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INTRODUCTION
In the realm of inventory management, traditional 
models for delayed deteriorating items have typically 
relied on simplifying assumptions: a single warehouse 
with infinite capacity and constant average demand rates 
throughout various stages of the inventory lifecycle, such 
as before and after deterioration, as well as during periods 
of shortage.  While these models provide a foundational 
understanding, they fall short of addressing the 
complexities encountered in modern, competitive 
markets.  Retailers today are confronted with several 
factors that drive the need for larger inventory quantities.  
Stock-outs, which occur when inventory runs out, can 
lead to lost sales and customer dissatisfaction, prompting 
retailers to maintain higher stock levels.  Additionally, 
price and quantity discounts offered by suppliers 
incentivize bulk purchases.  Inflationary pressures and 
demand uncertainties further complicate inventory 
management, often leading retailers to secure larger 
quantities of goods to buffer against future cost increases 
and fluctuations in demand.  These increased inventory 
levels can easily exceed the capacity of a retailer's primary 
storage facility Malumfashi et al. (2024).  As a result, 
retailers often turn to additional rented warehouses to 
accommodate surplus stock.  These rented warehouses, 
while offering the advantage of better preservation 
technologies that slow down deterioration, come with 
higher holding costs.  Thus, it becomes economically 

advantageous to expedite the depletion of inventory 
stored in rented facilities to reduce holding expenses. 

Moreover, the assumption of constant consumption 
rates, before and after deterioration and during shortages, 
does not align with real-world scenarios where demand 
and consumption can vary significantly.  For example, 
demand may fluctuate based on seasonal trends or 
promotional activities, and consumption rates may 
change as inventory levels deplete or as products 
approach their expiration.  Therefore, modern inventory 
models must integrate these dynamic factors.  
Incorporating variability in consumption rates, adjusting 
for the costs and benefits of using additional storage 
facilities, and accounting for the economic implications 
of holding inventory in rented spaces will provide a more 
accurate and practical framework for managing delayed 
deteriorating items.  This approach will better reflect the 
realities faced by retailers and improve the effectiveness 
of inventory management strategies. 

Previous research, including studies by Tiwari et al. 
(2016), Kumar et al. (2017), Chandra et al. (2017), Jaggi 
et al. (2017), Udayakumar and Geetha (2018), 
Chakrabarty et al. (2018), Sahoo et al. (2020), Gupta et al. 
(2020), Datta et al. (2022), and Das (2024), has primarily 
focused on inventory models involving two warehouses 
with a single-phase consumption rate.  However, this 
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single-phase demand rate assumption falls short of 
addressing the complexities encountered in real-world 
scenarios.  To enhance practical applicability, it is 
essential to integrate variability in consumption rates 
before and after deterioration, as well as during shortages, 
into more comprehensive inventory models.  This 
approach will better reflect the dynamic nature of 
inventory systems and improve the accuracy of inventory 
management strategies. 

This study introduces an Economic Order Quantity 
(EOQ) model for delayed deteriorating items that 
account for three distinct consumption rates, two storage 
facilities, and shortages.  The model assumes that the 
consumption rates before and after deterioration and 
during shortages are constant and incorporates time-
dependent partially backlogged shortages, which 
fluctuate based on the waiting time for the next 
replenishment.  The model aims to determine the optimal 
cycle length, order quantity, and the time at which the 
inventory level in the primary warehouse reaches zero, all 
to minimize the overall variable cost per unit of time.  
The study further examines the existence and uniqueness 
of the optimal solution by establishing the necessary and 
sufficient conditions.  A sensitivity analysis is conducted, 
followed by the presentation of managerial insights. 

MODEL DESCRIPTION AND FORMULATION  

This section provides the model notation, assumptions, 
and formulation. 

Notation 

𝐾 The cost of order per unit order. 

𝑃 The purchasing cost per unit per unit time 
($/unit/ year). 

𝑆𝑏 Cost of shortage per unit for each unit of time. 

𝐶𝑜 The unit cost of holding in own warehouse 
($/unit/ year). 

𝐶𝑟 The cost of holding each item per unit time in the 
rented warehouse ($/unit/ year). 

𝜔𝑜 The rate of deterioration in own warehouse, 

where 0 < 𝜔𝑜 < 1. 

𝜔𝑟 The rate of deterioration in a rented warehouse, 

where 0 < 𝜔𝑟 < 1, 𝜔𝑟 < 𝜔𝑜 

𝑥𝑑 The length of time in which the product exhibits 
no deterioration. 

𝑥𝑟 Time at which the inventory level reaches zero 
in a rented warehouse. 

𝑥𝑜 Time at which the inventory level reaches zero 
in the owned warehouse. 

𝑋 The length of the replenishment cycle time (time 
unit). 

𝑅𝑚 The maximum positive inventory level per cycle 

𝑅𝑑 Capacity of the owned warehouse 

(𝑅𝑚 − 𝑅𝑑) Capacity of the rented warehouse 

𝑁𝑚 The backorder level during the shortage period. 

𝑅 The order quantity during the cycle length, 

where 𝑅 = (𝑅𝑚 + 𝑁𝑚). 

𝑄𝑂(𝑥)  Inventory level in the owned warehouse at any 

time 𝑥, where 0 ≤ 𝑥 ≤ 𝑋. 

𝑄𝑟(𝑥)  Inventory level in the rented warehouse at any 

time 𝑥, where 0 ≤ 𝑥 ≤ 𝑋. 

𝑄𝑠(𝑥)  Shortage level at any time 𝑥 where 𝑥𝑜 ≤ 𝑥 ≤ 𝑋. 

Assumptions 

This model is established under the following 
assumptions. 

1. Replenishment occurs instantaneously. 
2. The model considers a single item with a non-

instantaneous decay process. 

3. The own warehouse has a fixed capacity of 𝑅𝑑 units 

while the rented warehouse has a capacity of (𝑅𝑚 −
𝑅𝑑). 

4. The unit inventory holding cost per unit time is higher 
in the rented warehouse compared to the owned 
warehouse.  Similarly, the deterioration rate in the 
rented warehouse is lower than that in the owned 
warehouse. 

