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INTRODUCTION
Particularly near tropical rainforests, in remote areas of 
sub-Saharan Africa, outbreaks of monkeypox, a major 
viral zoonotic disease, sporadically arise. This disease is 
caused by the Poxviridae family’s monkeypox, under the 
category of poxviruses known as Orthopoxviruses (Jezek 
et al. 1988). First used in 1958, the name ‘’monkeypox’’ 
came from two outbreaks of infections akin to those of 
the pox observed in populations of monkeys under use for 
research (Kaler et al. 2022). Though the Democratic 
Republic of Congo recorded the first human case in 1970, 
smallpox eradication activities generated significant 
interest in it. It affects a broad spectrum of mammals 
found in a specific geographical location, mainly involving 
bodily fluids such as blood, mucosal skin sores, respiratory 
droplets, and even sexual contact; transmission of the 
virus from person to human mainly results from direct 
contact with infected individuals(Guarner et al., 2022). 
Human-to-animal transmission can be transferred by 
direct physical contact; animal-to-human transmission 
occurs by bites from infected animals or by the ingestion 
of unprocessed bush meat and contaminated food by 
rodents, including rats, dogs, cats, monkeys, and squirrels. 
The virus can be transmitted to an animal through 
respiratory droplets and contact from skin to skin if a 
person with the virus comes into close range to the animal, 
particularly if the individual has exposed wounds or skin 
lesions. Small virus-containing droplets may be expelled 
into the air when an infected individual talks, coughs, or 

sneezes. An animal close by inhales these droplets and 
becomes afflicted. The time usually for the development 
of monkeypox is ten to fourteen days, with a mean of 
twelve days. However, the length of time varies according 
to the type of host. According to clinical studies, for 
infected black dogs is four to thirteen days, and for dogs 
in the prairie is eleven to eighteen days. Patients typically 
experience a mild fever, muscle aches, fatigue, headaches, 
chills, and backaches during the 7–14-day incubation 
period (Hutin et al., 2001). Patients frequently develop the 
characteristic rash, which begins on the face and continues 
throughout the body three days after developing a fever 
and chills. 

In 2017, there was a widespread epidemic in Nigeria, with 
multiple states reporting confirmed cases. The bulk of 
those affected were men aged between 21 and 40. On 
September 20, 2017, the state of Bayelsa reported an 
outbreak of human monkeypox, with 196 suspected cases. 
Numerous organisations, including the Nigeria Centre for 
Disease Control (NCDC) National Reference Laboratory, 
the Institute Pasteur de Dakar, the United States Centres 
for Disease Control and Prevention (US CDC) in Atlanta, 
and the WHO Collaborating Centre for Orthopox 
Viruses, conducted laboratory investigations (WHO, 
2017). (NCDC 2022), Nigeria Centre for Disease Control 
reports that between September 2017 and June 26, 2022, 
716 cases and nine fatalities were confirmed across 25 
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ABSTRACT 
Monkeypox is now a major public health problem because of threats of infection, which include 
animal-to-human with human-to-human transmissions of the disease. In this paper, we proposed 
a SEIR-type model to understand different routes of disease spread by including human-to-
animal transmission and intervention strategies. Isolation, hospitalization, and diagnosis 
parameters are incorporated into the human population as a means of reducing the spread of the 
disease. The model equations were first transformed to obtain the basic reproduction number 
Ro. The Disease-Free Equilibrium (DFE) and Endemic Equilibrium (EE) are obtained, and the 
equilibrium of differential systems free from the disease is stable when Ro < 1 and unstable 
otherwise.  The findings indicated that quarantine, hospitalization of infected individuals in the 
human population, and diagnosis help to maintain a low disease transmission rate in reducing 
the Basic reproduction number of monkeypox to have a value of 0.9338. 
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states. By April 13, 2023, the CDC Centre for Disease 
Control and Prevention had confirmed 86,956 cases 
worldwide (CDC 2023). Nigeria tops the African case 
count with 829 cases, followed by the Democratic 
Republic of the Congo with 439 confirmed cases. As of 
2023, reports from the CDC and WHO indicate that there 
have been 30,347 confirmed cases in the United States, 
making it the nation with the highest number of cases 
worldwide. In order to investigate the epidemiological 
characteristics, transmission patterns, and potential impact 
of this newly discovered and reemerging infectious disease 
on worldwide public health, researchers and health 
organizations have turned to mathematical modeling. The 
World Health Organization, on July 23, 2022, declared 
monkeypox to be of international Concern to Public 
Health (PHEIC) (WHO 2022). One contributing factor to 
the limited understanding of this disease lies in the 
transmission mechanisms, which are poorly understood. 
The dynamics of monkeypox transmission among human 
and animal populations, the potential impact of Isolation 
for individuals with mild complications and 
hospitalization for severe cases on reducing disease 
transmission, the role of diagnosis in controlling 
monkeypox spread, and the interplay between human and 
rodent transmission dynamics was explored. 

