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INTRODUCTION
We represented permutations using matrices. There are 
many benefits to the concept of representing 
permutations with matrices. The fact that permutations 
are composed of matrix multiplication, that a 
permutation's inverse is the matrix transpose, and that 
patterns in permutations are viewed as submatrices that 
remain after rows and columns are removed from the 
permutation matrix are some benefits of using this 
method. 

The study of pattern avoidance in permutation matrices is 

actually quite natural. Since every permutation matrix is 

also an alternating sign matrix, alternating sign matrices 

can be thought of as generalizations of permutations. The 

topic of this study is alternating sign matrix pattern 

avoidance. 

Since the 1980s, alternating sign matrices have shown to 

be useful in a variety of contexts. They are intriguing 

combinatorial objects. One of the most active areas of 

mathematics research nowadays is pattern avoidance in 

permutations. Combining these two disparate 

mathematical ideas has been really thrilling, especially 

since it can lead to some intriguing discoveries.  

A matrix is a rectangular array of numbers with an 
arbitrary number of rows and columns. We shall only talk 

about square matrices with elements 0s,1s∨-1s in this 
work. Several mathematical phenomena can be 
represented using a matrix. For example, in linear algebra, 
a matrix can be used to describe a transformation, such as 
a rotation or a projection in the plane, and graph theory, it 
can be used to represent a graph. Matrix analysis is a highly 

helpful tool in combinatorics for characterizing 
permutations. 

2. General Notations and Preliminaries: 

Let's utilize totally different notations throughout the 
article to keep things clear and avoid confusing the reader. 

Let us consistently denote a set of all natural numbers with 

prime order (cardinality) by {1,2,3,..., }S n= , where 

| |S n=  ( n  is the order of S ).  

 Let nS
 be a symmetric group on the letters1,2,...,n . 

Denote the permutation nS 
 by the sequence 

[ (1), (2),..., ( )]n    . That is, the set of bijections on 

{1,2,..., }n  is denoted by nS
 and set of all permutations 

of length n that avoids   by 
( )nS 

 where nS 
. 

A permutation 
q

 is said to contain a permutation   if 

there exists a subsequence of 
q

 that has the same relative 

order as   , and in this case,   is said to be a pattern of 
q

. Otherwise, 
q

 is said to avoid the pattern   . For 

example, the permutation 
q

 = 14253 contains a pattern 
  = 132 because its subsequence 142 and 253 have the 

same relative order as   but avoids a pattern 321.    

An arrangement of items or components of a finite set in 
a certain order without duplication or omission is called a 
permutation. The set [n]={1,2,...,n} is used to represent 
any set of n things because it doesn't matter which objects 
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are placed in a particular set. A permutation is, therefore, 

a bijection from [𝑛][𝑛]. The set of all permutations on [𝑛] 
is denoted by 𝑆𝑛. Thus, we denote a set of all permutations 

on [𝑛] by 𝑆𝑛 = {𝜋 ∨ 𝜋: [𝑛] → [𝑛]}. The set of all 

permutations on a finite set [𝑛] has order 

𝑛! (𝑖. 𝑒. ,∨ 𝑆|⬚|𝑛 ∨ 𝑛!). 

The word form is the most widely used representation of 

a permutation. Given that, 𝜋 = 15432 ∈ 𝑆5 is a way to 

represent a permutation from the set 𝑆5, which means that 

𝜋(1) = 1, 𝜋(2) = 5, 𝜋(3) = 4, 𝜋(4) = 3 and 𝜋(5) =
2.  

When a permutation of length n is represented by an n×n 
matrix with a 1 entry on row I and column J if and only if 
π(i)=j, it is called a permutation matrix. The remaining 
components are all zero. Permutation matrices are used 
extensively in this paper. An example is illustrated in 
Figure 1. 

1      

     1 

    1  

  1    

      

 1     

Figure 1: The permutation matrix corresponding to 

𝝅 = 𝟏𝟓𝟒𝟑𝟐 

A pair of elements (i, j) in a permutation π, read from left 
to right, such that i > j, is called an inversion. Two 
elements that relate to one another as "up and to the right" 
constitute an inversion in a permutation matrix. For 

example, 𝜋 = 15432 ∈ 𝑆5 contains six inversions, 

(5,4), (5,3), (5,2), (4,3), (4,2) and (3,2). Thus 𝐼(𝜋) =
{(𝑖, 𝑗): 𝑖 > 𝑗,∧ 𝑖, 𝑗 ∈ [𝑛]} 

The total number of inversions in a particular permutation 

is its inversion number, π, represented as I(π)∨. This 

means that I(15432) ∨ 6, since 
π(15432)={(5,4),(5,3),(5,2),(4,3),(4,2),(3,2)} A measure of 
how "far" a permutation deviates from the identity 
permutation is the inversion number. 12···n, as it indicates 
how many neighbouring row shifts are necessary for a 
permutation matrix to get to the identity matrix. 