5. There is no replacement or repair of deteriorated 
goods during the period under consideration. 

6. The consumption rate before deterioration begins is 

given by 𝛼. 
7. The consumption rate within the deterioration period 

is given by 𝛽. 
8. The consumption rate during a shortage is given by 

𝛾. 
9. Shortages are permitted and partially backlogged.  

The backlogging rate is variable, depending on the 
waiting time for the next replenishment.  Specifically, 
the backlogging rate decreases as the waiting time 
increases.  The negative inventory backlog rate is 

calculated as 𝑁(𝑥) =
1

1+𝛿(𝑋−𝑥)
, 𝛿 is the backlogging 

parameter ( 0 < 𝛿 < 1)and  (𝑋 − 𝑥) is waiting time 

(𝑥𝑜 ≤ 𝑥 ≤ 𝑋), 1 − 𝑁(𝑥)  is the remaining fraction 
lost. 
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FORMULATION OF THE MODEL 

For non-instantaneous decaying commodities with two-

phase demand rates, two storage facilities, and allowable 

payment delays, this model investigates the best 

replenishment plan.  Payment delays can incentivize 

retailers to increase stock levels as they improve sales, 

enhance cash flow, reduce holding costs, attract new 

customers, or retain existing ones.  When inventory 

exceeds the retailer's warehouse capacity, renting 

additional storage becomes an option for managing 

surplus.  In this system, 𝑅𝑚  units of a product arrive at 

the start of each cycle, with 𝑅𝑑  units stored in the retailer's 

warehouse and the remaining  (𝑅𝑚 − 𝑅𝑑)  units in the 

rented warehouse.  To determine the optimal 

replenishment policy, the article examines two scenarios: 

one where 𝑥𝑑 < 𝑥𝑟 and another where 𝑥𝑑 > 𝑥𝑟 . 

Case I: When 𝒕𝒅 < 𝒕𝒓 (Deterioration starts before the 
inventory level in the rented warehouse becomes 
zero) 

Figure 1 depicts the operation of the inventory system.  

In the time span [0, 𝑥𝑑], the inventory level 𝑄𝑟(𝑥) in 
the rented warehouse decreases progressively due to 
market demand, modelled as a quadratic function of time 

𝑥, while the inventory level in the owned warehouse 

remains stable.  During the interval [𝑥𝑑 , 𝑥𝑟], the 

inventory level 𝑄𝑟(𝑥) in the rented warehouse declines 
further, driven by both the constant market demand rate 

𝜆 and deterioration, whereas the inventory in the owned 
warehouse decreases only due to deterioration.  In the 

period [𝑥𝑟 , 𝑥𝑜], the inventory level 𝑄𝑜(𝑥) in the owned 
warehouse depletes completely because of the combined 
impact of consumer demand and deterioration.  

Shortages occur at 𝑥 = 𝑥𝑜 and are partially backlogged 

during the interval [𝑥𝑜, 𝑋].  This inventory process 
repeats in cycles. 

 

 
Figure 1: Two-ware-house inventory system when 𝒙𝒅 < 𝒙𝒓 

The differential equations that govern the inventory 
levels in both the rented and owned warehouses at any 

time 𝑥 within the interval  [0, 𝑋] are expressed as 
follows:  

𝑑𝑄𝑟(𝑥)

𝑑𝑥
= −𝛼,            0 ≤ 𝑥 ≤  𝑥𝑑                             (1) 

𝑑𝑄𝑟(𝑥)

𝑑𝑥
+ 𝜔𝑟𝑄𝑟(𝑥) = −𝛽,     𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑟            (2) 

𝑑𝑄𝑜(𝑥)

𝑑𝑥
+ 𝜔𝑜𝑄𝑜(𝑥) = 0,   𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑟                 (3) 

𝑑𝑄𝑜(𝑥)

𝑑𝑥
+ 𝜔𝑜𝑄𝑜(𝑥) = −𝛽,   𝑥𝑟 ≤ 𝑥 ≤  𝑥𝑜             (4) 

𝑑𝑄𝑠(𝑥)

𝑑𝑥
= −

γ

1 + 𝛿(𝑋 − 𝑥)
,  𝑥𝑜 ≤ 𝑥 ≤  𝑋        (5) 

with boundary conditions 𝑄𝑟(0) = 𝑅𝑚 −
𝑅𝑑 ,   𝑄𝑟(𝑥𝑟) = 0, 𝑄𝑜(𝑥𝑑) =  𝑅𝑑, 𝑄𝑜(𝑥𝑜) = 0 and 

𝑄𝑠(𝑥𝑜) =  0. 
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The solutions of equations (1), (2), (3), (4) and (5) are as 
follows 

𝑄𝑟(𝑥) = 𝑅𝑚 − 𝑅𝑑 − (𝛼𝑥),   0 ≤ 𝑥 ≤  𝑥𝑑              (6) 

𝑄𝑟(𝑥) =
𝛽

𝜔𝑟
(𝑒𝜔𝑟(𝑥𝑟−𝑥) − 1),   𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑟         (7) 

𝑄𝑜(𝑥) = 𝑅𝑑𝑒𝜔𝑜(𝑥𝑑−𝑥),               𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑟         (8)  

𝑄𝑜(𝑥) =
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥) − 1), 𝑥𝑟 ≤ 𝑥 ≤  𝑥𝑜  (9) 

𝑄𝑠(𝑥)  = −
γ

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)] − 𝑙𝑛[1 + 𝛿(𝑋 −

𝑥)]],                 𝑥𝑜 ≤ 𝑥 ≤  𝑋                                         (10) 

Considering continuity of 𝑄𝑜(𝑥) at 𝑥 = 𝑥𝑟, it follows from equations (8) and (9) that 

𝑅𝑑 =
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 𝑒𝜔𝑜(𝑥𝑟−𝑥𝑑)), 𝑥𝑜 ≤ 𝑥 ≤  𝑋                                                                                                  (11) 

Considering continuity of 𝑄𝑟(𝑥) at 𝑥 = 𝑥𝑑, it follows from equations (6) and (7) that 

𝑅𝑚 =
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 𝑒𝜔𝑜(𝑥𝑟−𝑥𝑑)) + (𝛼𝑥𝑑) +

𝛽

𝜔𝑟
(𝑒𝜔𝑟(𝑥𝑟−𝑥𝑑) − 1), 𝑥𝑜 ≤ 𝑥 ≤  𝑋                                      (12) 

