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INTRODUCTION
Today, software development follows a modular 
approach, where small modules are combined to create a 
complete working system.  To ensure the quality of the 
software, extensive integration testing with numerous test 
cases is necessary when integrating these modules (Nasser 
et al., 2016).  For software systems that offer extensive 
customization and configuration options, such as 
industrial applications, the number of input parameters 
requiring testing can be substantial.  In both scenarios, a 
significant number of test cases are essential to examine 
all feasible software interactions within the entire system.  
The primary aim of a software company is to guarantee 
that its clients obtain software of excellent quality.  
Therefore, software should be tested to guarantee its 
quality and proper operation (Muazu et al., 2024).  
However, it's important to prioritize software testing to 
ensure the software meets all functional requirements, 
preventing issues that customers might notice, avoiding 
conflicts with involved organizations, and guarding 
against defects and potentially serious failures (Khaleel & 
Anan, 2023). 

However, inadequate testing may lead to undetected 
unintended interactions, which could result in the failure 

of the entire software system in the future (Muazu et al., 
2022).  A significant core set of capabilities is served by 
various system components working together to produce 
an integrated, highly customizable software system.  Any 
modification to a component's configuration results in an 
alteration to the system's functionality.  As a result, 
exhaustive testing or evaluating every component to cover 
every possible scenario is necessary when testing these 
kinds of software systems (Fadhil et al., 2022).  Keep in 
mind that it might be difficult to thoroughly analyze every 
option for extremely flexible software configurations 
because of time, labor, cost, and resource limits.  To 
reduce the test set size into manageable portions, a 
sampling strategy is therefore required (Chen et al., 2021; 
Hassan et al., 2020). 

Despite being desirable, conducting exhaustive testing of 
all potential software inputs is impractical due to a 
common challenge in software testing known as the 
combinatorial explosion problem, wherein the number of 
software inputs grows exponentially as the number of test 
cases increases.  This issue could potentially stop test suite 
generation because of memory limitations.  Nowadays, a 
lot of studies have focused on developing an ideal 
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ABSTRACT 
Enhancing software quality and precision requires thorough testing of various configuration 
aspects.  Combinatorial interaction testing has emerged as a potent method, utilizing strategies 
like Generalized Input Parameter Order (IPOG), which employs a one-parameter-at-a-time 
(OPAT) approach.  However, the challenge of combinatorial explosion, where the number of 
inputs grows exponentially with test cases, remains significant.  To address this, numerous 
strategies have been proposed, yet consistently generating optimal tests covering each t-way 
interaction efficiently remains elusive.  This paper introduces a novel variant of the IPOG 
strategy, termed the enhancing IPOG strategy for uniform interaction testing (eIPOG).  We 
investigate the application of the harmony search algorithm in introducing optimal combinatorial 
interaction t-way test suites through eIPOG.  Evaluating the behavior of such strategies involves 
assessing their effectiveness in minimizing the test suite size while maximizing coverage.  
Through experiments on established benchmarking configurations and statistical analysis, we 
compare eIPOG with other IPOG-based strategies.  Both approaches show promise, 
highlighting the efficacy of the OPAT approach, with eIPOG demonstrating particularly 
competitive results in nearly every case. 
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approach that uses a different technique known as 
combinatorial interaction testing.  Combinatorial 
interaction testing is employed to identify errors caused 
when interactions occur between system parameter values 
(Fadhil et al., 2022).  As such, combinatorial interaction 
testing can save planned expenses and scheduled time 
while also increasing the efficiency of software testing 
across several configurations.  Yet, producing the most 
compact t-way test set poses a challenge because of the 
extensive exploration required, compounded by its 
classification as a highly complicated (NP-hard (i.e., Non-
deterministic Polynomial-time problem)).  Thus, new 
strategies in this area are always welcome. 

Additionally, metaheuristic optimization algorithms offer 
practical solutions within a reasonable time frame to 
tackle complex challenges in science and engineering 
(Aminu Muazu et al., 2023).  It's important to note that 
no single metaheuristic holds absolute superiority over its 
counterparts.  This growing interest among researchers 
and scientists is well-justified.  As a result, the 
metaheuristic search-based method effectively addresses 
the interaction testing problem (Muazu et al., 2022). 

