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INTRODUCTION
Stiff initial value problems (IVPs) are a class of differential 

equation problems that pose significant challenges in 

numerical computation. These problems arise in various 

fields, including physics, engineering, chemistry, and 

biology, and are characterized by their rapid changes in 

solution behavior, high sensitivity to initial conditions, and 

large differences in timescales (Dalquist, 1974). The 

stiffness of these problems makes them difficult to solve 

using traditional numerical methods, leading to issues such 

as numerical instability, accuracy loss, and slow 

convergence. 

The development of efficient and reliable numerical 

schemes for integrating stiff systems of ordinary 

differential equations (ODEs) has been a significant 

challenge in modern numerical analysis (Ibrahim et al., 

2003). Stiff equations are those where implicit numerical 

methods, particularly the backward differentiation 

formula (BDF), outperform explicit schemes (Curtiss and 

Hirsfielder, 1952). An ordinary differential equation is 

considered stiff if the eigenvalues of the Jacobian matrix 

have negative real parts and the ratio of the real parts of 

the largest and smallest eigenvalues is extremely large 

(Lambert, 1991). 

The development of efficient standard fully and diagonally 

implicit block numerical methods for solving stiff ordinary 

differential equations (ODEs) remains an active area of 

research, as evidenced by numerous studies such as those 

found in (Ibrahim, et al., 2007; Musa, et al., 2014; Musa and 

Bala, 2019; Zawawi, et al., 2012; Haziza, et al., 2019; Abasi, 

et al., 2014; Nasir, et al., 2011; Ibrahim, et al., 2020; Noor, 

et al., 2024; Suleiman, et al., 2015;Alhassan, et al., 2022; 

Alhassan and Musa, 2023b) and so on. These methods aim 

to balance accuracy, stability, and computational efficiency 

in solving stiff ODEs. 

The existing literature lacks a comprehensive analysis of 

the convergence and stability properties of the diagonally 

implicit block backward differentiation formula for 

solving stiff initial value problems. Previous studies have 

not thoroughly addressed the limitations of the scheme, 
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and zero stability, and derive the method's order of  accuracy, which is found to be 5. Stability 
analysis reveals that the method is almost A-stable, with an absolute stability region that is 
plotted. A C programming language code is developed using Newton's Iteration for numerical 
implementation and compiled in the Microsoft Dev C++ compiler environment. 
Comparative numerical results demonstrate the competitive performance of  the proposed 
method over existing fully implicit 3-point block backward differentiation formula (3BBDF), 
in terms of  maximum error and CPU time. Therefore, this method offers a new and efficient 
numerical solution for integrating stiff  initial value problems. 

 

ARTICLE HISTORY  

Received January 07, 2024. 
Accepted June 14, 2024. 
Published June 27, 2024.  

KEYWORDS  

Order, Consistency, Zero-stability, 
A-stability, Absolute stability 
region Convergence, Block 
Backward Differentiation 
Formula. 

 
 © The authors. This is an Open 

Access article distributed under 

the terms of the Creative 

Commons Attribution 4.0 License 

(http://creativecommons.org/ 

licenses/by/4.0) 

 

 

https://scientifica.umyu.edu.ng/
https://orcid.org/0000-0003-0784-0160
https://orcid.org/0009-0003-3278-2705
mailto:buharialhassan@auk.edu.ng
https://doi.org/10.56919/usci.2432.021
https://doi.org/10.56919/usci.2432.021


 
 

UMYU Scientifica, Vol. 3 NO. 2, June 2024, Pp 186 – 201 

 187 

 

https://scientifica.umyu.edu.ng/                      Alhassan et al., /USci, 3(2): 186 – 201, June 2024  
 

particularly regarding its stability and convergence 

characteristics under various conditions. 

This paper aims to fill this gap by providing a detailed 

investigation into the mathematical formulation of the 

method using interpolation polynomials. Furthermore, it 

will rigorously analyze the stability and convergence 

properties, focusing on key aspects such as the order and 

error constant, consistency, zero stability, and absolute 

stability region of the diagonally implicit 3-point block 

backward differentiation formula developed by Bala et al. 

(2022) using Lagrange interpolating polynomial. Through 

this analysis, the paper seeks to enhance our 

understanding of the method's behavior and performance 

in solving first-order stiff initial value problems. 

Mathematical Formulation of the Method 

In this section, we will derive the 3-point diagonally 
implicit block backward differentiation formula of 
constant step size that compute three solution values 

𝑦𝑛+1, 𝑦𝑛+2 and 𝑦𝑛+3simultaneously at each integration 
step in block. Contrary to the fully implicit almost A-stable 
3-point block backward differentiation formula that has 
been developed by Ibrahim et al. (2007), the first point of 
the diagonally implicit has one less interpolating point. 

 

 
 Figure 1: Interpolation points involved in the 3-point diagonally implicit BBDF method. 

The derivation of the method using Lagrange polynomial 𝑃𝑘(𝑥) of degree 𝑘is defined as follows: 

𝑃𝑘(𝑥) = ∑ 𝐿𝑘,𝑗
𝑘
𝑗=0 (𝑥)𝑦(𝑥𝑛+2−𝑗),                                                                             (1) 

Where 

𝐿𝑘,𝑗(𝑥) = ∏

𝑖=0
𝑖≠𝑗
𝑘 (𝑥−𝑥𝑛+2−𝑖)

(𝑥𝑛+2−𝑗−𝑥𝑛+2−𝑖)
for each𝑗 = 0,1, . . . , 𝑘 

To obtain the formula for the first point 𝑦𝑛+1, we use the associated polynomial (1) with interpolating points 𝑥𝑛−2 , 𝑥𝑛−1 

, 𝑥𝑛as follows: 

𝑃(𝑥) =
(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛+1)

(𝑥𝑛−2 − 𝑥𝑛−1)(𝑥𝑛−2 − 𝑥𝑛)(𝑥𝑛−2 − 𝑥𝑛+1)
𝑦𝑛−2 +

(𝑥 − 𝑥𝑛−2)(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛+1)

(𝑥𝑛−1 − 𝑥𝑛−2)(𝑥𝑛−1 − 𝑥𝑛)(𝑥𝑛−1 − 𝑥𝑛+1)
𝑦𝑛−1 

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛+1)

(𝑥𝑛−𝑥𝑛−2)(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛−𝑥𝑛+1)
𝑦𝑛 +

(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)

(𝑥𝑛+1−𝑥𝑛−3)(𝑥𝑛+1−𝑥𝑛−2)(𝑥𝑛+1−𝑥𝑛−1)
𝑦𝑛+1                                                          (2) 

Replacing 𝑥 = 𝑠ℎ + 𝑥𝑛+1 into (2) gives 

𝑃(𝑥𝑛+1 + 𝑠ℎ) =
(𝑠ℎ + 2ℎ)(𝑠ℎ + ℎ)(𝑠ℎ)

(−ℎ)(−2ℎ)(−3ℎ)
𝑦𝑛−2 +

(𝑠ℎ + 3ℎ)(𝑠ℎ + ℎ)(𝑠ℎ)