The maximum backordered units, 𝑁𝑚, are reached at 𝑥 = 𝑋, and from equation (10), it can be derived that: 

𝑁𝑚 = −𝑄𝑠(𝑋) =
γ

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)]]                                                                                                                          (13) 

As a result, the order size over the entire period [0, 𝑋] is: 

𝑅 = 𝑅𝑚 + 𝑁𝑚 =
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 𝑒𝜔𝑜(𝑥𝑟−𝑥𝑑)) + (𝛼𝑥𝑑) +

𝛽

𝜔𝑟
(𝑒𝜔𝑟(𝑥𝑟−𝑥𝑑) − 1) +

γ

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)]]    (14) 

The total variable cost per unit of time is given by 

𝑇𝑉𝐶1(𝑥𝑜, 𝑋) =
1

𝑋
{Sum of inventory holding cost for rented warehouse, inventory holding cost for owned ware-house, 

Ordering cost, cost of deterioration, cost of backordered, lost sales cost, interest charge – interest 
earned} 

=
1

𝑋
{𝐾 + 𝐶𝑟 [∫ 𝑄𝑟(𝑥)𝑑𝑥

𝑥𝑑

0

+ ∫ 𝑄𝑟(𝑥)𝑑𝑥
𝑥𝑟

𝑥𝑑

] + 𝐶𝑜 [∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑑

0

+ ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑟

𝑥𝑑

+ ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑜

𝑥𝑟

]

+ 𝑃 [𝜔𝑟 ∫ 𝑄𝑟(𝑥)𝑑𝑥
𝑥𝑟

𝑥𝑑

+  𝜔𝑜 ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑟

𝑥𝑑

+  𝜔𝑜 ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑜

𝑥𝑟

] + 𝑆𝑏 [∫ −𝑄𝑠(𝑥)𝑑𝑥
𝑋

𝑥𝑜

]

+ 𝐿𝜋 ∫ (1 −
γ

1 + 𝛿(𝑋 − 𝑥)
) 𝑑𝑥

𝑋

𝑥𝑜

 } 

=
1

𝑋
{

1

2
𝜇1𝑥𝑜

2 − 𝜎1𝑥𝑜 + 𝜋1 +
γ(𝑆𝑏 + 𝐿𝜋𝛿)

2
𝑋2 − γ(𝑆𝑏 + 𝐿𝜋𝛿)𝑥𝑜𝑋}                                                       (16) 

but 

 𝜇1 = [𝛽𝐶𝑜[𝜔𝑜𝑥𝑑 + 1] + 𝛽𝑃𝜔𝑜 + 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)], 𝜎1 = 𝛽[𝐶𝑜𝜔𝑜𝑥𝑑
2 + 𝑃𝑥𝑑𝜔𝑜] and 

𝜋1 = [𝐾 + 𝐶𝑟 [(𝛼
𝑥𝑑

2

2
) +

𝛽

2
{𝑥𝑟

2 + 𝜔𝑟(𝑥𝑟 − 𝑥𝑑)2𝑥𝑑}] + 𝐶𝑜 [
𝛽

2
{𝜔𝑜(2𝑥𝑟𝑥𝑑

2 − 𝑥𝑟
2𝑥𝑑) − 𝑥𝑟

2}]

+ 𝑃 [
𝛽

2
{𝜔𝑟(𝑥𝑟 − 𝑥𝑑)2} +  

𝛽

2
{𝜔𝑜(2𝑥𝑟𝑥𝑑 − 𝑥𝑟

2)}]]. 
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Optimal Decision 

The necessary and sufficient conditions for identifying the optimal ordering policies that minimize the total variable cost 
per unit time are formulated.  In particular, the necessary condition for minimizing the total variable cost per unit time, 

𝑇𝑉𝐶1(𝑥𝑜, 𝑋), is as follows: 

𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑥𝑜 
= 0 and 

𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑋
= 0  when 𝑥𝑟 > 𝑥𝑑 .  The value of (𝑥𝑜, 𝑋) obtained from 

𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑥𝑜 
=

0 and
𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑋
= 0 and for which the sufficient condition {(

𝜕2𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑥𝑜
2 ) (

𝜕2𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑋2 ) − (
𝜕2𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑥𝑜 𝜕𝑋
)

2

} > 0 is 

satisfied which gives a minimum for the total variable cost per unit time 𝑇𝑉𝐶1(𝑥𝑜, 𝑋).  

The necessary conditions for the total variable cost in equation (16) to be the minimum are 
𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑥𝑜
= 0 and 

𝜕𝑇𝑉𝐶1(𝑥𝑜,𝑋)

𝜕𝑋
= 0, which give 

𝜕𝑇𝑉𝐶1(𝑥𝑜, 𝑋)

𝜕𝑥𝑜 
=

1

𝑋
{𝜇1𝑥𝑜 − 𝜎1 − (𝑆𝑏 + 𝐿𝜋𝛿)𝑋} = 0                                                                                                         (20) 

and 

𝑋 =
1

(𝑆𝑏 + 𝐿𝜋𝛿)
(𝜇1𝑥𝑜 − 𝜎1)                                                                                                                                               (21) 

Note that 

𝜇1𝑥𝑜 − 𝜎1 = [𝐶𝑜(𝑥𝑑𝜔𝑜(𝑥𝑜 − 𝑥𝑑) + 𝑥𝑜) + 𝑃𝜔𝑜(𝑥𝑜 − 𝑥𝑑) + (𝑆𝑏 + 𝐿𝜋𝛿)𝑥𝑜] > 0 

since (𝑥𝑜 − 𝑥𝑑) > 0 

Similarly  

𝜕𝑇𝑉𝐶1(𝑥𝑜, 𝑋)

𝜕𝑋
= −

1

𝑋2
{

1

2
𝜇1𝑥𝑜

2 − 𝜎1𝑥𝑜 + 𝜋1 −
𝑋2

2
(𝑆𝑏 + 𝐿𝜋𝛿)} = 0                                                                        (22) 

X from equation (21) is substituted into equation (22) which yields 

𝜇1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜
2 − 2𝜎1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜 − (2𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝜋1 − 𝜎1

2) = 0                                       (23) 

Let   ∆1= 𝜇1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑑
2 − 2𝜎1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑑 − (2𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝜋1 − 𝜎1

2), then the outcome 

shown below is attained. 