On the other hand, the number of inversions of a given 

permutation π is given by 𝑖𝜋 = {(𝑖, 𝑗): 𝜋(𝑖) > 𝜋(𝑗), 1 ≤
𝑖 < 𝑗 ≤ 𝑛} ∨. The signature of π is given by 𝑔𝑛(𝜋) =
(−1)𝑖𝜋 . We say π is an even permutation [respectively; 
odd permutation] if sign(π) = 1 [respectively; sign(π) = -
1]. In other words, we say π is an even permutation 
[respectively; odd permutation] if π is a permutation together 
with even [respectively; odd] number of inversions. For 
example, consider the Aunu permutations 

15423;  15342 and 14532
 in 5S

 . Each of the Aunu 

permutations 5S 
 has an odd number of inversions, 

for instance  

𝐹𝑜𝑟𝜋 = 15423, 𝑖𝜋 =
|{(2,3), (2,4), (2,5), (3,4), (3,5)}| = 5,; 

Therefore, 𝑠𝑖𝑔𝑛(𝜋) = (−1)5 = −1 ⇒ 𝜋 = 15423 is 
Odd. 

𝐹𝑜𝑟𝜋 = 15342, 𝑖𝜋 =
|{(2,3), (2,4), (2,5), (3,5), (4,5)}| = 5; 

Therefore, 𝑠𝑖𝑔𝑛(𝜋) = (−1)5 = −1 ⇒ 𝜋 = 15342 is 
Odd. 

𝐹𝑜𝑟𝜋 = 14532, 𝑖𝜋 =
|{(2,4), (2,5), (3,4), (3,5), (4,5)}| = 5. 

Therefore, 𝑠𝑖𝑔𝑛(𝜋) = (−1)5 = −1 ⇒ 𝜋 = 14532 is 
Odd. 

A determinant of a square matrix M , which is donated by 
MM or V, is a number associated with the matrix M. It can 
be applied to describe different matrix properties. The 
difference between the diagonal terms' products provides 
the determinant for a 2 × 2 matrix. Section 3.2 provides a 
formula for larger determinants.  

3. The alternating sign matrices 

We present a conjecture on the inversion number of a 
permutation π in this section. Additionally, we describe the 
origins of alternating sign matrices (ASM) and provide an 
introduction to them. The proof of the ASM conjecture is 
discussed. 

3.1 Introduction 

Definition As illustrated in Figure 2 below, an alternating 
sign matrix is a square matrix of 0’s, 1’s, and −1’s where 
the sum of the entries in each row and column is 1 and the 
non-zero entries of each row and column alternate in sign. 

1     

-1 1   1 

    1 

1 -1 1   

 1  1 -1 

Figure 2: An example of an Alternating sign matrix 

It should be noted that alternating matrices can be thought 
of as generalizations of permutation matrices, as every 

permutation matrix is also an alternating matrix. 𝐴𝑛 is the 
symbol for the set of matrices with alternating signs. 

3.2 Determinants and permutations 

Since a determinant of a square matrix of dimension n is 
determined by adding up all n! permutations, determinants 
and permutations are closely linked concepts. 
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A determinant of a matrix 𝑀, can be calculated as. 

⌊𝑀⌋ = ∑(−1)𝐼(𝐴)

𝐴∈𝑆𝑛

∏𝑎
𝑖,𝑗

𝐴𝑖,𝑗

𝑛

𝑖,𝑗=1

 

3.3 Some Enumerative results: 

Theorem 1: Let 𝑆 = {1,2, … , 𝑛} be a finite set and 𝐺 =
{1,−1} a multiplicative group. Then show that the 

mapping 𝑓: 𝑆𝑛 → 𝐺 of a Symmetric group 𝑆𝑛 onto the 

multiplicative group        𝐺 = {1,−1}, defined by 

𝑓(𝛼) = {
1𝑖𝑓𝛼𝑖𝑠𝑎𝑛𝑒𝑣𝑒𝑛𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, ∀𝛼 ∈ 𝑆𝑛
−1𝑖𝑓𝛼𝑖𝑠𝑎𝑛𝑂𝑑𝑑𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, ∀𝛼 ∈ 𝑆𝑛

 , 

Is a Homomorphism of 𝑆𝑛 onto 𝐺. 

Proof; Let 𝑆 = {1,2, … , 𝑛} be a finite set. Then 𝑆𝑛 =
{𝛼 ∨ 𝛼: 𝑆 → 𝑆} is the set of all permutations on 𝑆.  

Given that the mapping 𝑓: 𝑆𝑛 → 𝐺 of a Symmetric group 

𝑆𝑛 onto the multiplicative group 𝐺 = {1,−1}, defined by 

𝑓(𝛼) = {
1𝑖𝑓𝛼𝑖𝑠𝑎𝑛𝑒𝑣𝑒𝑛𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, ∀𝛼 ∈ 𝑆𝑛
−1𝑖𝑓𝛼𝑖𝑠𝑎𝑛𝑂𝑑𝑑𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, ∀𝛼 ∈ 𝑆𝑛

 , 

Goal: we are to show that 𝑓(𝛼𝛽) = 𝑓. 