Existing research has explored various mathematical 
modeling approaches to understand monkeypox 
transmission. Bhunu and Mushayabasa (2011) 
demonstrated that through carefully designed treatment 
intervention, the disease is poised to be eliminated not 
only from human subjects but also from non-human 
primates. They only considered the primary mode without 
any intervention strategy. The SIR model by Bhunu and 
Mushayabasa was studied and expanded to include a 
scenario in which there are more than two populations, 
and the contact rate is a function of time rather than just 
a constant by finding the global asymptotical stability of 
the endemic equilibrium, which has been previously 
uncompleted (TeWinkel 2019). They used fractional 
calculus to study the nature of the monkeypox virus using 
actual data from Nigeria, and they debated the modeling 
structure by analyzing preventive measures that would 
help the general public understand better. Considering 
those who are subpopulation’s mix of exposed and 
secluded areas as well as the effects of that interaction rate 
with the number of rodents, they investigated the several 
elements that might lead to a decrease in disease 
transmission and the effects of such factors on the 
fundamental reproduction number. (Peter et al. 2021) and 
(Maysaa et al. 2022) analyzed a novel fractional framework 
characterizing the Monkey-pox model under fractional-
order differential operators depending on the generalised 
Mittag-Leffler (GML) kernel employing the Atangana–
Baleanu in the Caputo environment. They investigated 
and verified the system's equilibrium conditions in order 
of robustness. The global stability of the endemic 
equilibrium is solved with the use of Jacobian matrix 
techniques and the Routh-Hurwitz threshold. 

Furthermore, they implement a fresh approach combining 
the two-step Lagrange polyn with the fundamental 
concept of fractional calculus. Multiple fractional order 
numerical simulations reveal that the fractional order 
drops from 1 reduces the virus's proliferation. They didn’t 
include hospitalization and other modes of transmission 
that could aid in curtaining the disease.  Further work by 
Samuel and Joseph (2023) proposed in order to investigate 
the virus's human-to-human transmission in Ghana, 
Atangana-Baleanu fractional-order derivatives were 
defined in the Caputo sense. The model employing this 
operator made use of the Atangana-Baleanu and Caputo 
derivatives, which included a nonlocal and nonsingular 
kernel and (Maria et al. 2023) studied cases were men who 
have sex with men (MSM), and it was examined if the 
decrease in monkeypox cases was related to a decrease in 
the number of susceptible males (MSM). They created a 
framework for the transmission and matched it to data on 
behavioural changes, such as fewer casual partners and a 
shorter period when cases of monkeypox in the 
Netherlands refrain from contact. Their model only 
considered the transmission of the virus among the 
human population and failed to include any intervention 
strategies. 

While existing models focus primarily on human-to-
human transmission, the inclusion of human-to-rodent 
dynamics provides a more comprehensive understanding 
of potential zoonotic reservoirs. This paper aims to fill this 
gap by modeling both transmission pathways and the basic 
reproduction number impact on the intervention 
strategies. 

MATERIALS AND METHODS 

Mathematical model and formulation 

The model was divided into a system of ordinary 
differential equations with nine different compartments 
consisting of both human and rodent populations. 

