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INTRODUCTION
Throughout history, humans have been attracted to areas 
with accessible fluid dynamics to establish communities 
and civilizations.  As our knowledge of the natural world 
has advanced, we have endeavored to manage and 
enhance natural fluid flow to improve agricultural stability, 
living conditions, and transportation systems.  By 
harnessing the power of fluid dynamics, we now live in a 
higher quality of life, sustain communities, and create 
more efficiency in the communities (Karwa 2020).  

The manner in which electrically conducting liquids 
like plasma and liquid metallic substances behave while 
exposed to magnetic fields is known as 
magnetohydrodynamics (MHD).  In nature, MHD 
describes the changes and behaviors of fluids when 
exposed to magnetic fields.  There are several industries 
where MHD is applicable, including advanced propulsion 
systems and nuclear fusion energy production (Romanelli 
et al. 2017).  MHD fluids have proven to be quite beneficial 
in the area of hemodynamics (the study of the human 
body to identify drug delivery techniques), biomedical 
sciences, vascular blood flow, cancer treatment 
(chemotherapy), and blood artery flow regulation 
(Falade et al. 2017).  

Several mathematicians have studied MHD oscillatory 
fluids under the influence of magnetic fluid.  The MHD 
fluid's effect on unstable oscillatory Couette flow in 
porous materials was described (Sharma et al., 2022).  Mass 
transfer and conversion heat are free to move across a 
semi-infinite vertical porous plate in unstable MHD fluids 
(Quader & Alam 2021).  (Amos et al., 2020) investigated 
the impact of varying viscosity and thermal conductivity 
in a Casson fluids heat transfer and chemically reacting 
MHD-free convective mass. (Rajashekar & Shankar 
2016), Illustration of how chemical processes affect the 
unsteady MHD fluid flow of heat transfer and mass in 
semi-infinite vertical moving plates when they are exposed 
under the influence of a uniform magnet field with viscous 
and gradient temperatures.  (Narsu & Rushikumar 2020) 
examined variable thermal conductivity and partial slips 
with radiated plates with unsteady magnetohydrodynamics 
chemically reactive fluid flows.  The effects of heat on 
nanofluid at the stationary point and chemical 
changes on MHD fluid flow were determined (Anuradha 
& Priadhashini 2016) and (Gireesha & Rudraswamy 2014).  
The effects of changing thermal conductivity for power 
law separation related to concentration and temperature, 
as well as magnetic fields on mass and heat transfer, were 
discussed (Kareem & Salawu 2017). (Abiodun & Kabir 
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2020) explained the influence of thermal conductivity and 
variation over thermodynamic flow in vertical channels. 
(Uwanta and Usman 2015), Examined the finite difference 
method for MHD unrestricted convective flow of fluid 
over Drcy Forchheimer medium by suction and thermally 
variable conductivity. (Seddek et. al. 2007) Focused on the 
effect of suction and magnetic fields on unsteady MHD 
mass and heat transfer in a semi-infinite medium.  (Babu 
et al. 2014) investigated the effects of radiation heat 
sources and sinks on stable two-dimensional layers 
through the mass suction and shrinking plate.  
The influences of suction and injection on the turbulent 
fluid in reactive viscous fluid through upward channels 
under the transfer of mass and heat were described by 
(Uwanta & Hamza 2014).  (Zubi 2018) evaluated MHD 
mass and heat transfer on oscillation Couette flow 
through a chemical reaction in a porous material on an 
upward plate.  Furthermore, (Prakash & Makinde 2015b) 
described how radiative heat transfer and a transversal 
magnetic field interact to cause an unstable flow.  In a 
rotating system incorporating Hall effects, (Makinde et al. 
2015) examined the thermodynamic implications of 
hydromagnetic flow in a varying viscosity.  Moreover, 
(Prakash & Makinde 2015a) discusses how the velocity 
fluid, whether clean or dirty, is slowed down by the 
external magnetic field serving as a force that resists.  Later 
on, his invention was thought to be helpful in sewage 
treatment plants, other real-life situations, and other 
industries.  (Makinde et al. 2016) Examined the impacts of 
the chemical reaction using MHD poiseuille flow 
with nanofluids and the thermal radiative MHD 
oscillatory Couette flow in a vertical channel filled with 
permeable materials. (Agaie et al. 2020) determined the 
vertical porous channel with a plate oscillating in its plain 
and the other moving in the fluid flow direction.  The 
impact of radiative hydromagnetic poiseuille fluid flow on 
two-step exothermic chemical reaction with convective 
cooling was examined by (Salawu et al. 2020).  