Lemma 3.1 

(I) If   ∆1≤ 0 then, the solution of 𝑥𝑜 ∈ [𝑥𝑑 , ∞) (say 𝑥𝑜1
∗ ) which satisfies equation (23) not only exists but also is unique. 

(II) If   ∆1> 0 then, the solution of 𝑥𝑜 ∈ [𝑥𝑑 , ∞) which satisfies equation (23) does not exist. 

Proof of (I): From equation (23), a new function 𝜑1(𝑥𝑜) is defined as follows 

𝜑1(𝑥𝑜) = 𝜇1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜
2 − 2𝜎1(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜 − (2𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝜋1 − 𝜎1

2),

𝑥𝑜 ∈ [𝑥𝑑 , ∞)                                                                                                                                           (24) 

Taking the first-order derivative of 𝜑1(𝑥𝑜) with respect to 𝑥𝑜 ∈ [𝑥𝑑 , ∞) yields 

𝜑1(𝑥𝑜)

𝑑𝑥𝑜
= 2(𝜇1𝑥𝑜 − 𝜎1)(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)) > 0 
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Because (𝜇1𝑥𝑜 − 𝜎1) > 0 and (𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)) = 𝛽[𝐶𝑜[𝜔𝑜𝑥𝑑 + 1] + 𝑃𝜔𝑜] > 0 

Hence 𝜑1(𝑥𝑜) is a strictly increasing of 𝑥𝑜 in the interval [𝑥𝑑 , ∞). Moreover, lim
𝑥𝑜→∞

𝜑1(𝑥𝑜) = ∞ and 𝜑1(𝑥𝑑)  = ∆1≤ 0.  

Therefore, by applying intermediate value According to the theorem, there exists a unique 𝑥𝑜, denoted as 𝑥1
∗ ∈ [𝑥𝑑 , ∞), 

such that 𝜑1(𝑥𝑜1
∗ ) = 0.  Therefore, 𝑥𝑜1

∗  is the unique solution to equation (23).  Consequently, the value of 𝑥𝑜 (denoted 

by 𝑥𝑜1
∗ ) can be determined from equation (23) and is given by: 

𝑥𝑜1
∗ =

𝜎1

𝜇1
+

1

𝜇1
√

(2𝜇1𝜋1 − 𝜎1
2)𝛾(𝑆𝑏 + 𝐿𝜋𝛿)

(𝜇1 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))
                                                                                                                    (25) 

After determining 𝑥𝑜1
∗ , the value of 𝑋 (denoted by 𝑋1

∗) can be calculated using equation (21) and is expressed as:  

𝑋1
∗ =

1

𝛾(𝑆𝑏 + 𝐿𝜋𝛿)
(𝜇1𝑥𝑜1

∗ − 𝜎1)                                                                                                                                          (26) 

Equations (25) and (26) yield the optimal values for 𝑥𝑜1
∗  and 𝑋1

∗ for the cost function described in equation (16), but only 

if 𝜎1 meets the criterion outlined in equation (27).  

𝜎1
2 < 2𝜇1𝜋1                                                                                                                                                                               (27) 

Proof of (II): If  ∆1> 0, Therefore, from equation (24), 𝜑1(𝑥𝑜) > 0.  Given that 𝜑1(𝑥𝑜) is a strictly increasing function 

over the interval [𝑥𝑑 , ∞), it follows that 𝜑1(𝑥𝑜) > 0 for all 𝑥𝑜 in this range.  Consequently, there is no value of 𝑥𝑜 in 

[𝑥𝑑 , ∞) for which 𝜑1(𝑥𝑜) = 0.  This concludes the proof. 

Theorem 3.1 

(I) If  ∆1≤ 0 then, the total variable cost 𝑇𝑉𝐶1(𝑥𝑜, 𝑋) is convex and approaches its global minimum at the point 

(𝑥𝑜1
∗ , 𝑋1

∗), which is a point satisfies equations (23) and (20). 

(II) If ∆1> 0, then the total variable cost 𝑇𝑉𝐶1(𝑥𝑜, 𝑋) has a minimum value at the point (𝑥𝑜1
∗ , 𝑋1

∗) where 𝑥𝑜1
∗ = 𝑥𝑑  

and 𝑋1
∗ =

1

𝛾(𝑆𝑏+𝐿𝜋𝛿)
(𝜇1𝑥𝑑 − 𝜎1) 

Proof of (I): When ∆1≤ 0, it is noted that 𝑥𝑜1
∗  and 𝑋1

∗ are the unique solutions to the equations (23) and (20) as 

established in Lemma 3.1(I).  By taking the 2nd derivative of 𝑇𝑉𝐶1(𝑥𝑜, 𝑋) with respect to 𝑥𝑜 and 𝑋, and evaluating these 

functions at the point (𝑥𝑜1
∗ , 𝑋1

∗), we obtain: 

𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑥𝑜
2

|
(𝑥𝑜1

∗ ,   𝑋1
∗)

=
1

𝑋1
∗ 𝜇1 > 0 

𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑥𝑜𝜕𝑋
|

(𝑥𝑜1
∗ ,   𝑋1

∗)

= −
1

𝑋1
∗ 𝛾(𝑆𝑏 + 𝐿𝜋𝛿) 

𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑋2
|

(𝑥𝑜1
∗ ,   𝑋1

∗)

=
1

𝑋1
∗ 𝛾(𝑆𝑏 + 𝐿𝜋𝛿) > 0 

and 

(
𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑥𝑜
2

|
(𝑥𝑜1

∗ ,   𝑋1
∗)

) (
𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑋2
|

(𝑥𝑜1
∗ ,   𝑋1

∗)

) − (
𝜕2𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑥𝑜𝜕𝑋
|

(𝑥𝑜1
∗ ,   𝑋1

∗)

)

2

=
𝛾(𝑆𝑏 + 𝐿𝜋𝛿)

𝑋1
∗2 𝛽[𝐶𝑜[𝜔𝑜𝑥𝑑 + 1] + 𝑃𝜔𝑜] > 0                                                                                  (28) 
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It follows from equation (28) and Lemma 3.1 that 𝑇𝑉𝐶1(𝑥𝑜1
∗ ,   𝑋1

∗) is convex, and (𝑥𝑜1
∗ ,   𝑋1

∗) represents the global 

minimum point of 𝑇𝑉𝐶1(𝑥𝑜,   𝑋).  Therefore, the values of 𝑥𝑜 and 𝑋 given in equations (25) and (26) are optimal. 