In order to accomplish this, we use the following four 
procedures; 

i. If 𝛼, 𝛽 are both even, then 𝑓(𝛼𝛽) = 1 =
(1)(1) = 𝑓;  

ii. If 𝛼, 𝛽 are both odd, then 𝑓(𝛼𝛽) = 1 =
(−1)(−1) = 𝑓;  

iii. If 𝛼 is even, and 𝛽 is odd, then 𝑓(𝛼𝛽) =
−1 = (1)(−1) = 𝑓;  

iv. If 𝛼 is odd, and 𝛽 is even, then 𝑓(𝛼𝛽) =
−1 = (−1)(1) = 𝑓;   

Thus, in any case, we have 𝑓(𝛼𝛽) = 𝑓.     

Also, it is obvious that 𝑓: 𝑆𝑛 → 𝐺 is an onto (surjective) 

mapping since 𝑅𝑎𝑛𝑔𝑒(𝑓) = 𝑓(𝑆|⬚|𝑛) = 𝐺 

Hence 𝑓: 𝑆𝑛 → 𝐺 is a Homomorphism of 𝑆𝑛 onto 𝐺.                

3.4. Counting occurrences of the patterns 3S 
 in the Aunu-permutations nS 

. 

The counting of occurrences of a pattern σ in a permutation πis the number of distinct subsequences in the permutation 

𝜋, which are order isomorphic to the pattern σ. Let 1 2... ta a a =
, 1 2... Sb b b =

 be finite sequences of integers; then a 
subsequence of π of the same length as τ is said to be an occurrence of τ if its entries occur in the same relative order as 

in τ . More precisely, given indices 1 2 ... Si i i  
, the subsequence 1 2

...
Si i ia a a

 of π is an occurrence of τ if and only if 

for all j, k we have kij i i ja a b b  
. Thus, for example, the patterns in 3S 

 occur in the following selected 

permutations 5S 
; for 15423 = , there are 

5
10

3

 
= 

   distinct three-length subsequence in 𝜋, 

154,152,153,142,143,123,542,543,524,423
. Then 

[123] [132] [213] [231] [312] [321]| ( ) | 1,| ( ) | 5,| ( ) | | ( ) | 0,| ( ) | | ( ) | 2N N N N N N     = = = = = =
; and, of course 

3

| ( ) | 10
S

N





=
. For 32451 = , 10 three-length subsequence of 32451 =  are 

324,325,321,345,341,351,245,241,251,451
. Then   

[123] [213] [321] [132] [312] [231]| ( ) | | ( ) | 2,| ( ) | 1,| ( ) | | ( ) | 0,| ( ) | 5N N N N N N     = = = = = =
; 

For 51243 = , 10 three-length subsequence of 51243 =  are  

512,514,513,524,523,543,124,123,143,243
. Then  

[123] [132] [213] [231] [321] [312]| ( ) | | ( ) | 2,| ( ) | | ( ) | 0 | ( ) | 1,| ( ) | 5N N N N N N     = = = = = =
; 

For 14532 = , 10 three-length subsequence of 14532 =  are  

145,143,142,153,152,132,453,452,432,532
. Then  
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[123] [132] [213] [312] [231] [321]| ( ) | 1,| ( ) | 5,| ( ) | | ( ) | 0,| ( ) | | ( ) | 2N N N N N N     = = = = = =
. 

Note that the number 
| ( ) |N 

 is independent of π for example,  

| (15423) |  213,231,123,312,321,132,   0,0,1,2,2,5;

| (32451) |  132,312,321,123,213,231,   0,0,1,2,2,5;

| (51243) |  213,231,321,123,132,312,,   0,0,1,2,2,5;

for N when we have

for N when we have

for N when we have













• =

• =

• =

• | (14532) |  213,312,123,231,321,132,   0,0,1,2,2,5.for N when we have  =
 

Observe that on one hand, the permutation π the in second, third and fourth rows (32451, 51243 and 14532) are the 
reversal, complementation and inversion of the permutation in the first raw (15423). On the other hand, the corresponding 

patterns, specifically those bearing the same values 
| ( ) |N 

 are related similar. For example, the patterns with values 

of 
| ( ) | 0N  =

 in the 2nd, 3rd, and 4th rows (i.e. 
{312,132},{231,213}, {213,312}and

) are reversal, 

complementation and inversion, respectively, of the corresponding patterns in the 1st raw (i.e. 
{213,231}

), etc. Similarly, 

the patterns 321,321 and 123, each bearing the same value 
| ( ) | 1N  =

, are reversal, complementation and inversion of 

the corresponding pattern 123 in the 1st raw; the pairs of patterns, each bearing the value 
| ( ) | 2N  =

, {213, 123}, 
{132, 123}, and {231,321} in the 2nd, 3rd, and 4th rows, relate in the same manner to the pair {312,321} in the 1st raw; 
and, lastly, the patterns 231,312 and 132 in the 2nd, 3rd, and 4th rows relate in the same manner to the pattern 132 in the 

1st raw, each bearing 
| ( ) | 5N  =

. We summarized the above in Table 1 below; 

Table. 1.(a). Patterns occurrences in some permutations via standard bijections  

Permutation 5S 
 Pattern 3S 

 
| ( ) |N 

 Number of 
occurrences of σ in 
permutation π 

15423 {213,231},{312,132},{231,213},{213,312}
 

0 

32451 {123},{321} 1 

51243 {123,213},{321,312},{321,231} 2 

14532 {132},{231},{312} 5 

Note: Table 1(a) above shows that there are easy correspondences which explain why  

( ) ( ) ( ) ( )| 132 |  |F 213 |  |F 231 |  |F 312 |n n n nF = = =
, 

and why  

( ) ( )| 123 |  |F 321 | n nF =
. 