The Susceptible Human Compartment S represents the 
total count of people in the population who could 

potentially contract Mpox. It rises in number by λ and 

decreases by µ (natural death),  
𝛽rIr+ 𝛽hIh

𝑁h
  (Susceptible 

human who contracted the virus by means of interaction 
with an infected rodent and a susceptible human with an 
infected human).  

𝑑𝑆h

𝑑𝑡
= λh −

𝛽rIr+ 𝛽hIh

𝑁h
− μh             

The human Compartment E is showing the virus's 
infecting count of people representing the number of 
individuals infected by the virus but are asymptomatic 
(Infectious disease necessarily passes through this phase). 

It increases by   
𝛽rIr+ 𝛽hIh

𝑁h
. , decreases by µ (natural death) 

and θ1Eh (the rate at which healthy persons become 
infected).  

𝑑E𝒉

𝑑𝑡
=

𝛽rIr+ 𝛽hIh

𝑁h
− (θ1 + μh)Eh                                
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The Infected human Compartment I represent the total 
count of people infected with the virus and are now 

symptomatic. It increases by θ1Eh and decreases by µ 

(natural death) and, δ (death caused by the disease), θ2 
(The rate at which individuals who had serious 
complication from the disease and are moved to the 

hospital on admission), θ3  (The rate at which individual 

with mild complication are being quarantine) and τ 
(diagnosis of infected individual parameter). 

𝑑𝐼ℎ

𝑑𝑡
= θ1Eh − (θ2 + θ3 + μh + δh + τ)Ih             

The Isolated human Compartment Q represent the total 

count of people being isolated with a contact rate  θ3 , 

decreases by µ (natural death) and with a recovery rate θ5  

𝑑𝑄ℎ

𝑑𝑡
= θ3Ih − (θ5 + μh + δh)Qh     

The Human Compartment H is representing the number 

of individuals who are being treated in the hospital with a 

contact rate ofθ2, decreases by µ (natural death) and with 

a recovery rate θ4. 

𝑑𝐻ℎ

𝑑𝑡
= θ2Ih − (θ4 + δh + μh)Hh        

The human Compartment R is representing the number 

of individuals who have recovered from the hospital at the 

rate θ4 , recovered from Isolation at the rate θ5 and 

decreases by µ (natural death). 

𝑑𝑅ℎ

𝑑𝑡
= (θ4Hh + θ5Qh) − μhRh     

Rodent population 

The Susceptible rodent Compartment S represent the total 
count of rodent in the population who could potentially 

contract Mpox. It rises in number by λr and decreases by 

µ (natural death), 
𝛽1Ir+ 𝛽2Ih

𝑁r
 (Susceptible rodent who 

contracted the virus by means of interaction with an 
infected human and a susceptible rodent who contracted 
the infection via coming into touch with an infected 
rodents). 

𝑑𝑆𝑟

𝑑𝑡
= λr −

𝛽1Ir+ 𝛽2Ih

𝑁r
– μr            

The rodent Compartment E is showing the virus's 
infecting count of rodent representing the number of 

rodent infected by the virus. It increases by   
𝛽1Ir+ 𝛽2Ih

𝑁r
, 

decreases by µ (natural death) and γ1 (the rate at which 
exposed rodents become infected). 

𝑑E𝑟

𝑑𝑡
=

𝛽1Ir+ 𝛽2Ih

𝑁r
− (μr + γ1)Er   

The rodent Compartment I Compartment I represent the 
total count of rodent infected with the virus. It increases 

by the contact rate of  γ1Eh and decreases by µ (natural 
death). 

𝑑𝐼𝑟

𝑑𝑡
= γ1E𝑟 − (𝜇𝑟 + 𝛿𝑟 + γ2)𝐼𝑟               

 
Figure 1. Monkeypox model 
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The Model's Basic Assumptions 

The main presumptions that went into the construction of 

this representation are as follows: 

I. The virus is expected to spread since the 

demographics of people and rodents are equally 

mixed. (Lioyd-Smith et al. 2005) 

II. There is no available vaccination for the model, but 

Isolation, diagnosis, and hospitalization are assumed 

to be intervention measures. 

The following system of equations (1-9) are obtained from 

the model schematic diagram in Figure 1. 