Consequently, because of the industrial and practical 

application of heat energy in several fields like the dyeing 

industry, cooling technique gas and liquid industry, water 

evaporation, and separation of toxic and hazardous 

substances.  The application of oscillatory Couette is very 

important in several fields of study in this modern era and 

it is significant in many different types of industries, such 

as petroleum, geothermal energy generation, and the 

advancement of advanced heat exchange techniques.  The 

effect of heat energy transfer increases when oscillatory 

fluid flow is flowing, and it decreases when a fluid is kept 

stationary, and this is applicable in the fields of engineering 

and biomedicine variations in fluid velocity and patterns 

(Uddin and Murad, 2022).  

When two parallel plates enclose a fluid, one is moving, 

and the other is held stationary in a fixed point by Stokes's 

first principle and it is called oscillatory Couette flow.  

This principle describes the use of fluid flows over a 

vertical channel at rest and quickly accelerates in its plane 

with constant velocity by Khaled & Vafai (2004) and 

Zulkarmain & Sharudin (2022).  The motion of 

incompressible semi-finite viscous fluids caused by an 

oscillating plate is known as Skoke's second problem 

Umavathi & Beg (2020).  A particular kind of fluid flow 

between two parallel plates that oscillates on a regular 

basis is called oscillatory Couette flow, and this process 

involves the periodic upward and downward movement 

of a fluid layer trapped between two plates (Noor et 

al. 2021, 2022) 

The problem of oscillatory Couette fluid flow into 

a channel filled with permeable materials in different 

variable conditions has been tackled by numerous authors.  

This contemporary research seeks to fill the gap with the 

precedent literature work.  We examined the study of the 

effect of variable thermal conductivity on oscillatory 

magnetized couette flow in a channel filled with a porous 

material.  The set of second-order partial differential 

equations (PDEs) was solved analytically by regular 

perturbation method to convert the second-order partial 

differential equations to the ordinary differential equations 

due to the nature of the boundary condition oscillating.  

The study holds immense significance in both scientific 

exploration and in practical real-life applications, such as 

in oil recovery, rocket engines, designing of heat 

exchangers, to understand the interaction between fluid 

dynamics, heat transfer, and porous structures in the 

presence of variable thermal properties.  It is also used in 

the field of Biomedical Engineering for biological tissue 

treatment, such as cryosurgery and hyperthermia. 

MATHEMATICAL MODEL AND BASIC 

EQUATIONS 

To examine the unstable, incompressible, 

oscillatory magnetized Couette flow in a channel full of 

permeable materials by variable thermal conductivity.  

Varying values of thermal conductivity of the fluid flow 

and movement of one of the plates induced the flow 

motion.  The first plate is shown in Figure 1  to be at 

position 𝑦* = 0, oscillating at frequency 𝜔* with velocity 

𝑢* = 𝑈0 (1+𝜀𝑒𝑖𝜔𝑡), While a magnetic field is provided 

along the 𝑦* axis, the second plate, at a distance 𝑦* = h, is 

moving vertically along the 𝑥* axis towards the direction 

of flow with a fixed velocity (Up*).  The governing 

equations in dimensional form are as follows, in 

accordance with (Sharma et al. 2023): 

https://scientifica.umyu.edu.ng/
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Figure 1: The flow Model 

The continuity equation 
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Heat conservation 
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   

  
  
                3 

Conservation of concentration 

* 2 *
* *

0* *2
( )R

C C
Dm K C C

t y

 
= + −

 
         4

 

The boundary constraints are:

∗=
⌋
 

U*=𝑈0 (1+ e 𝑖𝜔*𝑡*),   𝐶*=𝐶1*+(𝐶1*−𝐶0*)e 𝑖𝜔*𝑡*,  T* = 𝑇1*+𝜀(𝑇1*−𝑇0*) e 𝑖𝜔*𝑡*;  𝑦* = 0;       

U*=𝑢q*,   𝐶*=𝐶1*,  T*=𝑇1*   𝑦* = ℎ;          5 
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Sharma et al. (2023).  The below model represents the heat flux  

∂q𝑟
∗

∂y∗  = 4(T∗−𝑇0
∗)∫ 𝐾λw (

𝜕𝑒bλ

∂T
)

𝑤
dλ = 4α2(T∗ − T1

∗).  
∞

0
       6 

The following are the non-dimensional parameters and the physical quantities. 