To address the mentioned challenges of reducing testing 
efforts while maintaining sufficient coverage and software 
quality, we opted to introduce a novel t-way testing 
strategy termed improved IPOG strategy (eIPOG).  The 
eIPOG is an OPAT t-way testing strategy that efficiently 
enhanced the IPOG strategy by combining seeding and 
constraint supports in a harmony search algorithm (HSA), 
presenting a promising solution.  We characterize the 
behavior of both eIPOG and other strategies adopting 
IPOG in terms of test suite size.  The results obtained for 
both strategies indicate the effectiveness of adopting the 
OPAT approach in combinatorial t-way testing. 

According to the works of literature (Aminu Muazu et al., 
2022; Ramli et al., 2017), there are three categories of 
combinatorial t-way testing techniques: uniform 
interaction strength, variable interaction strength, and 
input-output-based relations.  The uniform interaction 
strength is a method used in combinatorial t-way testing 
to combine parameter values based on a consistent level 
of interaction strength.  The term "variable interaction 
strength" refers to a measure that considers multiple levels 
of interaction intensity between different variables.  The 
input-output relationship denotes the correlation between 
a system's inputs and outputs and the combination of 
parameters that affect a specific output.  

Moreover, combinatorial t-way strategies can be divided 
into three main search-based categories: algebraic-based, 
computational-based, and metaheuristic-based (Ramli et 
al., 2017).  In the algebraic search-based method, 
mathematical functions are used for generating test cases 
with t-way strategies.  An example of an algebraic-based 
strategy is the TConfig (Zamli et al., 2016).  In the 
computational search-based method, the limitations of 
the algebraic method are overcome.  An example of a 
computational-based strategy is ITTDG (Othman & 

Zamli, 2011).  Metaheuristic optimization algorithms 
offer practical solutions within a reasonable time frame to 
tackle complex challenges in science and engineering.  An 
example of a strategy built on metaheuristic methods is 
HGHC (Fadhil et al., 2023).  

Additionally, when creating a test case, t-way techniques 
are divided into two main methods: the one-test-at-a-time 
(OTAT) approach and the one-parameter-at-a-time 
(OPAT) approach (Alsariera & Zamli, 2015; Ramli et al., 
2017)  The OTAT method adds one test case at a time to 
build the test suite, while the OPAT approach starts with 
a full test suite and adds parameters one by one, possibly 
including more test cases for full interaction coverage.  
Moreover, some combinations of sampled test data may 
be undesirable or impractical, so it's important to follow 
support restrictions.  Similarly, there might be a specific 
set of combinations that must be used.  However, the 
established t-way combinatorial strategies that adopt the 
original OPAT (IPOG) approach are described in the 
following paragraphs. 

The IPOG strategy (Lei et al., 2007) generalized the 
original OPAT approach IPO by a combination of all 
horizontal algorithms and the vertical algorithm in the 
generation of the t-way test case.  In their endeavor, they 
outlined a testing algorithm called FireEye, alternatively 
referred to as IPOG-D-Test, designed to aid in generating 
t-way combinations.  Quickly, a variant has been applied 
to improve the execution time of IPOG known as IPOG-
D (Lei et al., 2008).  Two variants of IPOG are proposed 
in (Wang Ziyuan et al., 2007), known as ParaOrder and 
ReqOrder strategies.  Both of them support Input-Output 
Relation.  These approaches were suggested after 
analyzing a flaw in the union algorithm, where the test 
suite size consistently remains large due to the inclusion 
of 'don't care' values.  However, these values are not 
relevant to the current coverage requirements.  