(ℎ)(−ℎ)(−2ℎ)
𝑦𝑛−1 

+
(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ)

(2ℎ)(ℎ)(−ℎ)
𝑦𝑛 +

(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)

(3ℎ)(2ℎ)(ℎ)
𝑦𝑛+1                                                                                            (3) 

Differentiating (3) with respect to 𝑠 at the point 𝑥 = 𝑥𝑛+1 and then substituting 𝑠 = 0 gives 

𝑃′(𝑥𝑛+1) = −
1

3
𝑦𝑛−2 +

3

2
𝑦𝑛−1 − 3𝑦𝑛 +

11

6
𝑦𝑛+1                                                                (4) 

Substituting𝑃′(𝑥𝑛+1) = ℎ𝑓𝑛+1, the formula for the first point 𝑦𝑛+1is obtained as follows: 

 ℎ𝑓𝑛+1 = −
1

3
𝑦𝑛−2 +

3

2
𝑦𝑛−1 − 3𝑦𝑛 +

11

6
𝑦𝑛+1                                                          (5) 

To obtain the formula for the second point 𝑦𝑛+2 we use the associated polynomial for (1) with interpolating points𝑥𝑛−2, 

𝑥𝑛−1,𝑥𝑛, 𝑥𝑛+1,𝑥𝑛+2as follows: 
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𝑃(𝑥) =
(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛+1)(𝑥 − 𝑥𝑛+2)

(𝑥𝑛−2 − 𝑥𝑛−1)(𝑥𝑛−2 − 𝑥𝑛)(𝑥𝑛−2 − 𝑥𝑛+1)(𝑥𝑛−2 − 𝑥𝑛+2)
𝑦𝑛−2

+
(𝑥 − 𝑥𝑛−2)(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛+1)(𝑥 − 𝑥𝑛+2)

(𝑥𝑛−1 − 𝑥𝑛−2)(𝑥𝑛−1 − 𝑥𝑛)(𝑥𝑛−1 − 𝑥𝑛+1)(𝑥𝑛−1 − 𝑥𝑛+2)
𝑦𝑛−1 

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+2)

(𝑥𝑛−𝑥𝑛−2)(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛−𝑥𝑛+1)(𝑥𝑛−𝑥𝑛+2)
𝑦𝑛 +

(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+2)

(𝑥𝑛+1−𝑥𝑛−2)(𝑥𝑛+1−𝑥𝑛−1)(𝑥𝑛+1−𝑥𝑛)(𝑥𝑛+1−𝑥𝑛+2)
𝑦𝑛+1

 +
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+1)

(𝑥𝑛+2−𝑥𝑛−2)(𝑥𝑛+2−𝑥𝑛−1)(𝑥𝑛+2−𝑥𝑛)(𝑥𝑛+2−𝑥𝑛+1)
𝑦𝑛+1                                                                                            (6) 

Substituting𝑥 = 𝑠ℎ + 𝑥𝑛+2 into (6) gives 

𝑃(𝑥𝑛+2 + 𝑠ℎ) =
(𝑠ℎ + 3ℎ)(𝑠ℎ + 2ℎ)(𝑠ℎ + ℎ)(𝑠ℎ)

(−ℎ)(−2ℎ)(−3ℎ)(−4ℎ)
𝑦𝑛−2 +

(𝑠ℎ + 4ℎ)(𝑠ℎ + 3ℎ)(𝑠ℎ + ℎ)(𝑠ℎ)

(ℎ)(−ℎ)(−2ℎ)(−3ℎ)
𝑦𝑛−1 

+
(𝑠ℎ+4ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)(𝑠ℎ)

(2ℎ)(ℎ)(−ℎ)(−2ℎ)
𝑦𝑛 +

(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ)

(3ℎ)(2ℎ)(ℎ)(−ℎ)
𝑦𝑛+1 +

(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)

(4ℎ)(3ℎ)(2ℎ)(ℎ)
𝑦𝑛+2     (7) 

Differentiating (7) with respect to 𝑠 at the point 𝑥 = 𝑥𝑛+2 and then substituting 𝑠 = 0gives 

𝑃′(𝑥𝑛+2) =
1

4
𝑦𝑛−2 −

4

3
𝑦𝑛−1 + 3𝑦𝑛 − 4𝑦𝑛+1 +

25

12
𝑦𝑛−2                                                     (8) 

Replacing𝑃′(𝑥𝑛+2) = ℎ𝑓𝑛+2, the formula for the second point 𝑦𝑛+2 is obtained as follows: 

ℎ𝑓𝑛+2 =
1

4
𝑦𝑛−2 −

4

3
𝑦𝑛−1 + 3𝑦𝑛 − 4𝑦𝑛+1 +

25

12
𝑦𝑛−2                                                          (9) 

To obtain the formula for the third point𝑦𝑛+3, we use the associated polynomial for (1) with interpolating points 𝑥𝑛−2, 

𝑥𝑛−1,𝑥𝑛, 𝑥𝑛+1,𝑥𝑛+2, 𝑥𝑛+3as follows: 

𝑃(𝑥) =
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+2)

(𝑥𝑛+3−𝑥𝑛−2)(𝑥𝑛+3−𝑥𝑛−1)(𝑥𝑛+3−𝑥𝑛)(𝑥𝑛+3−𝑥𝑛+1)(𝑥𝑛+3−𝑥𝑛+2)
𝑦𝑛+3

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+3)

(𝑥𝑛+2−𝑥𝑛−2)(𝑥𝑛+2−𝑥𝑛−1)(𝑥𝑛+2−𝑥𝑛)(𝑥𝑛+2−𝑥𝑛+1)(𝑥𝑛+2−𝑥𝑛+3)
𝑦𝑛+2

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+2)(𝑥−𝑥𝑛+3)

(𝑥𝑛+1−𝑥𝑛−2)(𝑥𝑛+1−𝑥𝑛−1)(𝑥𝑛+1−𝑥𝑛)(𝑥𝑛+1−𝑥𝑛+2)(𝑥𝑛+1−𝑥𝑛+3)
𝑦𝑛+1

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+2)(𝑥−𝑥𝑛+3)

(𝑥𝑛−𝑥𝑛−2)(𝑥𝑛−𝑥𝑛−1)(𝑥𝑛−𝑥𝑛+1)(𝑥𝑛−𝑥𝑛+2)(𝑥𝑛−𝑥𝑛+3)
𝑦𝑛

+
(𝑥−𝑥𝑛−2)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+2)(𝑥−𝑥𝑛+3)

(𝑥𝑛−1−𝑥𝑛−2)(𝑥𝑛−1−𝑥𝑛)(𝑥𝑛−1−𝑥𝑛+1)(𝑥𝑛−1−𝑥𝑛+2)(𝑥𝑛−1−𝑥𝑛+3)
𝑦𝑛−1

+
(𝑥−𝑥𝑛−1)(𝑥−𝑥𝑛)(𝑥−𝑥𝑛+1)(𝑥−𝑥𝑛+2)(𝑥−𝑥𝑛+3)