𝑦=
𝑦∗

ℎ
,𝜔=

ℎ2𝜔∗,

𝑣
, 𝑇 =  

𝑇∗− 𝑇1
∗

𝑇1
∗− 𝑇0

∗ ,   𝑢𝑞 =
𝑢𝑞

∗

𝑈0
, u =  

𝑢∗

𝑈0
,    t =  

𝑡∗𝑠𝑣 

ℎ2 , 𝑀 =
σ𝐵0

∗ℎ2

ρυ
, 𝑅 =

4α2ℎ2

𝑘
, 𝑣 =

μ

ρ
,   

𝐾𝑅 =
𝑘𝑐ℎ2

𝑣
, 𝑃𝑟 =

μCp

κ
, 𝐾 =

ℎ2

𝐾∗
𝐺𝑟 =

gβℎ2(𝑇1
∗ − 𝑇0

∗)

v𝑈0
, 𝐺𝑐 =  

gβℎ2(𝐶1
∗ − 𝐶0

∗)

v𝑈0
,   

𝐶 =
𝐶∗−𝐶0

∗

𝐶1
∗−𝐶0

∗ , 𝑆𝑐 =  
𝑣

𝐷𝑚
,        7 

Basic Assumptions 

The following assumptions are considered under the preset research work: 

i.  The fluid is viscous, incompressible and electrically conducting oscillatory Couette flow. 

ii. The temperature of the fluid and solid phase are equal in a channel filled with porous materials. 

iii.  There is  uniform magnetic field, and thermal radiation saturated with porous medium bounded between two 
infinite thin plates. 

iv. The flow is laminar and fully developed. 

v. It is assumed that the fluid has both constant and variable thermal conductivity and viscosity. 

Method of Solution 

The solution was obtained by first substituting the equation.  (6) into (3), then equation.  (7) is substituted into (2)–(4) to 
have the dimensionless form equation (8) – (10). 

( )
2

2

U U
K M U GrT GcC

t y

 
= − + + +

 
        8 

( )
22

Pr 1
2

T T
VmT Vm RT

t yy

   
= + + − 

  

u
       9 

2

2 R c

C C
Sc K S C

t y

 
= +

 
          10 

The dimensionless boundary conditions were reduced to equation (11) 

,

1 , 1 , 1 , 0

1 , 1p

iwt iwt iwtU e T e e y

U u T C

  

= + = + = + =

= = = 

      11 

The equation 𝜂(𝑦,𝑡) = 𝜂0(𝑦) + 𝜀𝑒𝑖𝜔𝑡𝜂1(𝑦) + 𝑂(𝜀2) for small amplitudes is used to reduce the PDEs into ODEs because 

the equations are second-order PDEs with two independent variables 𝑦 and 𝑡, which at this stage, the solution of these 

equations are not possible to solve. Where 𝜂 is a symbolic representation of concentration 𝐶, temperature 𝑇, velocity U, 

and the higher order of 𝜀 is neglected. 
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Equation (13) is the concentrated equation from equation (12) 

( ) ( ) ( ) ( )1 1 2 1 3 2 4 2cos sin cos sin iwtC A y A y A y A y e     = + + +
 

   13 

To obtain the temperature equation, the regular perturbation on perturbation was used from equation (9) to have 
equations (14) and (15)  

( )
2
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T VmT T Vm T RT+ + − =          14 

( )'' '' '' '2 0
1 0 1 0 1 1
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r

+ + − + =         15 

Boundary conditions for equation (14) and (15)  

1; 1 0
0 1

1; 0 1
0 1

0 00 01

1 11 12

T T at y

T T at y

let

T T VmT

T T VmT

= = = 


= = = 


= +

= +


          17 

Equation (17) was then substituted into equations.  (14), (15) to have equation (18) 

'
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The following boundary conditions are used 
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00 01 11 12
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
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The solutions for equation (18) were subjected to equation (19) to obtain equation (20) – (23):  

00 1 2

y y
R R

T B e B e

−

= +           20

( ) ( )
2 2

01 3 5 4 6

y y
R R
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3 3
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Equation (20) – (23) were substituted into equation (18) with equation (12) to have equation (24) the Temperature (T) 
equation   

( ) ( )
2 2
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24  

Solving equation (8) to obtain equations (25) and (26) 
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                 26 

Equation  (25) and (26) was substituted into equation (12)  to have equation (27) the Velocity equation (U) 

( ) ( )
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2 2
* *1 1 cos sin
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In equations (28) and (29), the Nusselt number was obtained by differentiating equation (24) with respect to y at y = 0 
and 1, respectively,  