Proof of (II): When  ∆1> 0, then 𝜑1(𝑥𝑜) > 0 for all 𝑥𝑜 ∈ [𝑥𝑑 , ∞). Thus, 
𝜕𝑇𝑉𝐶1(𝑥𝑜,   𝑋)

𝜕𝑋
=

𝜑1(𝑥𝑜)

𝑋2 > 0 for all 𝑥𝑜 ∈

[𝑥𝑑 , ∞) which implies 𝑇𝑉𝐶1(𝑥𝑜,   𝑋) is an increasing function of T. Thus 𝑇𝑉𝐶1(𝑥𝑜,   𝑋) has the minimum value when 

T is minimum.  Therefore, 𝑇𝑉𝐶1(𝑥𝑜,   𝑋) has a minimum value at the point (𝑥𝑜1
∗ ,   𝑋1

∗) where 𝑥𝑜1
∗ = 𝑥𝑑 and 𝑋1

∗ =
1

𝛾(𝑆𝑏+𝐿𝜋𝛿)
(𝜇1𝑥𝑑 − 𝜎1).  This completes the proof. 

𝐸𝑂𝑄∗ =The maximum inventory +the backordered units during the shortage period. 

=
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜

∗ −𝑥𝑑) − 𝑒𝜔𝑜(𝑥𝑟−𝑥𝑑)) + 𝛼𝑥𝑑 +
𝛽

𝜔𝑟
(𝑒𝜔𝑟(𝑥𝑟−𝑥𝑑) − 1) +

𝛾

𝛿
[𝑙𝑛[1 + 𝛿(𝑋∗ − 𝑥𝑜

∗)]]                          (50) 

Numerical Examples 

This section presents several numerical examples to demonstrate the application of the established model. 

Example 3.1.1 (Case I) 

Consider an inventory model with the input parameters:  𝐾 = $500/order, 𝑃 = $65/unit/year, 𝐶𝑜 = $9/unit/year, 

𝐶𝑟 = $15/unit/year, 𝜔𝑜 = 0.08 units/year, 𝜔𝑟 = 0.05 units/year, 𝛼 = 1080 units, 𝛽 = 450 units, 𝛾 = 105 𝑥𝑑 =
0.1998 year, 𝑥𝑟 = 0.2224,  𝑆𝑏 = $30/unit/year, 𝐿𝜋 = $15/unit/year, 𝛿 = 0.7, ∆1= −88.899 < 0, 𝜎1

2 = 0.7998, 

2𝜇1𝜋1 = 114.119 and hence 𝜎1
2 < 2𝜇1𝜋1.  

Using the above parameter values in equations (25), (26), (16) and (50), the optimal time at which the inventory level 

reaches zero in the owned warehouse, cycle length, total variable cost and EOQ are obtained as 𝑥𝑜1
∗ = 0.523 year, 𝑋1

∗ =
0.789 year, 𝑇𝑉𝐶1(𝑥𝑜1

∗ ,  𝑋1
∗) = $2345.767 per year and 𝐸𝑂𝑄1

∗ = 578.977 units per year respectively.  

Case II: when 𝒕𝒅 < 𝒕𝒓 (Deterioration starts after the inventory level in the rented warehouse becomes zero) 

Figure 2 shows the inventory system's behavior.  During the time interval [0, 𝑥𝑟], the inventory level 𝑄𝑟(𝑥) in the rented 

warehouse gradually decreases due to market demand, following a quadratic function of time 𝑥, while the inventory level 

in the owned warehouse stays constant.  In the interval [𝑥𝑟 , 𝑥𝑑], the inventory level 𝑄𝑜(𝑥) in the owned warehouse 

diminishes due to consumer demand, also described by a quadratic function of time 𝑥.  In the interval [𝑥𝑑 , 𝑥𝑜], the 
inventory in the owned warehouse dropped to zero as a result of both consumer demand and deterioration.  Shortages 

occur at 𝑥 = 𝑥𝑜  and are partially backlogged during the interval [𝑥𝑜, 𝑋].  This entire inventory cycle is then repeated. 

The differential equations that detail the inventory levels in both the rented and owned warehouses at any time 𝑥 

throughout the time interval [0, 𝑋] are given by:          

𝑑𝑄𝑟(𝑥)

𝑑𝑥
 = −𝛼,                                                        0 ≤ 𝑥 ≤  𝑥𝑟                                                                                             (51) 

 
𝑑𝑄𝑜(𝑥)

𝑑𝑥
= −𝛼,                                                         𝑥𝑟 ≤ 𝑥 ≤  𝑥𝑑                                                                                       (52) 

𝑑𝑄𝑜(𝑥)

𝑑𝑥
+ 𝜔𝑜𝑄𝑜(𝑥) = −𝛽,                                                𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑜                                                                         (53) 

𝑑𝑄𝑠(𝑥)

𝑑𝑥
= −

𝛾

1 + 𝛿(𝑋 − 𝑥)
,                                               𝑥𝑜 ≤ 𝑥 ≤  𝑋                                                                          (54) 

with boundary conditions 𝑄𝑟(𝑥𝑟) = 0, 𝑄𝑜(𝑥𝑟) =  𝑅𝑑, 𝑄𝑜(𝑥𝑜) = 0 and 𝑄𝑠(𝑥𝑜) = 0. 