(𝑥𝑛−2−𝑥𝑛−1)(𝑥𝑛−2−𝑥𝑛)(𝑥𝑛−2−𝑥𝑛+1)(𝑥𝑛−2−𝑥𝑛+2)(𝑥𝑛−2−𝑥𝑛+3)
𝑦𝑛−2 }

 
 
 
 
 

 
 
 
 
 

                                            (10) 

Substituting𝑥 = 𝑠ℎ + 𝑥𝑛+3 into (10) gives 

𝑃(𝑥𝑛+3 + 𝑠ℎ)

=
(𝑠ℎ+5ℎ)(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ)

(5ℎ)(4ℎ)(3ℎ)(2ℎ)(ℎ)
𝑦𝑛+3 +

(𝑠ℎ+5ℎ)(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ)

(4ℎ)(3ℎ)(2ℎ)(ℎ)(−ℎ)
𝑦𝑛+2

+
(𝑠ℎ+5ℎ)(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+ℎ)(𝑠ℎ)

(3ℎ)(2ℎ)(ℎ)(−ℎℎ)(−2ℎ)
𝑦𝑛+1 +

(𝑠ℎ+5ℎ)(𝑠ℎ+4ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)(𝑠ℎ)

(2ℎ)(ℎ)(−ℎ)(−2ℎ)(−3ℎ)
𝑦𝑛

+
(𝑠ℎ+5ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)(𝑠ℎ)

(ℎ)(−ℎ)(−2ℎ)(−3ℎ)(−4ℎ)
𝑦𝑛−1 +

(𝑠ℎ+4ℎ)(𝑠ℎ+3ℎ)(𝑠ℎ+2ℎ)(𝑠ℎ+ℎ)(𝑠ℎ)

(−ℎ)(−2ℎ)(−3ℎ)(−4ℎ)(−5ℎ)
𝑦𝑛−2 }

 
 

 
 

                                                  (11) 

Differentiating (11) with respect to 𝑠 at the point𝑥 = 𝑥𝑛+3and then substituting 𝑠 = 0gives 

𝑃′(𝑥𝑛+3) = −
1

5
𝑦𝑛−2 +

5

4
𝑦𝑛−1 −

10

3
𝑦𝑛 + 5𝑦𝑛+1 − 5𝑦𝑛+2 +

137

60
𝑦𝑛+3                                           (12) 

Replacing 𝑃′(𝑥𝑛+3) = ℎ𝑓𝑛+3, the formula for the third point 𝑦𝑛+3 is obtained as follows: 

  ℎ𝑓𝑛+3 = −
1

5
𝑦𝑛−2 +

5

4
𝑦𝑛−1 −

10

3
𝑦𝑛 + 5𝑦𝑛+1 − 5𝑦𝑛+2 +

137

60
𝑦𝑛+3                                                (13) 

By merging equations (5), (9), and (13), we have developed a diagonally implicit, nearly A-stable block numerical scheme 
for addressing stiff initial value problems. This scheme computes three solution values simultaneously using a step size of 
h as detailed below: 

ℎ𝑓𝑛+1 = −
1

3
𝑦𝑛−2 +

3

2
𝑦𝑛−1 − 3𝑦𝑛 +

11

6
𝑦𝑛+1

ℎ𝑓𝑛+2 =
1

4
𝑦𝑛−2 −

4

3
𝑦𝑛−1 + 3𝑦𝑛 − 4𝑦𝑛+1 +

25

12
𝑦𝑛−2

ℎ𝑓𝑛+3 = −
1

5
𝑦𝑛−2 +

5

4
𝑦𝑛−1 −

10

3
𝑦𝑛+5𝑦𝑛+1 − 5𝑦𝑛+2 +

137

60
𝑦𝑛+3}

 
 

 
 

                                                  (14) 

After rearranging and collecting the like terms, we equivalently obtain the following formulae: 

𝑦𝑛+1 =
2

11
𝑦𝑛−2 −

9

11
𝑦𝑛−1 +

18

11
𝑦𝑛 +

6

11
ℎ𝑓𝑛+1,

𝑦𝑛+2 = −
3

25
𝑦𝑛−2 +

16

25
𝑦𝑛−1 −

36

25
𝑦𝑛 +

48

25
𝑦𝑛+1 +

12

25
ℎ𝑓𝑛+2,

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3.}

 
 

 
 

                                 (15) 
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The formula (15) is referred to diagonally implicit 3-point block backward differentiation formula(3DBBDF) for solving 
stiff initial value problems. The detailed derivation of order, error constant, stability and consistency of the method will 
be discussed in the subsequent sections. 
Order, Error Constant and Consistency of the Method 
The order and error constant of a numerical method are important properties that determine its accuracy and reliability. 
The order of a method determines the rate at which the error decreases as the step size is reduced, while the error constant 
determines the magnitude of the error (Alhassan et al, 2022). This section derives the order of the method (15). To derive 
the order of the method, equation (15) can be rearranged and rewritten as 

 

−
2

11
𝑦𝑛−2 +

9

11
𝑦𝑛−1 −

18

11
𝑦𝑛 + 𝑦𝑛+1 =

6

11
ℎ𝑓𝑛+1

3

25
𝑦𝑛−2 −

16

25
𝑦𝑛−1 +

36

25
𝑦𝑛 −

48

25
𝑦𝑛+1 + 𝑦𝑛+2 =

12

25
ℎ𝑓𝑛+2

−
12

137
𝑦𝑛−2 +

75

137
𝑦𝑛−1 −

200

137
𝑦𝑛 +

300

137
𝑦𝑛+1 −

300

137
𝑦𝑛+2 + 𝑦𝑛+3 =

60

137
ℎ𝑓𝑛+3}

 
 

 
 

                                            (16) 

The matrix formulation of equation (16) is  























−−

−

−−

137

200

137

75

137

12
25

36

25

16

25

3
11

18

11

9

11

2

[

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛

] +























−

−

1
137

300

137

300

01
25

48
001

[

𝑦𝑛+1
𝑦𝑛+2
𝑦𝑛+3

] =

















000

000

000

h [

𝑓𝑛−2
𝑓𝑛−1
𝑓𝑛

] +























137

60
00

0
25

12
0

00
11

6

h

[

𝑓𝑛+1
𝑓𝑛+2
𝑓𝑛+3

]                                                                                                                                                                             (17) 

Let𝛼0
∗, 𝛼1

∗, 𝛽0
∗ and 𝛽1

∗ be block matrices defined by:  

𝛼0
∗ = (𝛼0𝛼1𝛼2), 𝛼1

∗ = (𝛼3 𝛼4𝛼5), 
𝛽0
∗ = (𝛽0𝛽1𝛽2), 𝛽1

∗ = (𝛽3 𝛽4𝛽5), 

Where, ,

137

12
25

3
11

2

0























−

−

= 𝛼1 =

[
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 

, ,

137

200
25

36
11

18

2























−

−

= 𝛼3 = [

1

−
48

25
300

137

], ,

137

300
1

0

4



















−

= 𝛼5 = [
0
0
1
] 