Model diagram 

The flow diagram in Figure 1 illustrates the state changes 

of humans and rodents in a population over time, 

represented by solid lines and their interactions by dot 

lines. 

 

Mathematical formulations 

The schematic representation of the differential equation 
is given as: 

𝑑𝑆h

𝑑𝑡
= λh −

𝛽rIr+ 𝛽hIh

𝑁h
− μh       (1) 

𝑑E𝒉

𝑑𝑡
=

𝛽rIr+ 𝛽hIh

𝑁h
− (θ1 + μh)Eh      (2) 

𝑑𝐼ℎ

𝑑𝑡
= θ1Eh − (θ2 + θ3 + μh + δh + τ)Ih    (3) 

𝑑𝑄ℎ

𝑑𝑡
= θ3Ih − (θ5 + μh + δh)Qh     (4) 

𝑑𝐻ℎ

𝑑𝑡
= θ2Ih − (θ4 + δh + μh)Hh     (5) 

𝑑𝑅ℎ

𝑑𝑡
= (θ4Hh + θ5Qh) − μhRh      (6) 

𝑑𝑆𝑟

𝑑𝑡
= λr −

𝛽1Ir+ 𝛽2Ih

𝑁r
– μr      (7) 

𝑑E𝑟

𝑑𝑡
=

𝛽1Ir+ 𝛽2Ih

𝑁r
− (μr + γ1)Er     (8) 

𝑑𝐼𝑟

𝑑𝑡
= γ1E𝑟 − (𝜇𝑟 + 𝛿𝑟 + γ2)𝐼𝑟     (9) 

Table 1. The overview of the model's variable used in the model 

Variables Description 

𝑁ℎ(𝑡) Total population of human compartment 

𝑆ℎ(𝑡) Susceptible human 

𝐸ℎ(𝑡) Exposed human  

𝐼ℎ(𝑡) Infected human 

𝐻ℎ(𝑡) Hospitalized human class 

𝑄ℎ(𝑡) Isolated human class 

𝑅ℎ(𝑡) Recovered human class 

𝑁𝑟(𝑡) Total population of rodent compartment 

𝑆𝑟(𝑡) Susceptible rodent  

𝐸𝑟(𝑡) Exposed rodent 

𝐼𝑟(𝑡) Infected rodent  

Table 2. The parameters description of the model 

Parameters Descriptions 

λℎ Reproduction rate of the human  

λ𝑟 Population of the species of rodent 

𝛽rIr Rate at which infections spread from diseased rodents to human 

𝛽hIh Rate from infectious individuals to healthy ones 

𝜃1 Rate at which the exposed humans are moving to the infected class 

θ2 Rate at which human with severe symptoms are hospitalized 

θ3 Rate at which human with milder symptoms are being isolated 

θ4 Rate of recovery of human from hospitalization 

θ5 Rate of recovery of human from Isolation 

𝛽1Ih Transmission rate from infected humans to susceptible rodents 

𝛽2Ir Transmission rate from infected rodents to susceptible rodents 

𝛾1 Rate at which the exposed rodents are moving to the infected class 

𝜏 Diagnosis of infected human 

μh ,μr Natural death rate for humans and rodents 

𝛿h ,𝛿r Death due to the disease for humans and rodents 
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MODEL ANALYSIS 

Existence and Boundedness of solutions 

Human Compartment 

Positively invariant is the set Ω= {(S, E, I, H, Q, R) ∈ 

IR6+)}: 0 ≤  S+E+I+H+Q+R ≤  
𝜋

𝜇
  under system of 

equation (1-9) having a starting point ≥ 0. 