The solutions of equations (51), (52), (53) and (54) are as follows 
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𝑄𝑟(𝑥) = 𝛼(𝑥𝑟 − 𝑥),                                                                       0 ≤ 𝑥 ≤  𝑥𝑟                                                                  (55) 

𝑄𝑜(𝑥) = 𝑅𝑑 + 𝛼(𝑥𝑟 − 𝑥),                                                              𝑥𝑟 ≤ 𝑥 ≤  𝑥𝑑                                                               (56) 

𝑄𝑜(𝑥) =
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥) − 1),                                                        𝑥𝑑 ≤ 𝑥 ≤  𝑥𝑜                                                              (57) 

𝑄𝑠(𝑥)  = −
𝛾

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)] − 𝑙𝑛[1 + 𝛿(𝑋 − 𝑥)]],                       𝑥𝑜 ≤ 𝑥 ≤  𝑋                                                (58) 

 
Figure 2: Two-ware-house inventory system when 𝒙𝒅 > 𝒙𝒓 

Considering the continuity of 𝑄𝑜(𝑥) at 𝑥 = 𝑥𝑑, it follows from equations (56) and (57) that 

𝑅𝑑 = 𝛼(𝑥𝑑 − 𝑥𝑟) +
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 1)                                                                                                                         (59) 

Now, at 𝑥 = 0 when 𝑄𝑟(𝑥) = 𝑅𝑚 − 𝑅𝑑 and solving equation (55) to get the maximum inventory level per cycle as  

𝑅𝑚 = 𝛼𝑥𝑑 +
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 1)                                                                                                                                       (60) 

The maximum backordered units 𝑁𝑚 is reached at 𝑥 = 𝑋, and from equation (58), it can be derived that: 

𝑁𝑚 = −𝑄𝑠(𝑋) =
𝛾

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)]]                                                                                                                           (61) 

Thus the order size within complete time interval [0, 𝑋] is 

𝑅 = 𝑅𝑚 + 𝑁𝑚 = 𝛼𝑥𝑑 +
𝛽

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜−𝑥𝑑) − 1) +

𝛾

𝛿
[𝑙𝑛[1 + 𝛿(𝑋 − 𝑥𝑜)]], 𝑥𝑜 ≤ 𝑥 ≤  𝑋                                     (62) 

The total variable cost per unit time is given by 

𝑇𝑉𝐶2(𝑥𝑜, 𝑋) = (Sum of o inventory holding cost for rented warehouse, inventory holding cost for owned warehouse, 
ordering cost, backordered cost, deterioration cost, interest charge – interest earned) 
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=
1

𝑋
{𝐾 + 𝐶𝑟 [∫ 𝑄𝑟(𝑥)𝑑𝑥

𝑥𝑟

0

] + 𝐶𝑜 [∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑟

0

+ ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑑

𝑥𝑟

+ ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑜

𝑥𝑑

]

+ 𝑃 [ 𝜔𝑜 ∫ 𝑄𝑜(𝑥)𝑑𝑥
𝑥𝑜

𝑥𝑑

] + 𝑆𝑏 [∫ −𝑄𝑠(𝑥)𝑑𝑥
𝑋

𝑥𝑜

] + 𝐿𝜋 ∫ (1 −
𝛾

1 + 𝛿(𝑋 − 𝑥)
) 𝑑𝑥

𝑋

𝑥𝑜

} 

=
1

𝑋
{

1

2
𝜇2𝑥𝑜

2 − 𝜎2𝑥𝑜 + 𝜋2 +
(𝑆𝑏 + 𝐿𝜋𝛿)

2
𝑋2 − (𝑆𝑏 + 𝐿𝜋𝛿)𝑥𝑜𝑋}                                                                (64) 

where 

𝜇2 = [𝛽𝐶𝑜[𝜔𝑜𝑥𝑑 +  1] + 𝛽𝑃𝜔𝑜 + 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)], 𝜎2 = 𝛽[𝐶𝑜𝜔𝑜𝑥𝑑
2 + 𝑃𝜔𝑜𝑥𝑑]  and  

𝜋2 = [𝐾 + 𝐶𝑟 {
𝛼

2
𝑥𝑟

2} + 𝐶𝑜 [
𝛼

2
(𝑥𝑑

2 − 𝑥𝑟
2) +

𝛽𝜔𝑜𝑥𝑑
3

2
−  

𝛽

2
𝑥𝑑

2] + 𝑃
𝛽

2
𝜔𝑜𝑥𝑑

2]. 

Optimal Decision 

The necessary and sufficient conditions are established to find the optimal ordering policies that minimise the total 

variable cost per unit of time.  The necessary conditions for the total variable cost per unit time 𝑇𝑉𝐶2(𝑥𝑜, 𝑋) to be 

minimum are 
𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑥𝑜 
= 0 and 

𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑋
= 0 when 𝑥𝑑 > 𝑥𝑟 .  The value of (𝑥𝑜, 𝑋) obtained from 

𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑥𝑜 
=

0 and 
𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑋
= 0 and for which the sufficient condition {(

𝜕2𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑥𝑜
2 ) (

𝜕2𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑋2 ) − (
𝜕2𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑥𝑜 𝜕𝑋
)

2

} > 0 is 

satisfied, it guarantees that the total variable cost per unit time 𝑇𝑉𝐶2(𝑥𝑜, 𝑋) is minimized.  

The necessary conditions for minimising the total variable cost 𝑇𝑉𝐶2(𝑥𝑜, 𝑋) in equation (64) to be the minimum are 
𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑥𝑜
= 0 and 

𝜕𝑇𝑉𝐶2(𝑥𝑜,𝑋)

𝜕𝑋
= 0, which give 

𝜕𝑇𝑉𝐶2(𝑥𝑜, 𝑋)

𝜕𝑥𝑜 
=

1

𝑋
{𝜇2𝑥𝑜 − 𝜎2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝑋} = 0                                                                                                   (68) 

and 

𝑋 =
1

𝛾(𝑆𝑏 + 𝐿𝜋𝛿)
(𝜇2𝑥𝑜 − 𝜎2)                                                                                                                                             (69) 

Note that 

𝜇2𝑥𝑜 − 𝜎2 = [𝛽𝐶𝑜(𝑥𝑑𝜔𝑜(𝑥𝑜 − 𝑥𝑑) + 𝑥𝑜) + 𝛽𝑃𝜔𝑜(𝑥𝑜 − 𝑥𝑑) + 𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝑥𝑜] > 0 

since (𝑥𝑜 − 𝑥𝑑), > 0 

Similarly  

𝜕𝑇𝑉𝐶2(𝑥𝑜, 𝑋)

𝜕𝑋
= −

1

𝑋2
{

1

2
𝜇2𝑥𝑜

2 − 𝜎2𝑥𝑜 + 𝜋2 −
𝜎2

2
(𝑆𝑏 + 𝐿𝜋𝛿)} = 0                                                                         (70) 

Replacing 𝑋 from equation (69) into equation (70) yields 

𝜇2(𝜇2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜
2 − 2𝜎2(𝜇2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑜 − (2𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝜋2 − 𝜎2

2) = 0  (71) 

Let   ∆2= 𝜇2(𝜇2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑟
2 − 2𝜎2(𝜇2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))𝑥𝑟 − (2𝛾(𝑆𝑏 + 𝐿𝜋𝛿)𝜋2 − X2

2), then the following 

result is obtained. 
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Lemma 3.2.1 

(i) When   ∆2≤ 0 then, the solution of 𝑥𝑜 ∈ [𝑥𝑟 , ∞) (known as 𝑥𝑜2
∗ ) which satisfies equation (71) does not only exist 

but is also unique. 