,

0

0

0

0

















= 𝛽1 = [
0
0
0
], ,

0

0

0

2

















= 𝛽3 = [

6

11

0
0

], ,

0
25

12
0

4

















= 𝛽5 = [

0
0
60

137

] 

Definition 1 (Order): The order of  the block method (15) and its associated linear operator 𝐿given by 

𝐿[𝑦(𝑥), ℎ] = ∑ [𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦
′(𝑥 + 𝑗ℎ)]5

𝑗=0                                                                  (18) 

is considered of  order 𝑝 if  𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝 = 0 and 𝐶𝑝+1 ≠ 0. It follows that 

𝐶0 =∑(𝛼𝑗)

5

𝑗=0

= (𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5) 

=

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ [

0
1

−
300

137

] + [
0
0
1
] = [

0
0
0
] 

𝐶1 =∑(𝑗𝛼𝑗)

5

𝑗=0

−∑𝛽𝑗

5

𝑗=0

= ((0)𝛼0 + (1)𝛼1 + (2)𝛼2 + (3)𝛼3 + (4)𝛼4 + (5)𝛼5) 

−(𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 + 𝛽5) 
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=

[
 
 
 
 
 
 

(0)

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4) [

0
1

−
300

137

] + (5) [
0
0
1
]

]
 
 
 
 
 
 

 

−

[
 
 
 
 

[
0
0
0
] + [

0
0
0
] + [

0
0
0
] + [

6

11
0
0

] + [

0
12

25
0

] + [

0
0
60

137

]

]
 
 
 
 

= [
0
0
0
] 

𝐶2 =∑
(𝑗2𝛼𝑗)

2!

5

𝑗=0

−∑(𝑗𝛽𝑗)

5

𝑗=0

=
1

2!
((0)2𝛼0 + (1)

2𝛼1 + (2)
2𝛼2 + (3)

2𝛼3 + (4)
2𝛼4 + (5)

2𝛼5) 

−((0)𝛽0 + (1)𝛽1 + (2)𝛽2 + (3)𝛽3 + (4)𝛽4 + (5)𝛽5) 

=
1

2!

[
 
 
 
 
 
 

(0)2

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)2

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)2

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)2

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4)2 [

0
1

−
300

137

] + (5)2 [
0
0
1
]

]
 
 
 
 
 
 

 

−

[
 
 
 
 

(0) [
0
0
0
] + (1) [

0
0
0
] + (2) [

0
0
0
] + (3) [

6

11
0
0

] + (4) [

0
12

25
0

] + (5) [

0
0
60

137

]

]
 
 
 
 

= [
0
0
0
] 

𝐶3 =∑
(𝑗3𝛼𝑗)

3!

5

𝑗=0

−∑
(𝑗2𝛽𝑗)

2!

5

𝑗=0

=
1

3!
((0)3𝛼0 + (1)

3𝛼1 + (2)
3𝛼2 + (3)

3𝛼3 + (4)
3𝛼4 + (5)

3𝛼5) 

−
1

2!
((0)2𝛽0 + (1)

2𝛽1 + (2)
2𝛽2 + (3)

2𝛽3 + (4)
2𝛽4 + (5)

2𝛽5) 

=
1

3!

[
 
 
 
 
 
 

(0)3

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)3

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)3

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)3

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4)3 [

0
1

−
300

137

] + (5)3 [
0
0
1
]

]
 
 
 
 
 
 

 

−
1

2!

[
 
 
 
 

(0)2 [
0
0
0
] + (1)2 [

0
0
0
] + (2)2 [

0
0
0
] + (3)2 [

6

11
0
0

] + (4)2 [

0
12

25
0

] + (5)2 [

0
0
60

137

]

]
 
 
 
 

= [
0
0
0
] 

𝐶4 =∑
(𝑗4𝛼𝑗)

4!

5

𝑗=0

−∑
(𝑗3𝛽𝑗)

3!

5

𝑗=0

=
1

4!
((0)4𝛼0 + (1)

4𝛼1 + (2)
4𝛼2 + (3)

4𝛼3 + (4)
4𝛼4 + (5)

4𝛼5) 

−
1

3!
((0)3𝛽0 + (1)

3𝛽1 + (2)
3𝛽2 + (3)

3𝛽3 + (4)
3𝛽4 + (5)

3𝛽5) 

=
1

4!

[
 
 
 
 
 
 

(0)4

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)4

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)4

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)4

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4)4 [

0
1

−
300

137

] + (5)4 [
0
0
1
]

]
 
 
 
 
 
 

 

−
1

3!

[
 
 
 
 

(0)3 [
0
0
0
] + (1)3 [

0
0
0
] + (2)3 [

0
0
0
] + (3)3 [

6

11
0
0

] + (4)3 [

0
12

25
0

] + (5)3 [

0
0
60

137

]

]
 
 
 
 

= [
−
3

22
0
0

]
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𝐶5 =∑
(𝑗5𝛼𝑗)

5!

5

𝑗=0

−∑
(𝑗4𝛽𝑗)

4!

5

𝑗=0

=
1

5!
((0)5𝛼0 + (1)

5𝛼1 + (2)
5𝛼2 + (3)

5𝛼3 + (4)
5𝛼4 + (5)

5𝛼5) 

−
1

4!
((0)4𝛽0 + (1)

4𝛽1 + (2)
4𝛽2 + (3)

4𝛽3 + (4)
4𝛽4 + (5)

4𝛽5) 

=
1

5!

[
 
 
 
 
 
 

(0)5

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)5

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)5

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)5

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4)5 [

0
1

−
300

137

] + (5)5 [
0
0
1
]

]
 
 
 
 
 
 

 

−
1

4!

[
 
 
 
 

(0)4 [
0
0
0
] + (1)4 [

0
0
0
] + (2)4 [

0
0
0
] + (3)4 [

6

11
0
0

] + (4)4 [

0
12

25
0

] + (5)4 [

0
0
60

137

]

]
 
 
 
 

=

[
 
 
 
 −

27

110

−
12

125
0 ]

 
 
 
 

 

𝐶6 =∑
(𝑗6𝛼𝑗)

6!

5

𝑗=0

−∑
(𝑗5𝛽𝑗)

5!

5

𝑗=0

=
1

6!
((0)6𝛼0 + (1)

6𝛼1 + (2)
6𝛼2 + (3)

6𝛼3 + (4)
6𝛼4 + (5)

6𝛼5) 

−
1

5!
((0)5𝛽0 + (1)

5𝛽1 + (2)
5𝛽2 + (3)

5𝛽3 + (4)
5𝛽4 + (5)

5𝛽5) 

=
1

6!

[
 
 
 
 
 
 

(0)6

[
 
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 
 

+ (1)6

[
 
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 
 

+ (2)6

[
 
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 
 

+ (3)6

[
 
 
 
 
1

−
48

25
300

137 ]
 
 
 
 

+ (4)6 [

0
1

−
300

137

] + (5)6 [
0
0
1
]

]
 
 
 
 
 
 

 

−
1

5!