MIPOG strategy is proposed in (Younis et al., 2008), 
which systematically evaluates all input parameter values 
to prioritize combinations with the highest number of 
uncovered tuples.  Additionally, it reorganizes sets of t-
way combinations in decreasing order of size, selecting 
the initial tuple for further combination with other valid 
tuples.  G_MIPOG strategy proposed in (Younis et al., 
2008) utilizes a grid system to create t-way test sets.  The 
goal is to enhance and adapt the MIPOG strategy to 
function effectively within a grid framework.  MC-
MIPOG is proposed in (Younis & Zamli, 2010) as a 
parallel approach tailored for t-way testing on multi-core 
architectures.  In contrast to the original MIPOG model, 
it pioneers a new method of leveraging multicore systems 
by minimizing control and data dependencies, ensuring 
effective utilization of multicore setups.  TS_OP strategy 
is proposed by (Soh et al., 2013) as a distributed approach 
for t-way testing, employing Map and Reduce procedures 
on a network of workstations and utilizing Tuple Space 
Awareness for its implementation. 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 3, September 2024, Pp 141 – 150 

 143 

 

https://scientifica.umyu.edu.ng/                      Aminu & Hashim, /USci, 3(3): 141 – 150, September 2024  
 

ACTS strategy is proposed by (Yu et al., 2013), who used 
the modified versions of the original IPOG to strike a 
trade-off between the size of the test suite and the time it 
takes to execute.  OPAT-HS strategy is introduced in ( 
Alsewari et al., 2018), which adopts the original IPOG 
inside HSA with lower interaction strength.  PWiseHA 
(Aminu Muazu & Maiwada, 2020) utilizes the same 
mechanism as the OPAT-HS strategy but with a higher 
level of interaction strength than the OPAT-HS.  
Recently, SCIPOG was introduced by (Aminu Muazu et 
al., 2023) as a computational base that modifies the 
original IPOG to handle seeding and constraints in 
improving software quality.  However, other strategies 
like GAMIPOG (Younis, 2020) and SCIPOG-VS (Muazu 
et al., 2023) support variable interaction strength in the 
OPAT approach.  The GAMIPOG integrates elements 
from both the Genetic Algorithm and with MIPOG 
strategy to produce an optimal test suite, while SCIPOG-
VS is a computational base that adopts the OPAT 
approach to support seeding and constraint. 

As highlighted in the above paragraphs, significant 
progress has been made in the generation of 
combinatorial interaction t-way tests by adopting the 
original IPOG strategy in different modifications.  
Consequently, there is a recognized need, as recently 
indicated in (Alazzawi et al., 2022; Fadhil et al., 2022) 
surveys, to explore new strategies for generating test 
suites, aiming for increased effectiveness and optimality in 
t-way testing.  As a result, the current paper will 
concurrently integrate seeding and constraint support 
within the original IPOG strategy and HSA for uniform 
t-way testing for characterization with other variants of 
IPOG strategies. 

METHODOLOGY 

The IPOG strategy and HSA are essential for achieving 
the most efficient test suite sizes in eIPOG.  
Understanding the eIPOG strategy involves exploring 
how IPOG and HSA work.  As discussed in Section, the 
IPOG strategy is generalized from an existing strategy 
known as IPO.  Their primary effort in generalization was 
accommodating the combinatorial growth in parameter 
value combinations (Lei et al., 2007).  This approach aims 
to achieve an optimal test size and faster execution time.  
The IPOG implementation accommodates interaction 
strengths up to 6 (t ≤ 6). Figure 1 depicts the core concept 
of the IPOG strategy algorithm. 

HSA is a modern optimization technique inspired by 
natural processes, particularly the way musicians create 
music (Geem et al., 2001).  Musicians draw from a 
repertoire of music pitches stored in memory, 
experimenting with combinations much like HSA refines 
its solutions over iterations, using past discoveries to 
generate new ones.  HSA operates with three key rules: 
harmony memory consideration rate, pitch adjustment 

rate, and random selection.  Figure 2 illustrates the essence 
of HSA. 

The proposed strategy, eIPOG, is rooted in the original 
IPOG strategy mechanism, which comprises the seeding, 
constraint, and combination algorithms.  A detailed 
concept of the operation of the eIPOG strategy is 
provided in Figure 3.  The seeding algorithm incorporates 
user-specified test data straight into the final test suite, 
while the constraint algorithm iteratively selects test cases 
that meet specified constraints.  The combination 
algorithm facilitates parameter interaction using the 
IPOG mechanism within HSA for uniform interaction 
testing. 