2
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In equations (30) and (31), the Skin Friction was obtained by differentiating equation (27) with respect to y at y = 0 and 
1, respectively  
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In equations (32) and (33), the Sherwood number was obtained by differentiating equation (13) with respect to y at y = 0 
and 1, respectively. 
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2 1 4 2

y
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A A e

dy
  
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= +  
           32 
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 

  

33 

RESULTS AND DISCUSSIONS 

To determine how temperature-dependent 

heat conductivity affects oscillatory magnetized Couette 

flow in a porous material-filled vertical channel, a Regular 

perturbation approach was employed to solve the 

governing equations.  The key parameters governing the 

flow include the Magnetic field (M),  Thermal Grashof 

number (Gr), Schmidt number (Sc), and Prandtl number 

(Pr).  The oscillation frequency (ω), The porous media's 

permeability (K), parameter for chemical reactions (KR), 

and the Heat Radiation parameter (R).  Following Sharma 

et al. (2023), we used specific values for example, Pr = 0.03 

(mercury), Pr = 0.71 (air), Pr = 7.0 (water), Sc = 0.22 

(hydrogen), Sc = 0.60 (water), and Sc = 1.16 (acetic acid) 

for the Prandtl number (Pr) and Schmidt number (Sc) in 

this model.  The moving plate velocity and perturbation 

parameters were set to 0.75 m/s and 0.25 ( 1). =   

respectively. 

Transient Patterns of Temperature, Concentration 

and Velocity: 

Figures 2(a) and 2(b) show the impact of permeability (K) 

and magnetic field (M) parameters on the velocity profile.  

The velocity fluid profile was discovered to decrease while 

permeability parameters (K = 0.1, 0.2, 0.3) improved due 

to higher permeability porous materials enabling easier 

fluid flow 2(a).  Likewise, a drop in the fluid velocity 

profile was noticed by raising the parameter for the 

magnetic field (M = 1, 2, and 3), confirming that magnetic 

fields possessed a negative influence on fluid velocity.  The 

buoyancy forces (Gr and Gc) with an impact on the fluid 

velocity profile are shown in Figures 3(a) and 3(b).  A rise 

has been observed for various Local Grashof values for 

numbers (Gr and Gc) on the profile of fluid velocity.  An 

increasing trend is observed for different ranges of the 

local Grashof number (Gr and Gc = 0.1, 0.5, and 1.0).  

The velocity fluid profile shows stronger buoyant forces, 

which advance with an increase in the local Grashof 

number.  Figures 4(a) and 4(b) indicate how changing 

thermal conductivity (Vm) affects velocity and 

temperature profiles.  Whereby increasing values of the 

profiles of temperature and velocity are noticed with 

increasing Vm because the fluid particles' kinetic energy 

has increased.  The impact of radiation parameters (R) on 

temperature and velocity profiles is seen in Figures 5(a) 

and 5(b).  Unlike fluid motion due to increased thermal 

radiation, fluid velocity profiles decrease as R values (R = 

1.0, 2.0, and 3.0) increase in the opposite direction to what 

is expected from fluid motion because of the higher 

thermal radiation parameters.  As the radiation parameter 

values increase, the temperature profile shows a distinct 

behavior that is characterized by both acceleration and 

deceleration, as shown in Figure 5(b).  Depending on the 

enclosure-specific operating conditions, this occurrence 

differs from velocity profiles and becomes more 

noticeable at higher temperatures.  Figures 6(a) and 6 (b) 

illustrate how the Prandtl number (Pr) affects velocity and 

temperature profiles.  Figure 6(a) illustrates how a decrease 

in velocity profiles is revealed for the following fluids at 

20 °C when the Prandtl number increases.  With a 

maximal decrease in the middle of the fluid temperature 

profile in Pr = 0.03 of mercury, Pr = 0.71 of air, and Pr = 

7.0 of water.  Since Pr regulates fluids' thermal boundaries 

with relative thickening of momentum.  Figures 7(a) and 

7(b) illustrate the nature of Chemical Reaction (KR) on 

velocity and concentration profiles.  Figure 7(a) 

demonstrates that increase in the flow of fluids 
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acceleration velocity fluid with an increase in KR 

parameters (2.0, 4.0, and 8.0), while Figure 7(b) reveals 

that the concentration profiles accelerate most in the 

middle part of the channel due to the rearrangement of 

molecules or ions in a substance which accelerate the 

values of KR values.  Figures 8(a) and 8(b) exhibit how 

buoyant force (Sc) affects concentration and velocity 

profiles.  Whereby different fluid levels exhibit a 

maximum rise in the concentration profile.  Acetic acid 

(CH3COOH) (Sc = 1.16), hydrogen (H) (Sc = 0.22), and 

water (H2O) (Sc = 0.60), compared to the fluid's velocity 

profile when the buoyancy force ratio increases. 