Proof: 

Adding the equations in human compartment 2.2 

dN(t)

𝑑𝑡
=

dS(t)

𝑑𝑡
 +  

dE(t)

𝑑𝑡
 +  

dI(t)

𝑑𝑡
 +  

dH(t)

𝑑𝑡
 +  

dQ(t)

𝑑𝑡
 +  

dR(t)

𝑑𝑡
 

= λh − 𝜇ℎ𝑁ℎ − 𝛿ℎ (I + τ + H + Q + R) ≤ λh - 𝜇ℎ𝑁ℎ 

 
dN(t)

𝑑𝑡
 ≤ λh - 𝜇ℎ𝑁ℎ 

dN(t)

𝑑𝑡
 +𝜇ℎ𝑁ℎ ≤ λh           

Using the integrating factor (I.F) = 𝑒𝜇𝑡 

 𝑒𝜇𝑡 dN(t)

𝑑𝑡
 +𝑒𝜇𝑡𝜇ℎ𝑁ℎ ≤𝑒𝜇𝑡λh 

d

𝑑𝑡
(N(t)𝑒𝜇𝑡)  ≤ 𝑒𝜇𝑡λh 

Integrating with respect to t, we have 

ʃ
d

𝑑𝑡
(Nh (t)𝑒𝜇𝑡)𝑑𝑡 ≤  λh ʃ𝑒𝜇𝑡𝑑𝑡 

Nh(t)𝑒𝜇𝑡 ≤  
λh

μh
𝑒𝜇𝑡  + C  

Nh (t) ≤ 𝑒−𝜇𝑡(
λh

μh
𝑒𝜇𝑡  + C) 

⟹Nh (t) ≤  
λh

μh
+ 𝐶𝑒−𝜇𝑡 

At t= 0,  

Nh (0) ≤  
λh

μh
 + C 

Nh (0) -  
λh

μh
 ≤ C 

⟹Nh (t) ≤  
λh

μh
 + (N (0) -

λh

μh
) 𝑒−𝜇𝑡 

Nh (t) ≤  
λh

μh
 + N (0) 𝑒−𝜇𝑡 − 

λh

μh
 𝑒−𝜇𝑡 

Taking limit as t ⟶ ∞ 

0≤ N(t) ≤ 
λh

μh
                                                                                    (10) 

Therefore, the solution of equation (1 – 6) with non-

negative initial value are bounded and exist within [0, +∞) 

Rodent Compartment 

The set Ω= {(S, E, I) ∈ IR3+)}: 0 ≤S+E+I≤  
𝜆𝑟

𝜇𝑟
 is 

positively invariant under system of equation (7-9) with 
initial conditions S (0) ≥ 0, E (0) ≥ 0 and I (0) ≥0 

Proof: 

Adding the equations in rodent compartment 2.2, 

dNr(t)

𝑑𝑡
=

dSr(t)

𝑑𝑡
 +  

dEr(t)

𝑑𝑡
 +  

dIr(t)

𝑑𝑡
 

= 𝜆𝑟 − μrNh – δr(Er+Ir) - γ2𝐼𝑟≤ λr − μrNr 

dN(t)

𝑑𝑡
 ≤ 𝜆𝑟 − μrNr 

⟹ 
dN(t)

𝑑𝑡
 + μrNr ≤ 𝜆𝑟  

Using the integrating Factor (I.F) = 𝑒μr𝑡 

⟹ 𝑒μr𝑡
dN(t)

𝑑𝑡
 + 𝑒μr𝑡μrNr ≤ 𝑒μr𝑡𝜆𝑟 

d

𝑑𝑡
( Nr(t) 𝑒μr𝑡)≤ 𝑒μr𝑡𝜆𝑟 

Integrating with respect to t,  

ʃ
d

𝑑𝑡
(Nr (t)𝑒μr𝑡)𝑑𝑡 ≤  𝜆𝑟  ʃ𝑒μr𝑡𝑑𝑡 

⟹Nr(t) 𝑒μr𝑡 ≤ 
𝜆𝑟

μr
𝑒μr𝑡 +  𝐶 

Nr(t) ≤ 𝑒−μr𝑡(
𝜆𝑟

μr
𝑒μr𝑡 +  𝐶) 

⟹ Nr(t) ≤ 
𝜆𝑟

μr
 + C𝑒−μr𝑡 

At t=0 

N (0) ≤ 
𝜆𝑟

μr
 + C 

N (0) - 
𝜆𝑟

μr
 ≤ C 

⟹ Nr(t) ≤ 
𝜆𝑟

μr
 + (N (0) - 

θr

μr
) 𝑒−μr𝑡 

Nr(t) ≤ 
𝜆𝑟

μr
 + (N (0) 𝑒−μr𝑡- 

𝜆𝑟

μr
𝑒−μr𝑡 

Taking limit as t⟶∞ 

0 ≤ Nr(t) ≤  
𝜆𝑟

μr
     

      (11) 