(ii) When   ∆2> 0 then, the solution of 𝑥1 ∈ [𝑥𝑟 , ∞) which satisfies equation (71) does not exist. 

Proof: The proof follows a similar process to Lemma 3.1.1.  

Therefore, the value of 𝑥𝑜 (denoted by 𝑥𝑜2
∗ ) can be determined from equation (71) and is expressed as: 

𝑥𝑜2
∗ =

X2

𝜇2
+

1

𝜇2
√

(2𝜇2𝜋2 − X2
2)𝛾(𝑆𝑏 + 𝐿𝜋𝛿)

(𝜇2 − 𝛾(𝑆𝑏 + 𝐿𝜋𝛿))
                                                                                                                    (72) 

After determining 𝑥𝑜2
∗ , the value of 𝑋 (denoted by 𝑋2

∗) can be found using equation (69) and is given by:  

𝑋2
∗ =

1

𝛾(𝑆𝑏 + 𝐿𝜋𝛿)
(𝜇2𝑥𝑜2

∗ − 𝜎2)                                                                                                                                          (73) 

The optimal values of 𝑥𝑜2
∗  and 𝑋2

∗ for the cost function in equation (33) are determined by equations (72) and (73), given 

that 𝜎2 satisfies the requirement outlined in equation (74). 

X2
2 < 2𝜇2𝜋2                                                                                                                                                                               (74) 

Theorem 3.2.1 

(i) When  ∆2≤ 0 then, the total variable cost 𝑇𝑉𝐶2(𝑥𝑜, 𝑋) is convex and reaches its global minimum at the point 

(𝑥𝑜2
∗ , 𝑋2

∗), where (𝑥𝑜2
∗ , 𝑋2

∗) is the point which satisfies equations (71) and (68). 

(ii) When ∆2> 0 then, the total variable cost 𝑇𝑉𝐶2(𝑥𝑜, 𝑋) has a minimum value at the point (𝑥𝑜2
∗ , 𝑋2

∗) where 𝑥𝑜2
∗ = 𝑥𝑟  

and 𝑋2
∗ =

1

𝛾(𝑆𝑏+𝐿𝜋𝛿)
(𝜇2𝑥𝑟 − 𝜎2) 

Proof: The proof follows a similar process to Theorem 3.1.1. 

Therefore, the economic order quantity (EOQ) associated with the optimal cycle length 𝑋∗ can be calculated as follows: 

𝐸𝑂𝑄∗ =The maximum inventory + the backordered units during the shortage period. 

= 𝛼𝑥𝑑 +
𝛽

2
𝑥𝑑

2 +
𝛾

3
𝑥𝑑

3 +
𝜆

𝜔𝑜
(𝑒𝜔𝑜(𝑥𝑜

∗ −𝑥𝑑) − 1) +
𝛾

𝛿
[𝑙𝑛[1 + 𝛿(𝑋∗ − 𝑥𝑜

∗)]]                                                      (96) 

Numerical Examples 

This section includes several numerical examples to demonstrate the model that has been developed. 

Example 3.2.1 

In addition to   𝑥𝑑 = 0.2476 year, the parameter values are the same as in Example 3.1.1.  It is observed that ∆2=

−76.766 < 0, X2
2 = 0.898, 2𝜇2𝜋2 = 157.656 and hence 𝜎2

2 < 2𝜇2𝜋2.  By substituting the parameter values into 

equations (72), (73), (64), and (96), the optimal time at which the inventory level in the owned warehouse reaches zero, 

the cycle length, the total variable cost, and the economic order quantity can be determined as follows: 𝑥𝑜2
∗ = 0.517 

year, 𝑋2
∗ = 0.776 year, 𝑇𝑉𝐶2(𝑥𝑜2

∗ ,  𝑋2
∗) = $2286.465 per year and 𝐸𝑂𝑄2

∗ = 588.807 units per year. 
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SENSITIVITY ANALYSIS 

The sensitivity analysis examines how variations in different parameters impact the inventory system.  Each parameter 
is adjusted individually by ±20% while keeping other parameters constant.  The analysis assesses the effects on several 
aspects, including the time it takes for the inventory level in the owned warehouse to reach zero, the cycle length, the 
total variable cost, and the economic order quantity per cycle.  The results for all examples in Case I and Case II are 
summarized in the tables below. 

Table 1: Effect of change in credit period (𝜹) on decision Variables 

Cases % change in 𝛿 % change in 𝑡𝑜
∗ % change in 𝑇∗ % change in 𝐸𝑂𝑄∗ % change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1 −20% -0.6676 1.0988 -1.0878 -4.87888 
2  -0.5165 0.8987 -0.8998 -3.8787 
      
1 −10% -0.3784 0.6565 0.5758 -0.3881 
2  -0.3111 0.5998 0.5512 -0.4002 
      
1 10% 0.6565 -0.6741 0.6654 3.0883 
2  0.4166 -0.6287 -0.6211 0.5326 
      
1 20% 0.8981 -1.3654 1.2876 5.8977 
2  0. 8358 -1.3657 -1.0129 1.0907 

Table 2: Effect of change in shortage cost (𝑪𝒃) on decision Variables 

Cases % change in 𝛿 % change in 𝑡𝑜
∗ % change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1 −20% -6.5325 7.9987 4.6538 -10.0886 
2  -5.9989 7.9901 4.4611 -6.8932 
      