The impact of varying thermal conductivity (Vm) on the 

Prandtl number (Pr) at two different plate positions (y = 

0 and y = 1) is shown in Figures 9 and 10.  The behavior 

of different fluids at two plates with varying Vm values 

(0.01, 0.05, and 0.10) is depicted in the graph.  A distinct 

pattern appears: skin friction increases as Vm, resulting in 

a large increase in both skin friction (T0 and T1).  

Moreover, an appreciable improvement in both Nusselt 

numbers (Nu0 and Nu1) at the corresponding plate is 

noticeable and is shown in Figures 10(a) and 10(b).  These 

results highlight the significant effects, improved heat 

transfer efficiency, and Potential reduction in thermal 

boundary layer thickness of the fluid. Varying thermal 

conductivity on fluid flow dynamics of both Nu0 and Nu1 

enhanced heat transfer, increasing the temperature 

gradients near the bottom plate and the top plate, 

respectively, with increased convective heat transfer 

coefficient.  Comparing this work with other works, it was 

observed that higher Nu values enhanced better heat 

transfer performance.  Figure 11 depicts the validation 

between the review of (Sharma et al. 2023) and this recent 

work when Vm = 0.  It was observed that there is an 

agreement in both boundary conditions on the velocity 

axis and y-axis as the graph converges at a point (1) on this 

present work and the review work of (Sharma et al. 2023) 

at Vm = 0. 

 
Figure 2: Effect of (a) permeability parameter (K) and (b) Magnetic field (M) on fluid velocity, u  

 
Figure 3: Shows how the Buoyancy forces: (a) (Gr) & (b) (Gc) affect the Velocity Profile 
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Figure 4: Impact of Variable Thermal Conductivity (Vm) on (a) Velocity and (b) Temperature Profiles.              

  
Figure 5: Effects of Radiation Parameter (R) on (a) Velocity and (b) Temperature Profiles.     

 
Figure 6: Impact of Prandtl number (Pr) on (a) Velocity and (b) Temperature Profiles.              
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Figure 7: Shows the effects of Chemical reaction (KR) on (a) Velocity and (b) Concentration Profile 

 
Figure 8: Effects of Buoyancy force (Sc) on (a) Concentration and (a) Velocity Profiles 

Figure 9: Effects variable thermal conductivity (Vm) against prandtl number (Pr) when y=1 and y = 0    
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Figure 10: Effects of variable thermal conductivity (Vm) against prandtl number (Pr) when y = 1, y = 0 

 
Figure 11: Comparison of review of Sharma et al. 2023 and the recent work when Vm = 0 

CONCLUSIONS 

This study investigated the effect of oscillatory magnetized 
Couette flow in a channel filled with porous material 
impacted by variable thermal conductivity.  The regular 
perturbation approach was utilized and the transient 
governing equations are numerically solved.  The visual 
illustrations of various fluid flow parameters, including 
temperature, velocity, concentration, skin friction, 
Sherwood number, and Nusselt number, were discussed.  
Key conclusions drawn from this study are outlined 
below: 

i. The incorporation of variable thermal conductivity 
has a dual impact, enhancing fluid velocity while also 
modifying the temperature gradient within the fluid.  

ii. The Nusselt number on the plates and skin friction 
rises with increasing variable thermal conductivity 
values.  

iii. Compared to the Prandtl number of mercury, the 
Prandtl number of water causes a decline in fluid 
temperature and velocity.   

iv. The Schmidt number of acetic acid results in 
reduction of both the concentration and velocity of 
the fluid than the relative Schmidt number of 
hydrogen.  This finding has several practical 
applications, such as in chemical processing to design 
chemical reactors, pharmaceutical industry for drug 
delivery and coating, and in environmental 
engineering for accurate modeling of pollutant 
transport in water or air requires consideration of 
Schmidt number effects, food processing to improve 
texture, stability, and flavor and so on. 

RECOMMENDATIONS 

Based on these findings, the following were recommended 
for the future research to focus on:  

i. Considering variable viscosity  

ii. Incorporate magnetized nanofluid flow through 
a channel with suction and injection at 
boundaries,  

iii. Schmidt number effects on complex fluid flows 
can be investigated on turbulent or multiphase. 
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