[
 
 
 
 

(0)5 [
0
0
0
] + (1)5 [

0
0
0
] + (2)5 [

0
0
0
] + (3)5 [

6

11
0
0

] + (4)5 [

0
12

25
0

] + (5)5 [

0
0
60

137

]

]
 
 
 
 

=

[
 
 
 
 
 −

13

55

−
28

125

−
10

137]
 
 
 
 
 

 

Definition2 (Error Constant): The term 𝐶𝑝+1 is called the error constant and it implies that the local truncation error is 

given by:  

𝐿𝑇𝐸 = 𝐶𝑝+1ℎ
𝑝+1𝑦(𝑝+1)(𝑥𝑛) + 𝑂(ℎ

𝑝+3) 
Hence, by the above definitions 1 and 2, we conclude that the method (15) is of order 5, with error constant given by:            

𝐶6 =

[
 
 
 
 
 −

13

55

−
28

125

−
10

137]
 
 
 
 
 

≠ [
0
0
0
]

 

Definition 3: A linear multistep method LMM is said to consistent if and only if the following conditions are satisfied: 

∑ 𝛼𝑗 = 0
𝑘
𝑗=𝑜 ,

∑ 𝑗𝛼𝑗 = ∑ 𝛽𝑗 .
𝑘
𝑗=𝑜

𝑘
𝑗=𝑜

}                                                                                            (19) 

Lemma 1: The 3-point diagonally implicit block backward differentiation formula (3DBBDF) method: 

𝑦𝑛+1 =
2

11
𝑦𝑛−2 −

9

11
𝑦𝑛−1 +

18

11
𝑦𝑛 +

6

11
ℎ𝑓𝑛+1,

𝑦𝑛+2 = −
3

25
𝑦𝑛−2 +

16

25
𝑦𝑛−1 −

36

25
𝑦𝑛 +

48

25
𝑦𝑛+1 +

12

25
ℎ𝑓𝑛+2,

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3.}

 
 

 
 

                                                    (20) 

is consistent. 
Proof: 
To show that the 3-point diagonally implicit block BDF method is consistent, we need to show that the conditions in (19) 

are satisfied. Let 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 and 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 be as previously defined. Then 
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∑𝛼𝑗

5

𝑗=0

= 𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 

=

[
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 

+

[
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 

+

[
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 

+ [

1

−
48

25
300

137

] + [

0
1

−
300

137

] + [
0
0
1
] = [

0
0
0
]                                                                            (21) 

Hence, the first condition in (19) is satisfied. 

∑(𝑗𝛼𝑗)

5

𝑗=0

= ((0)𝛼0 + (1)𝛼1 + (2)𝛼2 + (3)𝛼3 + (4)𝛼4 + (5)𝛼5) 

=

[
 
 
 
 
 

(0)

[
 
 
 
 −

2

11
3

25

−
12

137]
 
 
 
 

+ (1)

[
 
 
 
 
9

11

−
16

25
75

137 ]
 
 
 
 

+ (2)

[
 
 
 
 −

18

11
36

25

−
200

137]
 
 
 
 

+ (3) [

1

−
48

25
300

137

] + (4) [

0
1

−
300

137

] + (5) [
0
0
1
]

]
 
 
 
 
 

=

[
 
 
 
 
6

11
12

25
60

137]
 
 
 
 

                                       (22) 

∑𝛽𝑗

5

𝑗=0

= 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 + 𝛽5 

= [
0
0
0
] + [

0
0
0
] + [

0
0
0
] + [

6

11

0
0

] + [

0
12

25

0

] + [

0
0
60

137

] =

[
 
 
 
 
6

11
12

25
60

137]
 
 
 
 

                                                                                        (23) 

 Hence, ∑ 𝑗𝛼𝑗 = ∑ 𝛽𝑗
7
𝑗=0

7
𝑗=0  

Thus, the second condition in (19) is also satisfied. The consistency conditions are therefore met. Hence, the method is 
consistent. 

Stability Analysis of  the Method 
The stability of  a Linear Multistep Method (LMM) is a crucial property that determines its reliability and accuracy in 
solving initial value problems. A stable LMM ensures that: 

• Small errors or perturbations in the solution do not amplify excessively. 

• The method maintains accuracy over time. 

• The solution remains bounded and does not diverge. 
In other words, a stable LMM prevents the growth of  errors, ensuring that the numerical solution remains close to the 
exact solution. This is particularly important when solving stiff  problems or problems with large timescales, where 
instability can lead to rapid error growth and inaccurate results (Yusuf  et al, 2024). 
There are different types of  stability, including zero-stability, absolute stability, and A-stability, each with its own criteria 
and implications for the method's performance (Lambert, 1973). By analysing the stability properties of  3-point diagonally 
implicit block backward differentiation formula (3DBBDF) method, we can determine its suitability for solving various 
problems and ensure that it produces reliable and accurate results. 
In this section, we present the stability properties of  the method (15), we begin by defining a general k-step linear multistep 
method, zero and A-stability.  
Definition 4 (Zero-Stability): The block numerical method (15) is said to be zero stable if  all the roots of  first 
characteristics polynomial have modulus less than or equal to unity and those roots with modulus unity are simple. 
(Alhassan et al, 2023a). 
Definition 5 (A-Stability): The block numerical method (15) is said to be A-stable if the absolute stability region covers 
the whole left half plane (Musa et al, 2022). The stability properties of the method is determined by applying the linear 
test differential equation of the form 

𝑦′ = 𝜆𝑦,𝜆 < 0                                                 (24) 

Where, 𝜆 is complex constant with 𝑅𝑒(𝜆) < 0. The formulae (15) can be cast in matrix form as: 
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















100

010

001

[

𝑦𝑛+1
𝑦𝑛+2
𝑦𝑛+3

] =























−

−−

−

137

200

137

75

137

12
25

36

25

16

25

3
11

18

11

9

11

2

[

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛

] +























− 0
137

300

137

300

00
25

48
000

[

𝑦𝑛+1
𝑦𝑛+2
𝑦𝑛+3

] +

















000

000

000

h [

𝑓𝑛−2
𝑓𝑛−1
𝑓𝑛

] +























137

60
00

0
25

12
0

00
11

6

h [

𝑓𝑛+1
𝑓𝑛+2
𝑓𝑛+3

]                                                                                                                                        (25) 

After rearranging and collecting the like terms, equation (25) becomes 























−

−

1
137

300

137

300

01
25

48
001

[

𝑦𝑛+1
𝑦𝑛+2
𝑦𝑛+3

] =























−

−−

−

137

200

137

75

137

12
25

36

25

16

25

3
11

18

11

9

11

2

[

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛

] +

















000

000

000

h [

𝑓𝑛−2
𝑓𝑛−1
𝑓𝑛

] + 























137

60
00

0
25

12
0

00
11

6

h [

𝑓𝑛+1
𝑓𝑛+2
𝑓𝑛+3

]                                                                                                                                        (26) 

Equation (26) can be represented in the following matrix form: 

𝐴0𝑌𝑚 = 𝐴1𝑌𝑚−1 + ℎ(𝐵0𝐹𝑚−1 + 𝐵1𝐹𝑚)                                                                       (27) 
where, 

