

and      𝑘 =
2𝛿𝜃𝑡𝑖

𝜉2(1−𝑒−𝛿)𝑖!
    

For order statistics, Let 𝑦1, 𝑦2, 𝑦3, 𝑦4, … . . , 𝑦𝑛  be a 
random sample from the TELTL-R distribution and 

𝑦(1), 𝑦(2), 𝑦(3), 𝑦(4), … . . , 𝑦(𝑛)  be the corresponding 

order statistics. The nth order statistic’s pdf written as; 

𝑓(𝑖,𝑛)(𝑦) =
𝑛!

(𝑖−1)(𝑛−𝑖)!
𝑓(𝑦)[𝐹(𝑦)]𝑖−1[1 − 𝐹(𝑦)]𝑛−𝑖 

                  (21) 

Now using power series expansion; 

[1 − 𝐹(𝑦)]𝑛−𝑖 = ∑ (−1)𝑗 (𝑛−𝑖
𝑗

) [𝐹(𝑦)]𝑗
𝑛−𝑖

𝑗=0
             (22) 

Implies that equation (21) becomes; 

𝑓(𝑖,𝑛)(𝑦) =
𝑛!(−1)𝑗

(𝑖−1)(𝑛−𝑖−𝑗)!𝑗!
∑ 𝑓(𝑦)[𝐹(𝑦)]𝑖+𝑗−1𝑛−𝑖

𝑗=0
     (23) 

𝑓(𝑖,𝑛)(𝑦) =

∑
2𝛿𝜃𝑛!(−1)𝑗𝑦𝑒

−𝑦2

2𝜉2
𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1

(𝑖−1)(𝑛−𝑖−𝑗)!𝑗!𝜉2(1−𝑒−𝛿)

𝑛−𝑖
𝑗=0 x 

                                                         

𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

(
1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 )

𝑗+𝑖−1

      (24) 

Likewise, When i=1, 

𝑓(1,𝑛)(𝑦)

= ∑ (
𝑛 − 1

𝑗
)

2𝛿𝜃(−1)𝑗𝑦𝑒
−𝑦2

2𝜉2 𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1 − 𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1

𝜉2(1 − 𝑒−𝛿)𝑗+1

𝑛−𝑖

𝑗=0

x 

                   𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

(1 −

𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)𝑗                                                            (25)  

And when i=n,  

𝑓(1,𝑛)(𝑦) =
2𝑛𝛿𝜃(−1)𝑗𝑦𝑒

−𝑦2

2𝜉2
𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1

𝜉2(1−𝑒−𝛿)𝑛 x 

                𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

(1 −

𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)𝑛−1                                                      (26) 

 

 

Figure 1: The plot of the pdf and cdf of TELTL-R Distribution for some selected parameters. 
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Figure 2: The Survival and Hazard rate function of TELTL-R distribution.

Estimation 

Method of Maximum Likelihood Estimation 

Maximum likelihood estimation is one of the important 
methods of finding the estimate of the unknown 
parameter. To estimate the parameters of the TELTL-R 
distribution using a complete sample, let 

𝑦1, 𝑦2, 𝑦3, 𝑦4, … . . , 𝑦𝑛   be a random sample from the 
TELTL-R distribution. The log-likelihood of the 
parameter vector is written as. 

𝑙 = 𝑛𝑙𝑜𝑔2 + 𝑛𝑙𝑜𝑔𝛿 + 𝑛𝑙𝑜𝑔𝜃 + ∑ 𝑙𝑜𝑔𝑦𝑛
𝑖=1 −

1

2𝜉2
∑ 𝑦2𝑛

𝑖=1 − 2 ∑ (1 − 𝑒
−𝑦2

2𝜉2 )𝑛
𝑖=1 + (𝑛𝜃 − 𝑛)log (1 −

𝑒−2(1−𝑒

−𝑦2

2𝜉2
)) − 𝛿 ∑ (1 − 𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃𝑛

𝑖=1 − 2nlog𝜉 −

𝑛𝑙𝑜𝑔(1 − 𝑒−𝛿)                                                           (27) 

Implies that 

𝑑𝑙

𝑑𝛿
=

𝑛

𝛿
− ∑ (1 − 𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃𝑛

𝑖=1 −
𝑛𝑒−𝛿

(1−𝑒−𝛿)
               (28) 

𝑑𝑙

𝑑𝜃
=

𝑛

𝜃
+  nlog (1 − 𝑒−2(1−𝑒

−𝑦2

2𝜉2
)) − 𝛿 ∑ (1 −𝑛

𝑖=1

𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃 𝑙𝑛(1 − 𝑒−2(1−𝑒

−𝑦2

2𝜉2
))                            (29) 

𝑑𝑙

𝑑𝜉
=

1

𝜉3
∑ 𝑦2𝑛

𝑖=1 +
2

𝜉3
∑ 𝑦2𝑛

𝑖=1 𝑒
−𝑦2

2𝜉2 −

2(𝑛𝜃−𝑛)𝑦2𝑒

−𝑦2

2𝜉2
𝑒−2(1−𝑒

−𝑦2

2𝜉2
)