Definition 3.4.1. (Trivial bijections of nS
). For a permutation, say, 𝜋, we define the three standard bijections between 

sets of the types 
( )k

nF 
 and 

( )k

nF 
, ∀𝜋, 𝜏𝜖 for general 𝑘; the reverse 

: n nr S S→
, the complement 

: n nc S S→
, 

and the inverse 
: n nI S S→

 to be the permutation β such that  

1

1

( )     1 ,

( )  1   1 ,

( ) ( )    ( )   1 , ,

i n i

i i

i

r iff for i n

r iff n for i n

I j i iff i j for i j n

   

   

    

+ −

−

= =  

= = + −  

=  = = =  
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 And I is the usual inverse operation on the symmetric group nS
. For example, if 515423 (2534) S = = 

 then 

( ) 32451 (1345)r  = =
, 

( ) 51243 (1532)c  = =
, and 

( ) 14532 (2435)i  = =
. We call these operations trivial 

bijections (three standard bijections) from nS
 to itself. We denote the group generated by the trivial bijections on the 

symmetric group   nS
 by p

.  

Note that these three operations of reversal, complementation and inversion are involutions; that is, 

( ( )) ,  ( ( )) ,  and ( ( ))r r c c I I     = = =
. 

As will be seen again from Lemma 2.2, there are easy correspondences which explain why  

( ) ( ) ( ) ( )| 132 |  |F 213 |  |F 231 |  |F 312 |n n n nF = = =
, 

and why  

( ) ( )| 123 |  |F 321 | n nF =
. 

A tree diagram for Aunu permutations of length 5 containing exactly one Occurrence of 123 pattern  

 

Lemma.3.4.2. If 𝜋 ∈ 𝐹𝑛
𝑘(𝜏), 𝜏 = {𝜏1, 𝜏2, … , 𝜏𝑘} ⊆ 𝑆3, 𝜏 ≤ 𝜋, then 

1 2 3 1

1 2 3

1 1 1 1 1 1 1

1 2 3

( ) ( ),   { , ,..., } ,     1 ;

( ) ( ),   { , ,..., } ,  1   1 ;

( ) ( ),   { , ,..., } ,  ( )   

r k r r r r r r

n k i n i

c k c c c c c c

n k i i

k

n k

a F where S for i k

b F where S n for i k

c F where S j i

       

       

      

+ −

− − − − − − −

   =  

   = + −  

   =  ( ) ,   1 , .iff i j for i j k =  
 

Proof.(see Lemma. 3.4.2.(a,b,c)) The proof is trivial in the sense that the operations (reversal, complementation and 
inversion) are trivial but essential to the following lemmata.3.3.4. (a, b, c) which can be considered as a generalization of 
the above definition. The lemma are an important aspect of the theory of forbidden subsequence. 

Lemma. 3.4.2.(a). If 𝜋 ∈ 𝐹𝑛
𝑘(𝜎), 𝑡ℎ𝑒𝑛𝜋𝑟 ∈ 𝐹𝑛

𝑘(𝜎𝑟), ∀𝜎 ≤ 𝜋. 

15423 

15342 

14532 
1 

5 
4 

1 1 

1 
4 

3 
2 

3 

1

5 (123)F

1

5 (123)F
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Proof. Consider an arbitrary subsequence of nS 
, say, 

,   mS and m n  
 such that 1 2( ( ) ( )... ( ))mi i i   =

, 

where 1 21 ... mi i i n    
. Then, if σ is of type τ, it follows that 1 1( ( ) ( )... ( ))r

m mi i i   −=
 it is equally of type 

r . But since 𝜎 ≤ 𝜋, it is obvious that 
r  is a subsequence of 

r , namely 

1 1( (( 1) ), (( 1) ),..., (( 1) ))r r r

m mn i n i n i  −+ − + − + −
. Since σ is of type τ, then π also contains a subsequence of 

type τ. And, if π contains the subsequence τ, it is obvious that 
r  contains the subsequence 

r . Since the operation of 
reversal is an involution, the argument works equally in the opposite direction, and we can replace “if” by “if and only if” 
in the previous sentence. Finally, since a permutation avoids a pattern τ exactly when it does not contain a subsequence 
of type τ, the proof is complete.              ■ 

Lemma. 3.4.2.(b). . If 𝜋 ∈ 𝐹𝑛
𝑘(𝜎), 𝑡ℎ𝑒𝑛𝜋𝐶 ∈ 𝐹𝑛

𝑘(𝜎𝐶), ∀𝜎 ≤ 𝜋. 