,

1
137

300

137

300

01
25

48
001

0























−

−=A 𝐴1 =

[
 
 
 
 
2

11
−

9

11

18

11

−
3

25

16

25
−
36

25
12

137
−

75

137

200

137 ]
 
 
 
 

, ,

000

000

000

0

















=B 𝐵1 =

[
 
 
 
 
6

11
0 0

0
12

25
0

0 0
60

137]
 
 
 
 

, 

,

3

2

1

















=

+

+

+

n

n

n

m

y

y

y

Y 𝑌𝑚−1 = [

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛

], ,1

2

1

















= −

−

−

n

n

n

m

f

f

f

F 𝐹𝑚 = [

𝑓𝑛+1
𝑓𝑛+2
𝑓𝑛+3

] 

After applying equation (24) into equation (27), then equation (27) can also be written as: 

𝐴0𝑌𝑚 = 𝐴1𝑌𝑚−1 + 𝜆ℎ(𝐵0𝑌𝑚−1 + 𝐵1𝑌𝑚)                                              (28) 

Substitute ℎ̅ = 𝜆ℎ in equation (28). This leads to 

𝐴0𝑌𝑚 = 𝐴1𝑌𝑚−1 + ℎ̅(𝐵0𝑌𝑚−1 + 𝐵1𝑌𝑚)                                                                                      (29) 

⇒   (𝐴0 − ℎ̅𝐵1)𝑌𝑚 = (𝐴1 + ℎ̅𝐵0)𝑌𝑚−1                                                                                  (30) 

To determine stability polynomial of the method (15), the following equation is evaluated 

𝑑𝑒𝑡 ((𝐴0 − ℎ̅𝐵1) − (𝐴1 + ℎ̅𝐵0)) = 0                                                                             (31) 

After the evaluation of equation (31), we obtain the following stability polynomial 

𝑅(𝑡, ℎ̅) = −
864

7535
𝑡3ℎ̅3 +

26784

37675
𝑡3ℎ̅2 −

864

1507
𝑡2ℎ̅2 −

55134

37675
𝑡3ℎ̅ −

13824

7535
𝑡2ℎ̅ −

5508

37675
𝑡ℎ̅ + 𝑡3 −

                             
32178

37675
𝑡2 −

1083

7535
𝑡 −

82

37675
= 0                                                                                                          (32) 
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The stability boundary of the method (15) is determined by substituting 𝑡 = 𝑒𝑖𝜃into the stability polynomial (32).Thus, 
the region of absolute stability of the method is plotted in figure 2 below, indicating that the method is almost A-stable, 
as in Yusuf et al. (2024). 

 
Figure 2: Stability region of 3-point diagonally implicit Block BDF method. 

To show that the method is zero-stable, we substitute ℎ̅ = 0 in (32) to obtain the first characteristics polynomial: 

𝑡3 −
32178

37675
𝑡2 −

1083

7535
𝑡 −

82

37675
= 0                                                                         (33) 

Solving equation (33) for 𝑡, we obtain the following roots as: 

𝑡 = 1, 𝑡 = −
5497

75350
−

9

75350
√220489, 𝑡 = −

5497

75350
+

9

75350
√220489

 
These roots implies that 

𝑡 = 1, 𝑡 = −0.1290386604, 𝑡 = −0.01686711265 

Therefore, in accordance with definition 4, the values of 𝑡 mentioned earlier confirm that the method is zero-stable, since 

none of the roots have a magnitude greater than one and the root 𝑡 = 1 has a multiplicity of one (i.e., it is a simple root). 
Convergence of the Method

 

A crucial requirement for any Linear Multistep Methods (LMMs), including Adams, BDF, and Runge-Kutta methods, is 
convergence. A method that fails to converge has no practical significance, as it cannot provide a reliable approximation 
of the solution. Therefore, it is essential to establish the necessary and sufficient conditions for the convergence of LMMs 
(Butcher, 2016). 
This section focuses on determining the conditions under which the LMM (15) converges. Specifically, we aim to identify 
the requirements that ensure the method produces a numerical solution that approaches the exact solution as the step size 
decreases. By establishing these conditions, we can guarantee the reliability and accuracy of the method for approximating 
stiff systems. 
Theorem 1: The necessary and sufficient conditions for the linear multistep method (LMM) to be convergent are that it 
be consistent and zero-stable (Lambert, 1973). 
Theorem 2: The 3-point diagonally implicit block backward differentiation formula converges. 
Proof: 

Having satisfied both the conditions of  consistency and zero stability in the previous sections, therefore the diagonally 
implicit 3-point block backward differentiation formula (3DBBDF) converges and is suitable for the numerical integration 
of first order stiff systems of ordinary differential equations. 

Implementation of the Method 

Newton’s iteration is used to implement the method. Let 𝑦𝑖 and 𝑦(𝑥𝑖) represent the approximate and exact solutions, 
respectively, for first order stiff IVP of the form: 

  
𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑎) = 𝑦0𝑎 ≤ 𝑥 ≤ 𝑏 (34) 

 Then, the absolute error in the (𝑖)𝑡ℎ iteration is defined as follows: 

  (𝑒𝑟𝑟𝑜𝑟𝑖)𝑡 = |(𝑦𝑖)𝑡 − 𝑦(𝑥𝑖)𝑡|(35) 
And the maximum error is defined by: 
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𝑀𝐴𝑋𝐸 = 𝑚𝑎𝑥⏟
1≤𝑖≤𝑇

(𝑚𝑎𝑥(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡⏟        
1≤𝑖≤𝑁

)                                                                       (36) 

Where,N and T represent the number of equations and the total number of steps, respectively. 

Let  𝐹1, 𝐹2and𝐹3 be defined as follows: 

𝐹1 = 𝑦𝑛+1 −
4

7
ℎ𝑓𝑛+1 −∈1

𝐹2 = −
48

25
𝑦𝑛+1 + 𝑦𝑛+2 −

12

25
ℎ𝑓𝑛+2 −∈2

𝐹3 =
300

137
𝑦𝑛+1 −

300

137
𝑦𝑛+2 + 𝑦𝑛+3 −

60

137
ℎ𝑓𝑛+3 −∈3}

 
 

 
 

                                                            (37) 

Where ∈1, ∈2and ∈3are the back values, define as follows: 

∈1=
2

11
𝑦𝑛−2 −

9

11
𝑦𝑛−1 +

18

7
𝑦𝑛

∈2= −
3

25
𝑦𝑛−2 +

16

25
𝑦𝑛−1 −

36

25
𝑦𝑛

∈3=
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛}
 
 

 
 

                                                                   (38) 

Then, let 𝑦𝑛+𝑗
(𝑖+1)

 denote the (𝑖 + 1)𝑡ℎ iterative values of 𝑦𝑛+𝑗and define 

𝑒𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖+1)

− 𝑦𝑛+𝑗
(𝑖)
,          𝑗 = 1,2,3                                                                             (39) 

Applying the Newton’s iteration for the 3DBBDF method, we get; 