𝜉3(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))

 + 

                                  

2𝛿𝜃 ∑ 𝑦2𝑒

−𝑦2

2𝜉2𝑛
𝑖=1 𝑒−2(1−𝑒

−𝑦2

2𝜉2
)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1

𝜉3 −
2𝑛

𝜉
           (30) 

 

 

Method of Least Square Estimation 

Least square is another technique for calculating the 
parameters of the probability model (Swain et al., 1988). 
Alternative methods are developed to deal with the 
situation where obtaining the explicit forms of the 
maximum likelihood estimators is not always feasible. Let 

𝑦1, 𝑦2, 𝑦3, 𝑦4, … . . , 𝑦𝑛  represent the ordered samples 
from the TELTL-R distribution that were taken from a 
sample of size n. 

𝑅(𝑧) = ∑ {𝐹(𝑦, 𝛿, 𝜃, 𝜉) −
𝑖

𝑛+1
}

2
𝑛
𝑖=0              (31) 

𝑅(𝑧) = ∑ {
1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
𝑖

𝑛+1
}

2

𝑛
𝑖=0              (32) 

The estimate of �̅�𝐿𝑆𝐸 = (𝛿̅, �̅�, 𝜉̅)𝑇were obtained by 
differentiating equation (32).  

𝑑𝑅(𝑧)

𝑑𝜃
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
𝑖

𝑛+1
}𝑛

𝑖=1 𝑤𝜃  (33) 

𝑑𝑅(𝑧)

𝑑𝛿
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
𝑖

𝑛+1
}𝑛

𝑖=1 𝑤𝛿  (34) 

𝑑𝑅(𝑧)

𝑑𝜉
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
𝑖

𝑛+1
}𝑛

𝑖=1 𝑤𝜉   (35) 

Where  𝑤𝜃 , 𝑤𝛿 , 𝑤𝜉    are the derivatives of  𝐹(𝑦, 𝛿, 𝜃, 𝜉) 

and were derived as follows. 
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𝑤𝜃 =
1

1 − 𝑒−𝛿

𝑑(1 − 𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)

𝑑𝜃
= 

                             

𝛿𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃log (1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))

1−𝑒−𝛿  (36) 

𝑤𝛿 =
𝑑

𝑑𝛿
(

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 ) =  

(1−𝑒−𝛿)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

−𝛿𝑒−𝛿(1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)

(1−𝑒−𝛿)2
     

                                                                                (37) 

𝑤𝜉 =
1

1 − 𝑒−𝛿

𝑑(1 − 𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)

𝑑𝜉
= 

                                      

2𝛿𝜃𝑦2(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒

−𝑦2

2𝜉2
𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

𝜉3              (38) 

Method of Cramer-Von-Mises Estimation 

The Cramer-von-Mises estimates are the least biased 
when compared to the other goodness-of-fit statistical 
estimators. (Boos, 1982) reveals the formula CVM(z), for 
which the estimators provide a minimum about the 
unknown parameters. 

𝐶𝑉𝑀(𝑧) =
1

12𝑛
+ ∑ {𝐹(𝑦, 𝛿, 𝜃, 𝜉) −

2𝑖−1

2𝑛
}

2
𝑛
𝑖=0           (39) 

𝐶𝑉𝑀(𝑧) =
1

12𝑛
+ ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿
−

2𝑖−1

2𝑛
}

2

     𝑛
𝑖=0     (40) 

By solving equation (40) above, the estimate were 
obtained as; 

𝑑𝐶𝑉𝑀(𝑧)

𝑑𝜃
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
2𝑖−1

2𝑛
}𝑛

𝑖=1 x  

                               

𝛿𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃log (1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))

1−𝑒−𝛿    

                                                                                (41) 

𝑑𝐶𝑉𝑀(𝑧)

𝑑𝛿
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿
−

2𝑖−1

2𝑛
}𝑛

𝑖=1 x 

                              

(1−𝑒−𝛿)(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

−𝛿𝑒−𝛿(1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

)

(1−𝑒−𝛿)2
     

                                                                                               (42) 

𝑑𝐶𝑉𝑀(𝑧)

𝑑𝜉
= −2 ∑ {

1−𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

1−𝑒−𝛿 −
2𝑖−1

2𝑛
}𝑛

𝑖=1 x 

                                               

2𝛿𝜃𝑦2(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃−1𝑒

−𝑦2

2𝜉2
𝑒−𝛿(1−𝑒−2(1−𝑒

−𝑦2

2𝜉2
))𝜃

𝜉3              (43) 

RESULTS 

Application to bladder cancer patients Data sets 

The data below is the remission times (in months) of 

sample of 128 bladder cancer patients, and was used by 

(Tahir et al., 2016), (Zea et al, 2012) and (Rady et al., 2016). 