Proof. If, for 1 21 ... ki i i n    
, a subsequence 1 2( ( ) ( )... ( ))ki i i   =

 is of type τ, then the subsequence 

1 2( ( ) ( )... ( ))c c c

ki i i  
 is isomorphic to the reverse of σ. That is, it is of type 

c . The remaining part of the argument 
is identical in its essential to the previous proof. Hence, the proof is complete.                      ■ 

Lemma. . 3.4.2.(c).  If 𝜋 ∈ 𝐹𝑛
𝑘(𝜎), 𝑡ℎ𝑒𝑛𝜋−1 ∈ 𝐹𝑛

𝑘(𝜎−1), ∀𝜎 ≤ 𝜋. 

Proof. Suppose π has a subsequence of type τ, namely (1) (2) ( )( ( ) ( )... ( ))ki i i    
, where 

(1) (2) ( )1 ... ki i i n      
 and 1 2( ( ) ( ) ... ( ))ki i i    

. In light of the last set of inequalities, it is clear that 

one subsequence of 
1 −

 is  
1 1 1

1 2 1 2( ( ( )), ( ( )),..., ( ( ))) ( ... )k ki i i i i i     − − − =
. This is a subsequence of type 

1 −

. 

Since
1 −

contains a subsequence of type 
1 −

, precisely when π contains the pattern τ, the inverse permutation 
1 −

 

contains 
1 −

, Precisely when π contains τ.             ■ 

As a further observation of the relation between the three operations of inverse, complementation and inversion, note 

that 
1 1( ) ( )C R − −=

. 

For example, consider a permutation 514532 S = 
 and a pattern 3123 S = 

. Then, it is clear that  

1 1

23541  321,

52134  321,

15423  123.

r r

c c

and

and

and

 

 

 − −

= =

= =

= =  

Here, the pattern 3123 S = 
 has exactly one occurrence in the permutation 514532 S = 

 , in its subsequence

1 2 3 145   =
, while the pattern 213 has zero occurrences in π (i.e. π avoids 213 patterns); the pattern 321r =  has 

exactly one occurrence in the permutation 23541 r = , in its subsequence 3 4 5 321r r r   =
; the pattern 321c =  

has exactly one occurrence in the permutation 52134c = , in its subsequence 1 2 3 321c c c   =
; finally, the pattern 

1 123 − =  has also one occurrence in the permutation 
1 15423 − = , in its subsequence 

1 1 1

1 4 5 123  − − − =
. It is, 

therefore easy to see that π avoids the subsequence 312, and 213. It follows that 
r  avoids the subsequence 213 and 312, 

that 
c  avoids the subsequence 132 and 231, and that 

1 −

 avoids the subsequence 231 and 213. The following 
proposition follows from Simion and Schmidt [1985].  

Proposition. 3.4.3. We have that p
 is isomorphic to the dihedral group 8D

.       
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Proof. It is easy to see that 
2 2 2 2 4 4( ) 1, , ( ) ( ) 1r c r c c r r c i r i c i= = = = = = =

 and i r i c= . So, p
 is 

isomorphic to 8D
.                                                            ■ 

More generally, for a set of patterns T, we define 
( ) { ( ) | }g T g T = 

 for any pg
. For example, if 

{123,132}T =
 and g r= , then 

( ) {321,231}g T =
. The following proposition was given by Simion and Schnidt 

(1985). 

4. Classification of Permutations in Cyclic notation form 
A brief overview of permutation pattern avoidance is provided. A bijection between classes of pattern-avoiding 
permutation matrices and lattice pathways is used to provide an equivalence result. There is discussion on recent 
studies. 

Definition 4.1. 

Let π be any permutation in 
Sn . The number of inversions of π is given by 

|{( , ) : ,1 }|i ji i j i j n  =    
. The 

signature of π is given by 
sign( )  ( 1)

i = −
 . We say π is an even permutation [respectively; odd permutation] if sign(π) 

= 1 [respectively; sign(π) = -1]. In other words, we say π is an even permutation [respectively; odd permutation] if π is a 
permutation together with even [respectively; odd] number of inversions. For example, consider the Aunu permutations 

15423;  15342 and 14532
 in 5S

 . Each of the Aunu permutations 5S 
 has an odd number of inversions, for 

instance  

3

15423 (2534) (25)(23)(24),

 3 ( ) ( 1) 1.Here i sign 

= =

=  = − = −
 

We denote by nE
 [respectively; nO

] the set of all even [respectively; odd] Aunu permutations in 
Sn .  

The Table 2 below shows the classification of some Aunu permutations 
1(123)nF 

 in cyclic form. 

From the two different approaches (Tables 1 and 2), we made the following observations: 

• 
|{( , ) : ,1 ,   , , }|i ji i j i j n i j n  =      

; 

• 
0,   0i i     

; 

• 
sign( )  ( 1)

i = −
; 

• 

.         0    
sign( ) 

- .                     

ve if i or an even number

ve if i is an odd number






+ = 

=  
   

4.3.1. Enumerative results: 
Following up on our previous enumeration, we discovered—apparently for the first time—the connection 
between even (odd) Aunu permutations and the pattern-occurrence problem. 
 