𝑒𝑛+𝑗
(𝑖+1)

= −(𝐹𝑗′(𝑦𝑛+𝑗
(𝑖)
))
−1
(𝐹𝑗(𝑦𝑛+𝑗

(𝑖)
)) ,   𝑗 = 1,2,3                                                           (40) 

This can be written as; 

(𝐹𝑗′(𝑦𝑛+𝑗
(𝑖)
)) 𝑒𝑛+𝑗

(𝑖+1)
= −(𝐹𝑗(𝑦𝑛+𝑗

(𝑖)
)) ,    𝑗 = 1,2,3                                                              (41) 

Equation (41) can be written in matrix form as follows; 

( )

( )

( )

( )

( )

( )











































−−


















−−


















−

+

+

+

+

+

+

i

n

i

n

i

n

i

n

i

n

i

n

y

F
h

y

F
h

y

F
h

3

3

2

2

1

1

137

60
1

137

300

137

300

0
25

12
1

25

48

00
11

6
1

[

𝑒𝑛+1
(𝑖+1)

𝑒𝑛+2
(𝑖+1)

𝑒𝑛+3
(𝑖+1)

] =























−−

−

−

1
137

300

137

300

01
25

48
001

[

𝑦𝑛+1
(𝑖)

𝑦𝑛+2
(𝑖)

𝑦𝑛+3
(𝑖)

] +























137

60
00

0
25

12
0

00
11

6

[

𝑓𝑛+1
(𝑖)

𝑓𝑛+2
(𝑖)

𝑓𝑛+3
(𝑖)

]+ [
∈1
∈2
∈3

]                                                                                                                              (42) 

A computer program in C language is developed to implement equation (42). The program takes in input parameters such 
as the exact solutions, initial conditions, and step sizes, and outputs the approximate solution at each step of the 
integrations. 

The detailed derivation of coefficients of the 3-point explicit predicator method that are stored in the code can be found 
in (Yusuf et al., 2024)and are given by the following tables: 

Table 1: coefficient of the first point 

𝜎0,1 𝜎1,1 𝜎2,1 𝜎3,1 𝜎4,1 

1 −4 6 −4 1 

Table 2: coefficient of the second point 

𝜎0,2 𝜎1,2 𝜎2,2 𝜎3,2 𝜎5,2 

4 −15 20 −10 1 
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Table 3: coefficient of the third point 

𝜎0,3 𝜎1,3 𝜎2,3 𝜎3,3 𝜎6,3 

10 −36 45 −20 1 

Test Problems and Numerical Results 
To evaluate the performance and efficiency of the 3DBBDF method, several systems of first-order linear and nonlinear 
stiff ordinary differential equations (ODEs) with initial value problems are tested. These systems are chosen to assess the 
method's ability to handle a range of stiff problems: 
Problem 1:  

𝑦′
1
= −(𝜖−1 + 2)𝑦1 + 𝜖

−1𝑦2
2,  𝑦1(0) = 1,    0 ≤ 𝑥 ≤ 20, 

𝑦′
2
= 𝑦1 − 𝑦2(1 + 𝑦2),   𝑦2(0) = 1.  

 Exact solution: 

𝑦1(𝑥) = 𝑒
−2𝑥,  

𝑦2(𝑥) = 𝑒
−𝑥.  

Eigenvalues:  𝜆1 = −1 and 𝜆2 = −(𝜖
−1 + 2) and we set 𝜖 = 10−3 

Source: Suleiman et al (2013). 
Problem 2:  

𝑦′
1
= −3𝑦1 + 2𝑦2 + 3𝑐𝑜𝑠(𝑥) − 3𝑠𝑖𝑛(𝑥),  𝑦1(0) = 1,     0 ≤ 𝑥 ≤ 20, 

𝑦′
2
= 2𝑦1 − 3𝑦2 − 𝑐𝑜𝑠(𝑥) + 3𝑠𝑖𝑛(𝑥),  𝑦2(0) = 0.  

 Exact solution: 

𝑦1(𝑥) = 𝑐𝑜𝑠(𝑥),  
𝑦2(𝑥) = 𝑠𝑖𝑛(𝑥).  

Eigenvalues:   𝜆1 = −1 and 𝜆2 = −5 
Source: Aminikhah and Hemmatnezhad (2011). 
Problem 3:  

𝑦′
1
= −2𝑦1 + 𝑦2 + 2𝑠𝑖𝑛(𝑥),  𝑦1(0) = 2,         0 ≤ 𝑥 ≤ 10, 

𝑦′
2
= −(𝜖−1 + 2)𝑦1 + (𝜖

−1 + 1)(𝑦2 − 𝑐𝑜𝑠(𝑥) + 𝑠𝑖𝑛(𝑥)), 𝑦2(0) = 3.  

 Exact solution: 

𝑦1(𝑥) = 2𝑒
−𝑥 + 𝑠𝑖𝑛(𝑥),  

𝑦2(𝑥) = 2𝑒
−𝑥 + 𝑐𝑜𝑠(𝑥).  

Eigenvalues:   𝜆1 = −1and 𝜆2 = 𝜖
−1. 

Source: Aminikhah and Hemmatnezhad (2011). 
Problem 4: 

𝑦′
1
= (0)𝑦1 + 𝑦2,  𝑦1(0) = 1.01,     0 ≤ 𝑥 ≤ 10, 

𝑦′
2
= −100𝑦1 − 101𝑦2 , 𝑦2(0) = −2.  

 Exact solution: 

𝑦1(𝑥) = 0.01𝑒
−100𝑥 + 𝑒−𝑥,  

𝑦2(𝑥) = −𝑒
−100𝑥 − 𝑒−𝑥.  

Eigenvalues:   𝜆1 = −100and 𝜆2 = −1. 
Source: Yaakub and Evans (2003). 
The fully implicit 3-point Block Backward Differentiation Formula and diagonally implicit 3-point Block Backward 
Differentiation Formula methods are applied to solve the aforementioned problems. To evaluate the accuracy and 
efficiency of these methods, the maximum absolute errors for various step sizes (H) are presented for each problem. 
Additionally, the number of steps required to solve each problem and the computation time are also provided. To make 
referencing easy, below is the 3 – point BBDF method found in Ibrahim et al (2007): 

𝑦𝑛+1 =
1

10
𝑦𝑛−2 −

3

4
𝑦𝑛−1 + 3𝑦𝑛 −

3

2
𝑦𝑛+2 +

3

20
𝑦𝑛+3 + 3ℎ𝑓𝑛+1

𝑦𝑛+2 = −
3

65
𝑦𝑛−2 +

4

13
𝑦𝑛−1 −

12

13
𝑦𝑛 +

24

13
𝑦𝑛+1 −

12

65
𝑦𝑛+3 +

12

13
ℎ𝑓𝑛+2

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3}

 
 

 
 

                                      (44) 

Andthe 3-point diagonally implicit BBDF method is expressed as: 