Therefore, the solution of system (7 – 9) with non-
negative initial value are bounded and exist within [0, +∞) 

Positivity of solutions 

If 𝑆ℎ(0) ≥ 0, 𝐸ℎ (0) ≥ 0, 𝐼ℎ (0)≥0, 𝐻ℎ(0)≥0, 𝑄ℎ(0)≥0, 

𝑅ℎ(0)≥0, 𝑆𝑟 (0)≥ 0, 𝐸𝑟(0)≥ 0 and 𝐼𝑟 (0) ≥ 0 then the 

solutions 𝑆ℎ(t), 𝐸ℎ(t), 𝐼ℎ(t), 𝐻ℎ(t), 𝑄ℎ(t), 𝑅ℎ(t), 𝑆𝑟(t), 𝐸𝑟(t) 

and 𝐼𝑟(t) are all positive with every t ≥ 0 
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Proof 

𝑑𝑆h (t)

𝑑𝑡
= 𝜆ℎ − (

𝛽rIr+ 𝛽hIh

𝑁h
) Sℎ − μhS                                                                                                                         

𝑑𝑆h (t)

𝑑𝑡
= 𝜆ℎ − Sℎ (

𝛽rIr+ 𝛽hIh

𝑁h
+ μh) 

Let G(t)= 
𝛽rIr+ 𝛽hIh

𝑁h
+ μh 

𝑑𝑆h (t)

𝑑𝑡
= 𝜆ℎ − G(t)Sℎ(t) 

⟹ 
𝑑𝑆h (t)

𝑑𝑡
+  G(t)Sℎ(t) ≥ 𝜆ℎ 

Using the Integrating factor, we have I. F= 𝑒∫ 𝐺(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝐺(𝑠)𝑑𝑠
𝑡

0
𝑑𝑆h (t)

𝑑𝑡
 + 𝑒∫ 𝐺(𝑠)𝑑𝑠

𝑡

0  G(t)Sℎ(t)≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝑆h (t) 𝑒

∫ 𝐺(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝑆h (s)𝑒

∫ 𝐺(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ 𝑆h (t) 𝑒
∫ 𝐺(𝑠)𝑑𝑠

𝑡

0 - 𝑆h (0) ≥ 0 

𝑆h (t) ≥ 𝑆h (0)𝑒−∫ 𝐺(𝑠)𝑑𝑠
𝑡

0  

⟹ 𝑆h (t) ≥ 0     (12) 

𝑑E𝒉(t)

𝑑𝑡
=

𝛽rIr+ 𝛽hIh

𝑁h
− (θ1 + μh)Eh ≥ - (θ1 + μh) Eh 

Let F = θ1 + μh 

⟹ 
𝑑E𝒉(t)

𝑑𝑡
 + F(t)E(t)≥ 0 

Using Integrating factor, we have I.F= 𝑒∫ 𝐹(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝐹(𝑠)𝑑𝑠
𝑡

0
𝑑E𝒉(t)

𝑑𝑡
 + 𝑒∫ 𝐹(𝑠)𝑑𝑠

𝑡

0  F(t)E(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝐸h (t) 𝑒

∫ 𝐹(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝐸h (s)𝑒

∫ 𝐹(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ 𝐸h (t) 𝑒
∫ 𝐹(𝑠)𝑑𝑠

𝑡

0 - 𝐸h  (0) ≥ 0 

⟹ 𝐸h (t) ≥ 0                                                        (13) 

𝑑𝐼ℎ(t)

𝑑𝑡
= θ1Eh − (θ2 + θ3 + μh + δh + τ)Ih ≥ - (θ2 +

θ3 + μh + δh + τ)Ih 

Let M= θ2 + θ3 + μh + δh + τ 

⟹ 
𝑑𝐼ℎ(t)

𝑑𝑡
 + M(t)I(t) ≥ 0 

Using Integrating factor, we have I. F= 𝑒∫ 𝑀(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝑀(𝑠)𝑑𝑠
𝑡