1 1| (123) | | (123) | ( 2) | ( ) |;   3,  S

1,    ,
 ( )

1,     .

n n nE O n sign where n

if is even
and sign

if is odd

 






= = −  


= 

−  

A sign of a permutation can be viewed with this enumeration as a mapping of a symmetric group Sn into a set {+1,-1}. 
Consequently, we can characterize a permutation's sign as a group homomorphism. 

 : { 1, 1}nsgn f S → + −
. 

(i.e., a group homomorphism from the symmetric group Sn into a multiplicative group {+1, –1}, where +1 is e, the 
multiplicative identity/neutral element).  
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Generally speaking, 
1
2

| | | | !   2n nE O n for all n= = 
. The following lemma holds immediately by definitions. 

Definition 4.3.1. If a permutation contains an odd (or even) number of inversions, it is referred to as odd (or even).  
The following proposition demonstrates that while discussing permutations, we must use caution when using the terms 
"odd" and "even." If a cycle has an even (resp. odd) number of elements, we'll refer to it as even (resp. odd).  

Table 2. Classification of Aunu Even and Odd permutations 
1(123)nF 

 in Cyclic notation form 

Aunu permutation 
1(123), 3nF n  

 
Transposition of  

1(123)nF 
 

N0. of 
inversions in 

1(123)nF 
 

Sign(π) Classification of 
1(123)nF 

 

(1)(2)(3) None 0 + Even 

(2435) 

(25) 

(2534) 

(24)(23)(25) 

(25) 

(25)(23)(24) 

3 

1 

3 

- 

- 

- 

Odd 

Odd 

Odd 

(2637)(45) 

(27)(3546) 

(27)(26) 

(27)(3645) 

(2736)(45) 

(26)(23)(27)(45) 

(27)(35)(34)(36) 

(27)(26) 

(27)(36)(34)(35) 

(27)(23)(26)(45) 

4 

4 

2 

4 

4 

+ 

+ 

+ 

+ 

+ 

Even 

Even 

Even 

Even 

Even 

(2(11))(3(10))(49)(5867) 

(2(11)3(10))(49)(58)(67) 

(2(11))(3(10))(4859)(67) 

(2(11))(3(10))(49)(58) 

(2(11))(2(10)49)(58)(67) 

(2(11))(394(10))(58)(67) 

(2(11))(3(10))(49)(5768) 

(2(11))(3(10))(4958)(67) 

(2(10)3(11))(49)(58)(67) 

(2(11))(3(10))(49)(58)(56)(57) 

(2(11))(23)(2(10))(49)(58)(67) 

(2(11))(3(10))(48)(45)(49)(67) 

(2(11))(3(10))(49)(58) 

(2(11))(3(10))(34)(39)(58)(67) 

(2(11))(39)(34)(3(10))(58)(67) 

(2(11))(3(10))(49)(57)(56)(58) 

(2(11))(3(10))(49)(45)(48)(67) 

(2(10))(23)(2(11))(49)(58)(67) 

6 

6 

6 

4 

6 

6 

6 

6 

6 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Even 

Even 

Even 

Even 

Even 

Even 

Even 

Even 

Even 

 {( , ) : ,1 }i ji j i j n    
 

i
 

( 1)
i−

 
 

Proposition 4. 

An odd permutation is one that has precisely one even cycle. An even permutation has exactly one odd cycle in it. Cycle 
is peculiar. An even permutation is one that has precisely one odd cycle. 

Proof  

We prove the claim by induction on the length n of the only cycle of our permutation π. For 1n =  and 2n = , the 

statement is trivially true. Now let 3n  , and consider the cycle 1 2 1( ... )n ni i i i− . It is straightforward to verify that  

1 2 1( ... )n ni i i i− 1 2 1 1 2 1 1( ... ) ( ... )( )n n n n ni i i i i i i i i− − −=
. The multiplication by 1( )n ni i−  at the end simply swaps the last two 

entries of 1 2 1( ... )ni i i − , and therefore, either increases the number of inversions by one or decreases it by one. So in either 
case, it changes the parity of the number of inversions. The proof is then immediate by the induction hypothesis        ■ 
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4.3.2. The Catalan numbers 

In contemporary combinatorics, the Catalan numbers are a number sequence that is frequently encountered. These 
numbers are used to count a variety of objects. A document on Catalan numbers, which was continuously updated by 
Stanley and Richard (1999), included 136 combinatorial interpretations of these numbers as of May 2006. Combinatorial 
counting issues abound, and the Catalan and Aunu numbers often provide the answer. A book called "Enumerative 
Combinatorics" by Stanley (2006) contains exercises that explain 66 distinct interpretations of Catalan numbers that match 
similarly to Aunu numbers, according to Wikipedia, a free encyclopedia.  

     0,1,2,3,... 

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,

129644790,477638700,1767263190,6564120420,  24466267020,  91482563640,  34

The first Catalan number for n are=

3059613650,

1289904147324,2861946401452,... 

This sequence appears in the Online Encyclopaedia of Integer Sequences as A000108. 

An alternative expression for Cn is 

2 2
;    0,

1
n

n n
C for n

n n

   
= −    

+     

Which is equivalent to the expression given above because  

2 2
.