𝑦𝑛+1 =
2

11
𝑦𝑛−2 −

9

11
𝑦𝑛−1 +

18

11
𝑦𝑛 +

6

11
ℎ𝑓𝑛+1

𝑦𝑛+2 = −
3

25
𝑦𝑛−2 +

16

25
𝑦𝑛−1 −

36

25
𝑦𝑛 +

48

25
𝑦𝑛+1 +

12

25
ℎ𝑓𝑛+2

𝑦𝑛+3 =
12

137
𝑦𝑛−2 −

75

137
𝑦𝑛−1 +

200

137
𝑦𝑛 −

300

137
𝑦𝑛+1 +

300

137
𝑦𝑛+2 +

60

137
ℎ𝑓𝑛+3}

 
 

 
 

                                                   (45) 
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The following notations are used in the tables below: 

H:  Step Size 

METHOD: The Methods Used 

TS:  Total Number of Steps taken to complete the Integration 

MAXE:  Maximum Error 

CPU TIME: Computation time in seconds 

3BBDF: 3-point block backward differentiation formula  

3DBBDF: 3-point diagonally implicit block backward differentiation formula 

Table 4: Numerical Result for Problem 1. 

H METHOD TS MAXE CPU TIME 

10−2 

 

3BBDF 

3DBBDF 

666 

666 

1.01454E+251 

4.91435E+159 

5.78100E-002 

5.82200E-003 

10−3 3BBDF 

3DBBDF 

6666 

6666 

2.21008E+210 

5.72422E+168 

7.86000E-002 

6.42500E-003 

10−4 3BBDF 

3DBBDF 

66666 

66666 

1.10663E-004 

1.10662E-004 

8.34700E-001 

1.55600E-002 

10−5 3BBDF 

3DBBDF 

666666 

666666 

1.10748E-005 

1.10748E-005 

1.36400E+000 

1.41700E-001 

10−6 3BBDF 

3DBBDF 

6666666 

6666666 

1.10756E-006 

1.10755E-006 

1.00900E+001 

5.91300E-001 

Table 5: Numerical Result for Problem 2.  

H METHOD TS MAXE CPU TIME 

10−2 

 

3BBDF 

3DBBDF 

666 

666 

1.79395E-002 

1.79396E-002 

6.26800E-002 

5.86900E-003 

10−3 3BBDF 

3DBBDF 

6666 

6666 

1.76790E-003 

1.76790E-003 

7.48400E-002 

7.72200E-003 

10−4 3BBDF 

3DBBDF 

66666 

66666 

1.76533E-004 

1.76533E-004 

2.64900E-001 

2.65600E-002 

10−5 3BBDF 

3DBBDF 

666666 

666666 

1.76511E-005 

1.76511E-005 

2.14000E+000 

2.09500E-001 

10−6 3BBDF 

3DBBDF 

6666666 

6666666 

1.76511E-006 

1.76512E-006 

2.04000E+001 

1.15700E+001 

Table 6: Numerical Result for Problem 3. 

H METHOD TS MAXE CPU TIME 

10−2 

 

3BBDF 

3DBBDF 

333 

333 

1.42161E-001 

1.42198E-001 

6.17200E-002 

5.62000E-003 

10−3 3BBDF 

3DBBDF 

3333 

3333 

1.39302E-002 

1.39306E-002 

6.23100E-002 

6.84900E-003 

10−4 3BBDF 

3DBBDF 

33333 

33333 

1.39012E-003 

1.39012E-003 

2.42200E-001 

1.96100E-002 

10−5 3BBDF 

3DBBDF 

333333 

333333 

1.38983E-004 

1.38983E-004 

1.14000E+000 

1.05800E-001 

10−6 3BBDF 

3DBBDF 

3333333 

3333333 

1.38982E-005 

1.38982E-005 

1.03000E+001 

1.18700E+001 
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Table 7: Numerical Result for Problem 4. 

H METHOD TS MAXE CPU TIME 

10−2 

 

3BBDF 

3DBBDF 

333 

333 

5.08510E+127 

1.68135E+131 

7.90600E-002 

5.64500E-003 

10−3 3BBDF 

3DBBDF 

3333 

3333 

6.92468E-002 

7.18991E-002 

6.24200E-002 

6.99600E-003 

10−4 3BBDF 

3DBBDF 

33333 

33333 

1.07293E-002 

1.07266E-002 

1.14300E-001 

1.10900E-002 

10−5 3BBDF 

3DBBDF 

333333 

333333 

1.10089E-003 

1.10083E-003 

6.15300E-001 

8.78800E-002  

10−6 3BBDF 

3DBBDF 

3333333 

3333333 

1.10363E-004 

1.10362E-004 

6.88200E-001 

7.77700E-001 

The graph below provides a visual representation of  the method's efficiency, showing the relationship between the 
logarithm of  the maximum error (Log(MAXE)) and the logarithm of  the computational time (Log(Time)). 

 
Figure 3: Efficiency Curves for Problem 1 

 
 Figure 4: Efficiency Curves for Problem 2 
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 Figure 5: Efficiency Curves for Problem 3 

 
Figure 6: Efficiency Curves for Problem 4 

DISCUSSION ON THE RESULTS 

Based on the data presented in the tables and figures, the 
following observations and conclusions can be made: 

▪ Accuracy: The 3DBBDF method consistently 
achieves smaller maximum absolute errors across 
nearly all step sizes compared to the 3BBDF 
method. This demonstrates the reliability of the 
3DBBDF method for solving the given ODE 
problems. 

▪ Efficiency: The 3DBBDF method generally 
shows shorter computational times for most step 
sizes, indicating it is more efficient then the 
3BBDF method. This suggests that the 3DBBDF 
method uses less computational resources and is 
faster for solving the problems. 

▪ Step size Influence: The results show that as the 
step size (H) decreases, the accuracy of both 
methods improves, but the computational time 
increases. This is expected, as smaller step sizes 

require more steps to solve the problems, leading 
to increased computational time.  

▪ Comparison: The 3DBBDF method is 
competitive with the 3BBDF method in terms of 
both accuracy and efficiency, likely due to the 
improved numerical stability and consistency of 
the 3DBBDF method. 

Therefore, based on the results, we conclude that the 
3DBBDF method is an accurate and efficient numerical 
method for solving the given ODE problems, 
outperforming the 3BBDF method in several aspects.  

CONCLUSION 

The diagonally implicit 3-point block backward 
differentiation formula (3DBBDF) is derived using 
Lagrange interpolation polynomial for solving first-order 
stiff  initial value problems. The stability properties of  the 
method are thoroughly examined, and the necessary and 
sufficient conditions for its convergence are discussed. 
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The method's order of  accuracy is also derived and found 
to be 5, indicating its high accuracy. 

The numerical results consistently show that the 3DBBDF 
method achieves smaller maximum errors and shorter 
computational time, making it both more accurate and 
efficient. This enhanced performance is attributed to the 
improved numerical stability and consistency of  the 
3DBBDF method. Therefore, the 3DBBDF method is 
recommended as a more reliable and effective tool for the 
numerical integrating of  first-order stiff  initial value 
problems, offering significant advantages over the 3BBDF 
method. 
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