1 −10% -2.4878 3.4098 1. 9906 -4.3098 
2  -2.5001 3.5086 1.9878 -2.9876 
      
1 10% 1.9806 -2.5098 -1.4349 3.4943 
2  1.8998 -2.  5609 -1.5087 2.9908 
      
1 20% 3.5451 -4.4333 -2.6098 5. 9885 
2  3. 6701 -4.6903 -2.9001 4.9877 

Table 3: Effect of change in cost of lost sales (𝑪𝝅) on decision Variables 

Cases % change in 𝛿 % change in 𝑡𝑜
∗ % change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1 −20% -0.9902 1.2577 0.8007 -5.6009 
2  -0.9881 1.2775 0.8665 -1.2098 
      
1 −10% -0.6901 0.5612 0.3253 -2.7622 
2  -0.7487 0.5703 0.3766 -2.9095 
      
1 10% 0.6607 -0.7209 -0.4175 2.9983 
2  0.6986 -0.5757 -0.4907 0.6744 
      
1 20% 0.8951 -1.4376 -0.7979 5.9944 
2  0.8637 -1.5485 -0.8082 6.2886 

RESULTS AND DISCUSSION 

From the computational results displayed in the tables 
above, the following insights for management can be 
derived: 

(i) From the data presented in Table 1, it is evident that 

an increase in the backlogging parameter (𝛿) leads 
to significant changes in the model's optimal 

parameters.  Specifically, as (𝛿) increases, both the 
optimal time at which the inventory level reaches 
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zero in the owned warehouse (𝑥𝑜
∗), the economic 

order quantity (𝐸𝑂𝑄∗ ), and the total variable cost 

(𝑇𝑉𝐶( 𝑥1
∗, 𝑋∗)) all increase.  Conversely, the 

optimal cycle length (𝑋∗) decreases. 

This pattern reflects a common real-world scenario: 
as the backlogging rate increases, the order quantity 
must also rise to accommodate the higher level of 
backlogged orders, which in turn raises the total 
variable cost.  Therefore, to balance the total 
variable cost and profit, it is crucial to manage the 
backlogging rate carefully.  A well-calibrated 
backlogging parameter can help optimize both cost 
efficiency and profitability, emphasizing the need 
for a balanced approach in inventory management. 

(ii) From the observations presented in Table 2, it is 

clear that an increase in the shortage cost (𝑆𝑏) has 
notable effects on the model's optimal parameters.  

Specifically, as (𝑆𝑏) rises, both the optimal time at 
which the inventory level reaches zero in the owned 

warehouse (𝑥𝑜
∗)  and the total variable cost 

(𝑇𝑉𝐶(𝑥𝑜
∗ , 𝑋∗)) increase.  Conversely, the optimal 

cycle length (𝑋∗) and the economic order quantity 

(𝐸𝑂𝑄∗ ) decrease.  

This relationship indicates that higher shortage 
costs lead to a higher total variable cost and a 
substantial reduction in the number of back-
ordered goods.  This reduction in back-ordered 
goods subsequently results in a decreased order 
quantity.  Thus, when shortage costs increase, the 
inventory system adjusts by reducing the order 
quantity and thereby increasing the total variable 
cost, demonstrating the need to carefully balance 
shortage costs to optimize overall inventory 
performance. 

(iii) From the analysis presented in Table 3, it is evident 

that an increase in the cost of lost sales (𝐿𝜋 ) has a 
significant impact on the model's optimal 

parameters.  Specifically, as (𝐿𝜋 ) rises, both the 
optimal time at which the inventory level reaches 

zero in the owned warehouse (𝑥𝑜
∗) and the total 

variable cost (𝑇𝑉𝐶(𝑥𝑜
∗ , 𝑋∗)) also increase.  

Conversely, the optimal cycle length (𝑋∗)  and the 

economic order quantity (𝐸𝑂𝑄∗ )  decrease.  
This inverse relationship underscores the critical 
importance of managing the cost of lost sales to 
achieve an optimal inventory system.  As the cost of 
lost sales increases, the model indicates that it 
becomes necessary to adjust the inventory 
management parameters to mitigate the associated 
higher costs.  Therefore, maintaining a minimum 
cost of lost sales is essential for minimizing the total 
variable cost and optimizing inventory 
performance.  This insight highlights the need for 

careful consideration of lost sales costs in inventory 
planning and decision-making processes. 
 

CONCLUSION  

This research has introduced an (EOQ) model tailored 
for inventory systems involving delayed deteriorating 
items, featuring three distinct consumption rates, two 
separate storage facilities, and shortages.  The model 
uniquely addresses the scenario where the average 
consumption rates are not uniform across different 
stages, specifically before and after the deterioration and 
during the shortage period.  These consumption rates are 
treated as constants within their respective phases.  A 
notable aspect of our model is its incorporation of 
partially backlogged shortages, where the backlogging 
rate is not static but varies according to the waiting time 
for the next inventory replenishment.  This dynamic 
approach allows for a more realistic representation of 
how backlogging behaviour might fluctuate with changes 
in inventory replenishment schedules.  Through this 
model, we have identified the optimal timing for when 
the inventory level reaches zero in the owned warehouse, 
the optimal cycle length, and the optimal order quantity 
that collectively minimize the total variable cost 
associated with the inventory system.  To substantiate 
our model, we provide several numerical examples that 
illustrate the practical implications and outcomes of the 
proposed model under various scenarios.  Additionally, a 
sensitivity analysis has been conducted to examine how 
variations in key model parameters affect the optimal 
solutions.  This analysis provides insights into the 
robustness of the model and highlights the influence of 
different factors on the overall cost efficiency.  Looking 
ahead, the model can be further refined by incorporating 
additional realistic assumptions.  These may include 
variable deterioration rates that reflect more complex 
deterioration patterns, inflationary effects impacting cost 
structures, reliability considerations for goods, and linear 
holding costs that more accurately capture inventory-
carrying expenses.  Such enhancements would contribute 
to a more comprehensive and applicable inventory 
management framework.  In conclusion, this study offers 
a valuable contribution to inventory management theory 
by addressing the complexities of deteriorating items and 
variable backlogging rates.  The findings provide a 
foundation for further research and practical 
applications, such as incorporating shortages and stock-
dependent demand rates aimed at optimizing inventory 
control and minimizing costs in real-world scenarios.   
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