1 1

n nn

n nn

   
=   

+ +     

This shows that Cn is an integer, which is not immediately obvious from the first formula given. 

4.4. Pattern’s avoidance in Permutations 

Definition 4.3.2. (Permutation pattern). The two terms ‘permutation’ and ‘pattern’ mean the same thing, only in different 

semantics. The scenario is synonymous with the concept of ‘a set’ and ‘a subset’. A pattern refers to a smaller permutation 

that is being contained in a bigger permutation. Let 𝑎, 𝑏 and 𝑐 be any three entries of the permutation 𝜋 which are arranged 

in that order from left to right, not necessarily consecutive. If 𝑎 < 𝑏 < 𝑐, the entries 𝑎, 𝑏 and 𝑐 is said to form a 123 −

𝑝𝑎𝑡𝑡𝑒𝑟𝑛. For example, the permutation 𝜋 = 15423 ∈ 𝑆5 contains only one 123 − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, namely, 𝜋1𝜋4𝜋5. If 𝑎 <

𝑐 < 𝑏, the entries 𝑎, 𝑏 and 𝑐 is said to form a 132-pattern. For example, the permutation 𝜋 = 35214 ∈ 𝑆5 has exactly 

one occurrence of 132 − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, namely, 𝜋1𝜋2𝜋5, which is formed by the elements 3,5 and 4. etc. This definition is 

analogous for any pattern 𝜎 of arbitrary length and order. 

  1   

    1 

 1    

1     

   1  

Figure 3 the permutation matrix corresponding to 𝝅 = 𝟑𝟓𝟐𝟏𝟒 ∈ 𝑺𝟓 containing 132-pattern 

4.4.1. Pattern’s avoidance in Permutation Matrix.   

If σ is a sub-matrix of π, then a pattern σ is contained in a permutation π. That is, if it is feasible to eliminate the rows and 
columns that correspond to π from the permutation matrix, leaving the remaining matrix to match the permutation σ. 

4.4.2. Aunu Permutations avoiding 123-pattern; 

Aminu (2007) conducted a study that led to the development of Aunu Permutation. 
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Interestingly, one of the most notable characteristics of Aunu permutation is "first entry unity," which means that in Aunu 
patterns, the sequence's arrangements always have the first element equal to 1 and the last element greater than 1. For 

instance, in a set 
{1,2,3,4,5}S =

, the possible number of permutations by that pattern are as follows: 

For (132)-avoiding, we have the permutation 𝜋 = 12345 ∈ 𝑆5; 

For (123)-avoiding we have the permutation 𝜋 = 15432 ∈ 𝑆5. 

As a result, there are four possible combinations in total. Based on the aforementioned (Aunu pattern), it is simple to 
conclude that there exists a number of Aunu permutations in a given finite set (sequence) of natural numbers with n order 
(cardinality). 

Table 3:  Some special (123)-avoiding sub words  for samples of size 5 to 17 

Length 
of 
number 

( )n  

  (132)Sequence as avoiding−    (123)Sequence as avoiding−  

5 12345  14253;  15432  

7 1234567  1526374;  1642753;  1765432  

11 123456789(10)11 1728394(10)5(11)6;  184(11)73(10)6295;

1963(11)852(10)74;  1(10)8642(11)9753;

1(11)(10)98765432
 

13 123456789(10)(11)(12)13  18293(10)4(11)5(12)6(13)7;  

194(12)72(10)5(13)83(11)6;

1(10)62(11)73(12)84(13)95;  

1(11)852(12)963(13)(10)74;

1(12)(10)8642(13)(11)9753;  

1(13)(12)(11)(10)98765432.
 

17 123456789(10)(11)(12)(13)(14)(15)(16)(17)  1(10)2(11)3(12)4(13)5(14)6(15)7(16)8(17)9;

1(11)4(14)7(17)(10)3(13)6(16)92(12)5(15)8;

1(12)6(17)(11)5(16)(10)4(15)93(14)82(13)7;

1(13)83(15)(10)5(17)(12)72(14)94(16)(11)6;

1(14)(10)62(15)(11)73(16)(12)84(17)(13)95;

1(15)(12)963(17)(14)(11)852(16)(13)(10)74;

1(16)(14)(12)(10)8642(17)(15)(13)(11)975;

1(17)(16)(15)(14)(13)(12)(11)(10)98765432.
 

4.5. A Comparison of Aunu numbers to Catalan numbers: 

4.5.1. Their Comparison on Hankel matrix; 

The n n  Hankel Matrix whose 
( , )i j

 entry is the Catalan number 2i jC + −  has determinant 1  regardless of the value of 

n . For example, for 5n = , we have      

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 4, December 2024, Pp 386 – 398 

 396 

 

 https://scientifica.umyu.edu.ng/                      Abba et al., /USci, 3(4): 386 – 398, December 2024  
 

1 1 2 5 14

1 2 5 14 42

det 12 5 14 42 132

5 14 42 132 439

14 42 132 429 1430

 
 
 
  =
 
 
    

Moreover, if the indexing is "shifted" so that the (i, j) entry is filled with the Catalan number Ci+j−1 then the determinant 
is still 1, regardless of the value of n. For example, for n = 5 we have 

1 2 5 14 42

2 5 14 42 132

det 15 14 42 132 439

14 42 132 429 1430

42 132 429 1430 4862

 
 
 
  =
 
 
    

Taken together, these two conditions uniquely define the Catalan numbers.  