Moreover, the combination algorithm serves as the 
primary method for generating the optimal test suite 
following the IPOG strategy within HSA.  For instance, 
in a system with t or more parameters, our eIPOG 
strategy constructs a t-way test set for the initial t 
parameters.  It then extends this set to include the t+1 
parameters and continues until a t-way test set is created 
for all system parameters.  Similar to IPOG, eIPOG 
employs horizontal and vertical growth.  However, 
eIPOG's approach to horizontal and vertical growth 
differs from IPOG's in that it integrates seeding and 
constraint considerations within the HSA to optimize the 
number of generated tests, ensuring each t-way 
interaction is covered by a single test. 

In the context of experimental setup, the eIPOG strategy 
operates on an HP laptop equipped with Windows 10, 
8GB RAM, with an Intel Core i5.  Experimental findings 
are compared with results from other strategies in 
publications and displayed in tabular form.  In cases where 
specific configuration results are unavailable, they are 
marked as "NA" (not available), and if the strategy does 
not endorse a particular interaction strength 
configuration, it is denoted as "NS" (not supported).  
Blueish cells highlight the best (smallest) sizes.  Notably, 
eIPOG supports a maximum interaction strength of 5 
(t<=5).  

Furthermore, regarding the settings for HSA in our 
eIPOG strategy, such as improvisation, Harmony 
Memory Size (HMS), Harmony Memory Consideration 
Rate (HMCR), and Pitch Adjustment Rate (PAR), we 
need to consider some factors.  As mentioned in (Alsewari 
et al., 2020), using a high value for improvisation may not 
always be helpful if there's no improvement in the 
solution.  Conversely, a low value might not give good 
results, especially during transitions between iterations.  
Also, having a very large HMS could slow down 
computation, while a small one may decrease the chance 
of finding a good solution.  Therefore, we choose to have 
10 improvisations and an HMS of 10.  We also keep 
HMCR at 0.90 (with a 90% probability) and PAR at 0.2 
(with a 20% probability), following the recommendation 
of (Geem et al., 2001) to get the best results. 
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Figure 1: The IPOG strategy algorithm (Lei et al., 2007) 

 
Figure 2: The harmony search algorithm (Geem et al., 2001) 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 3, September 2024, Pp 141 – 150 

 145 

 

https://scientifica.umyu.edu.ng/                      Aminu & Hashim, /USci, 3(3): 141 – 150, September 2024  
 

 
Figure 3: The concept of operation for eIPOG strategy. 

RESULTS AND DISCUSSION 

The evaluation aims to examine how eIPOG compares to 
IPOG and its variants in terms of minimizing test suite 
size while maximizing coverage.  To achieve this, we 
implement the eIPOG strategy on three established 
benchmarking configurations as outlined in (Lei et al., 
2007) and compare the results with those obtained using 
IPOG and other IPOG variants.  In this setup, we've 
outlined a total of three sets of experiments, as detailed 
below: 

• Experiment set 1 = CA (N; t, 510), the 
benchmarking involves test configurations where 
the number of parameters and values remains 
fixed at 10 and 5, respectively.  However, the 
interaction strength ranges from 2 to 5.  The 
outcomes are displayed in Table 1. 

• Experiment set 2 = CA (N; 4, 5p), the 
benchmarking involves test configurations where 
the interaction strength and values remain fixed 
at 4 and 5, respectively.  However, the number of 
parameters ranges from 5 to 15.  The results are 
displayed in Table 2. 

• Experiment set 3 = CA (N; 4, v10), the 
benchmarking assesses test configurations with a 

consistent number of parameters as 10 and 
interaction strength as 4, while the values vary 
from 2 to 10.  The results are shown in Table 3. 

Referring to the experiment set 1 result in Table 1, most 
of the strategies do not support the configuration, as they 
are recorded as “NS”.  In some instances, they show 
“NA” in the strategy's results.  However, the remaining 
strategies—namely, pioneer IPOG, MIPOG, MC-
MIPOG, SCIPOG, and our eIPOG—have all their results 
recorded.  When the interaction strength is 2, OPAT-HS 
emerges as the best-performing strategy.  Conversely, 
when the interaction strength ranges from 3 to 5, our 
eIPOG outperforms IPOG and its variants (MIPOG, 
MC-MIPOG, and SCIPOG) in all cases.  Similarly to the 
results in Figure 4, however, only five strategies— IPOG, 
MIPOG, MC-MIPOG, SCIPOG, and our eIPOG—are 
displayed, as they have complete results. 