The actual data are: 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 

1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 

2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 

3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 

3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 

4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 

5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93,6.94, 6.97, 7.09, 7.26, 

7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 

8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 

10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 

12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 

14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 

20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 

34.26, 36.66, 43.01, 46.12, 79.05. 

Table 1: Summary of the Bladder cancer data. 

Min Q(1) Median Mean Q(3) Max 
0.08 3.348 6.395 9.366 11.838 79.05 

 

 
Figure 3: Histogram illustration of right skewed bladder 
cancer patient’s data sets 
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Figure 4: TTT plot illustration for model adequacy 

In order to assess the fit of the fitted model, we employed 
information criteria, including the log-likelihood function 
evaluated at the maximum likelihood estimate (MLEs), the 
Akaike information criterion (AIC), the Bayesian 
information criterion (BIC), the Akaike information 
corrected criterion (CAIC), and goodness of fit techniques 
including Anderson-Darling (A*), Cramer-von Mises 
(W*), and Kolmogorov-Smirnov (K-S*). Typically, a 
better fit is indicated by smaller values for these statistics 
(Aryal et al., 2017). 

AIC = −2L+2k                (44) 

BIC = −2L+klog(n)                           (45) 

And 

CAIC = −2𝐿 +
2𝑘𝑛

𝑛−𝑘−1
                 (46) 

Table 2: Existing models 

Distributions. Author(s) 

Truncated exponential top-
leone exponential 

 (Al-Noor & Hilal, 2021) 

Exponentiated Pareto   (Nadarajah, 2005) 

Additive Weibull (Lemonte et al.,2014) 

Exponentiated inverted 
Weibull  

(Flaih et al., 2012) 

Table 3: Information criteria and estimate of the parameters  

Distr. �̂� �̂� �̂� �̂� LL AIC CAIC BIC 

TELTLR   1.693 -1.3x10-16 2.003 - 2044.66 -4083.32 -4083.13 -4074.77 

TETLE  -35.001  0.0617 0.0361 - -413.3 832.723 832.917 841.279 

ExP 3.9x10-7   0.3800 - - -36.969 77.9386 78.3023 81.10565 

ADW  8.9x10-5  2.4730 8.3x10-2 0.06 -412.39 832.7834 833.1086 844.1915 

ExIW 4.6x10-7 0.01356 - - -378.17 760.3364 760.4324 766.0405 

Table 4: Goodness of fit test for the fitted models 

Distribution  KS*   AD*   W* P-value 

TELTLR 0.9145 0.07734 0.1667 <0.00 

TETLE 0.7447  0.71382 0.1958 0.4767 

ExP 1.00 0.97476 0.15983 <0.00 

ADW 0.06298  0.5467 0.9158  0.6901 

ExIW 1.00 0.85646 0.1273  <0.00 

 

DISCUSSION 

The plot of cdf and pdf in Figure 1 shows the nature of 
the proposed distribution, which converges at one for the 
cdf plot and the right-skewed pdf. The hazard rate plot 
with an upward-increasing shape shows that the risk of 
system failure increases as time increases. The analysis 
conducted in Section 3 demonstrates the flexibility of the 
proposed TELTL-R distribution compared to the 
existing truncated exponential top-leone distribution, 
exponentiated pareto, additive weibull, and exponentiated 
inverse weibull distributions based on likelihood, 
information criteria, and goodness of fit measures. 
Considering the likelihood and information criteria results 
of the TELTL-R given in Table 3 with an AIC value of -
4083.32, a BIC of -4083.13, and a CAIC of -4074.77, 
which is greater than that of the TETL-E with an AIC of 

832.723, a CAIC of 832.917, and a BIC of 841.279, ExP 
with an AIC of 77.9386, a CAIC of 78.3023, and a BIC of 
81.10565, ADW with an AIC of 832.7834, a CAIC of 
833.1086, and a BIC of 844.1915, ExIW with an AIC of 
832.7834, a CAIC of 832.7834, and a BIC of 844.1915, 
The larger the likelihood value, the stronger the fit and 
distribution supported by the data. This shows that the 
TELTL-R outperforms better with smaller values of 
information criteria. Likewise, in Table 3, the Anderson 
darling (AD*) result of TELTL-R performs best with a 
value of 0.07734 compared to the other existing 
distribution. 

CONCLUSION 

In this paper, we introduce a new distribution called the 
truncated exponential log topp-leone rayleigh 
distribution, which is a family member of the truncated 
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exponential log topp-leone generalized family of 
distributions. We examined some of its statistical and 
mathematical properties, including survival function, 
hazard rate function, moment, moment generating 
function, entropy, and order statistics, as well as the 
estimation of parameters using the maximum likelihood 
method, least squares, and cramer von- Mises. Lastly, we 
applied the data of bladder cancer patients and suggested 
that the new model is a better one for modeling right-
skewed data sets, which also perform better when 
compared with other existing models. 
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