Conversely, the n n  Hankel Matrix whose 
( , )i j

 entry is the Aunu number 2i jA+ −  does not have determinant 1  

regardless of the value of n . For example, for 5n = , we have 

1 2 3 5 6

2 3 5 6 8

det 3243 5 6 8 9

5 6 8 9 11

6 8 9 11 14

 
 
 
  = −
 
 
   . 

However, it is interesting to note that square matrices by Aunu as well as Catalan numbers form symmetric matrices (i.e. 

| | | |TA A=
) about the main diagonal. Besides, it is important to note therefore, that Aunu numbers as well as Catalan 

numbers possess the following unique properties;    

Some basic/general rules/properties of Matrices satisfied by square matrices whose 
[ , ]i j

entries are Aunu and Catalan 
numbers: 

1. 
( )T T TA B A B+ = +

 

2. 
| |   | |TA A=

 

3. 
( )T T TAB B A=

 

In fact, it is a much more useful and interesting to study the following object: 

( ) { |      }n nS Q S avoids q for all q Q =  
: 

From the symmetries of the square, we have  
| ({123}) | | ({321}) |n nS S=

and 

| ({132}) | | ({231}) | | ({213}) | | ({312}) |n n n nS S S S= = =
. Simion and Schmidt (1985) provided a bijection between 

{132} avoiding−  permutations and {123} avoiding−  permutations, and moreover showed that 
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3

2 1
| ({ }) |

1
n n

n
S C

n n


 
= =  

+    where 3  is any permutation of length 3, and nC
 denotes the 

thn  Catalan number. 

Besides, Sani and Aminu (2014) showed that 

2 1
| (132) | | (123) |

1
n n n

n
S S C

n n

 
= = =  

+  . Conversely, in restricted Aunu 

Permutations, we showed that 3 3 0| (123) | | (132) | 1A A C= = =
, Sani and Aminu (2014) 

4.5.2 On their parenthesis: 

Theorem 

( 1)n+  factors can be parenthesized in P  different ways. 

Proof 

Let P  be the number of different ways ( 1)F n= +  factors can be completely parethesized (or the number of ways of 

associating n applications of a binary operator), where n is a positive integer and 2n  . Then  

For 2n =  for example, we have the following two different parenthesizations of three factors; 

( )ab c   and  ( )a bc ;  

For 3n = , we have the following five different parenthesized of four factors; 

(( ) ) ,  ( ( )) ,  ( )( ),  (( ) ) &  ( ( )) .ab c d a bc d ab cd a bc d a b cd etc  

Table 4 shows the number of parenthesized ( P ) and the corresponding factors F which is the same thing as ( 1)n+  for 

every 2n  . And Table 5 compares the three  

parameters (𝑛, 𝑃 ∧ 𝐹). 

Table 4. Parenthesized of ( 1)n+  factors 

2n   P  ( 1)F n= +  
2 2 3 
3 5 4 
4 14 5 
5 22 6 
6 32 7 

   
n  ( 1) 2n n− +

 
 

Table 5 Relationship between 𝑝, 𝐹 ∧ 𝑛 

2n   P  ( 1)F n= +  ( )P n−  ( )n P F = −
 

2 2 3 0 -1 
3 5 4 2 1 
4 14 5 10 9 
5 22 6 17 16 
6 32 7 26 25 

     
n  ( 1) 2n n− +

 
  2n  

What is more interesting here is the relationship between 𝑃, 𝑛 ∧ 𝐹: 
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The Table 5 shows relationship between 𝑃 (number of 

ways of parenthesizing 
( 1)n+

 factors) and 𝑛 (number of 
applications of a binary operator). Consequently, two new 
integer sequences were formed in columns 2 and  5 of 

Table 5 denoted respectively by  nP
  and n

 thus: 

2, 2;

5, 3;

( 1) 2, 4.

n

if n

P if n

n n if n

=


= =
 − +  …. … …                  (4) 

 

2

1, 1;

1, 2;

, 3.

n

if n

if n

n if n

− =


 = =
  …… … …                             (5) 

Hence the proof. 

CONCLUSION 

We have so far developed some Algebraic and Geometric 
Number Theoretic characteristics for Aunu numbers in 
relation to Catalan numbers. Following our comparison, 
we saw the following outcomes: 

Among other significant results obtained is a Formula / 

relation for generating nP
 the number of different ways 

( 1)F n= −  factors can be fully parethesized (or the 

number of ways of associating 𝑛 applications of a binary 
operator) as shown by equation 4 as well as a 

formula/generating function for new integer sequence 

n
 (the difference between 𝑃 ∧ 𝐹 as shown by equation 

5. The aforementioned comparison demonstrates that 
there is some correlation between Catalan and Aunu 
numbers. Additionally, more research on Aunu sets could 
be done, particularly with regard to algebraic features.  
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