The next evaluation in this paper pertains to experiment 
set 2, as discussed earlier.  This evaluation examines the 
effect of an increasing number of parameters on time in 
the strategies listed in Table 2.  For this evaluation, the 
results of IPOG, MIPOG, MC-MIPOG, and SCIPOG 
are available, providing insights into the behavior of their 
successor, the proposed eIPOG strategy.  Additionally, 
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Table 2 highlights eIPOG, MIPOG, MC-MIPOG, and 
SCIPOG as the strongest strategies in terms of 
performance, all exhibiting similar competitiveness, while 
IPOG ranks the lowest.  The statistical results of this 
evaluation are depicted in Figure 5, which mirrors the 
findings in Table 2.  It's evident from both sets of results 
that eIPOG performs well when the number of 
parameters ranges from 7 to 13.  However, for parameter 
counts 5, 6, 14, and 15, MIPOG and MC-MIPOG 
outperform eIPOG.  This suggests that eIPOG struggles 
to yield favorable results when the parameter count is 
below 5 or exceeds 13. 

The final evaluation, as displayed in Table 3, focuses on 
experiment set 3.  This characterization is extensive, 
accommodating parameters with up to 10 values.  
Consequently, we assessed the proposed eIPOG strategy 
alongside IPOG and its variants.  The results in Table 3 
demonstrate that for large parameter values ranging from 
2 to 10, the eIPOG strategy outperformed all other 
strategies, including the pioneer IPOG, in terms of test 
suite size, as also illustrated in Figure 6.  Through 
meticulous characterization of IPOG and its variants, it 
can be inferred that for values exceeding 10, our proposed 
eIPOG strategy may even surpass other strategies. 

Because of the intricate design and frequent repetition of 
the OPAT approach of generating combinatorial t-way 
test cases, metaheuristic-based t-way strategies like 

OPAT-HS, PWiseHA, GAMIPOG, and our eIPOG 
consistently produce outstanding results when creating 
test suites.  Similarly, computational strategies such as 
IPOG, ParaOrder, ReqOrder, TS_OP, G-MIPOG, 
MIPOG, MC-MIPOG, ACTS, SCIPOG, and 
SCIPOG_VS.  However, due to unavailable results in the 
respective benchmark configurations marked as NA or 
NS, OPAT-HS, PWiseHA, ParaOrder, ReqOrder, 
TS_OP, G-MIPOG, GAMIPOG, SCIPOG, and 
SCIPOG_VS were not included in the characterization 
evaluation.  Nonetheless, they have demonstrated 
commendable performance in their respective 
publications.  Among the evaluated strategies, eIPOG 
surpasses computational-based strategies like MIPOG, 
MC-MIPOG, SCIPOG, and the original IPOG. 

Now, let's explore the rationale behind the OPAT 
approach for generating combinatorial interaction t-way 
test cases.  Managing the risk of faults following 
interactions between input parameters presents a 
challenge when devising a practical test plan.  The OPAT 
approach provides a viable solution by dividing each 
domain into segments and choosing typical values from 
each segment to create test cases.  As a result, this 
approach reduces the number of test cases needed.  
However, it assumes that balancing the risk of interaction 
among non-representative parameters while completing 
system testing using representative values is feasible within 
a reasonable budget. 

Table 1: Characterizing eIPOG against IPOG and other IPOG variants for experiment set 1. 

t-way strength 2 3 4 5 

IPOG 48 308 1,843 10,119 

ParaOrder NS NS NS NS 

ReqOrder NS NS NS NS 

MIPOG 45 281 1,643 8,169 

G-MIPOG NA NA NA NA 

MC-MIPOG 45 281 1,643 8,169 

TS_OP NA NA NA NA 

ACTS NA NA NA NA 

OPAT-HS 43 NA NS NS 

PWiseHA NA NA NA NS 

SCIPOG 75 369 1,709 7,781 

GAMIPOG NS NS NS NS 

SCIPOG-VS NS NS NS NS 

eIPOG 46 278 1,492 7,522 
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Figure 4: Illustration of test suite size difference between eIPOG, MIPOG, MC-MIPOG, SCIPOG, and IPOG for 
experiment set 1. 

Table 2: Characterizing eIPOG against IPOG and other IPOG variants for experiment set 2. 

No of 

parameter 

5 6 7 8 9 10 11 12 13 14 15 

IPOG 784 1,064 1,290 1,491 1,677 1,843 1,990 2,132 2,254 2,378 2,497 

ParaOrder NS NS NS NS NS NS NS NS NS NS NS 

ReqOrder NS NS NS NS NS NS NS NS NS NS NS 

MIPOG 625 625 1,125 1,384 1,543 1,643 1,722 1,837 1,956 2,051 2,150 

G-MIPOG NA NA NA NA NA NA NA NA NA NA NA 

MC-MIPOG 625 625 1,125 1,384 1,543 1,643 1,722 1,837 1,956 2,051 2,150 

TS_OP NA NA NA NA NA 1,777 NA NA NA NA NA 

ACTS NA NA NA NA NA NA NA NA NA NA NA 

OPAT-HS NS NS NS NS NS NS NS NS NS NS NS 

PWiseHA NA NA NA NA NA NA NA NA NA NA NA 

SCIPOG 815 992 1,179 1,361 1,530 1,709 1,892 2,068 2,214 2,443 2,647 

GAMIPOG NS NS NS NS NS NS NS NS NS NS NS 

SCIPOG-VS NS NS NS NS NS NS NS NS NS NS NS 

eIPOG 715 854 1,008 1,129 1,361 1,488 1,662 1,773 1,891 2,068 2,212 
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Figure 5: Illustration of test suite size difference between eIPOG, MIPOG, MC-MIPOG, SCIPOG, and IPOG for 
experiment set 2. 

Table 3: Characterizing eIPOG against IPOG and other IPOG variants for experiment set 3. 

No of values 2 3 4 5 6 7 8 9 10 

IPOG 46 229 649 1,843 3,808 7,061 11,993 19,098 28,985 

ParaOrder NS NS NS NS NS NS NS NS NS 

ReqOrder NS NS NS NS NS NS NS NS NS 

MIPOG 43 217 637 1,643 3,657 5,927 11,355 18,036 27,306 

G-MIPOG NA NA NA NA NA NA NA NA NA 

MC-MIPOG 43 217 637 1,643 3,657 5,927 11,355 18,036 27,306 

TS_OP NA NA NA NA NA NA NA NA NA 

ACTS NA NA NA NA NA NA NA NA NA 

OPAT-HS NS NS NS NS NS NS NS NS NS 

PWiseHA NA NA NA NA NA NA NA NA NA 

SCIPOG 30 191 672 1,709 3,689 6,909 11,969 19,419 29,905 

GAMIPOG NS NS NS NS NS NS NS NS NS 

SCIPOG-VS NS NS NS NS NS NS NS NS NS 

eIPOG 29 189 595 1,508 3,331 5,812 9,776 17,990 27,011 

0

500

1000

1500

2000

2500

3000

p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12 p=13 p=14 p=15

T
es

t 
su

it
e 

si
ze

Interaction strength (t)

IPOG

MIPOG

MC-MIPOG

SCIPOG

eIPOG

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 3, September 2024, Pp 141 – 150 

 149 

 

https://scientifica.umyu.edu.ng/                      Aminu & Hashim, /USci, 3(3): 141 – 150, September 2024  
 

 
Figure 6: Illustration of test suite size difference between eIPOG, MIPOG, MC-MIPOG, SCIPOG, and IPOG for 
experiment set 3. 

CONCLUSION 

In this paper, we introduce eIPOG, an enhanced version 
of the IPOG strategy that addresses uniform interaction 
strength, seeding, and constraints using the harmony 
search algorithm.  By modifying the bit structure of test 
case generation in eIPOG, we have significantly improved 
IPOG's performance.  We evaluate the behavior of 
eIPOG alongside the original IPOG and its variations, 
assessing their efficacy in reducing test suite size while 
maximizing coverage using established benchmark 
configurations.  Experimental results show that eIPOG 
performs competitively against most existing strategies, 
including MIPOG, followed by MC-MIPOG, SCIPOG, 
and the original IPOG.  In our future research, we aim to 
explore other metaheuristic approaches to integrate them 
with eIPOG for enhanced efficiency. 
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