0
𝑑I𝒉(t)

𝑑𝑡
 + 𝑒∫ 𝑀(𝑠)𝑑𝑠

𝑡

0  M(t)I(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝐼h (t) 𝑒

∫ 𝑀(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝐼h (s)𝑒

∫ 𝑀(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ 𝐼ℎ(t) 𝑒∫ 𝑀(𝑠)𝑑𝑠
𝑡

0 - I (0) ≥ 0 

𝐼ℎ(t) ≥ 𝐼ℎ(0)𝑒−∫ 𝑀(𝑠)𝑑𝑠
𝑡

0  

⟹ 𝐼ℎ(t) ≥ 0                                                         (14) 

𝑑𝐻ℎ(t)

𝑑𝑡
= θ2Ih − (θ4 + δh + μh)Hh ≥  - (θ4 + δh +

μh)Hh 

Let Y= θ4 + δh + μh 

⟹ 
𝑑𝐻ℎ(t)

𝑑𝑡
 + Y(t)H(t) ≥ 0 

Using Integrating factor, we have I.F= 𝑒∫ 𝑌(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝑌(𝑠)𝑑𝑠
𝑡

0
𝑑H𝒉(t)

𝑑𝑡
 + 𝑒∫ 𝑌(𝑠)𝑑𝑠

𝑡

0  M(t)H(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝐻h (t) 𝑒

∫ 𝑌(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝐻h (s)𝑒

∫ 𝑌(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ 𝐻ℎ(t) 𝑒∫ 𝑌(𝑠)𝑑𝑠
𝑡

0 - 𝐻ℎ (0) ≥ 0 

𝐻ℎ(t) ≥ 𝐻ℎ(0)𝑒−∫ 𝑌(𝑠)𝑑𝑠
𝑡

0  

⟹ 𝐻ℎ(t) ≥ 0     (15) 

𝑑𝑄ℎ(t)

𝑑𝑡
= θ3Ih − (θ5 + μh + δh)Qh ≥ - (θ5 + μh +

δh)Qh 

Let J= θ5 + μh + δh 

⟹ 
𝑑𝑄ℎ(t)

𝑑𝑡
 + J(t)Q(t) ≥ 0 

Using Integrating factor, we have I.F= 𝑒∫ 𝐽(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝐽(𝑠)𝑑𝑠
𝑡

0
𝑑Q𝒉(t)

𝑑𝑡
 + 𝑒∫ 𝐽(𝑠)𝑑𝑠

𝑡

0  J(t)Q(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝑄h (t) 𝑒

∫ 𝐽(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝑄h (s)𝑒

∫ 𝐽(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ Q(t) 𝑒∫ 𝐽(𝑠)𝑑𝑠
𝑡

0 - Q (0) ≥ 0 

Q(t) ≥ Q(0)𝑒−∫ 𝐽(𝑠)𝑑𝑠
𝑡

0  

⟹ Q(t) ≥ 0     (16) 

𝑑𝑅ℎ  (t)

𝑑𝑡
= (θ4Hh + θ5Qh) − μhRh  ≥  -μhRh  

⟹ 
𝑑𝑄ℎ(t)

𝑑𝑡
 +μh(𝑡)Rh (t) ≥ 0 
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Using Integrating factor, we have I.F= 𝑒∫ μh(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ μh(𝑠)𝑑𝑠
𝑡

0
𝑑R𝒉(t)

𝑑𝑡
 + 𝑒∫ μh(𝑠)𝑑𝑠

𝑡

0  μh(t)R(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝑅h (t) 𝑒

∫ μh(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝑅h (s)𝑒

∫ μh(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ R(t) 𝑒∫ μh(𝑠)𝑑𝑠
𝑡

0 - R(0) ≥ 0 

R(t) ≥ R(0)𝑒−∫ μh(𝑠)𝑑𝑠
𝑡

0  

⟹ R(t) ≥ 0     (17) 

𝑑𝑆𝑟

𝑑𝑡
= θr − (

𝛽1Ir+ 𝛽2Ih

𝑁r
)S– μrS   

𝑑𝑆h (t)

𝑑𝑡
= θr − Sr (

𝛽1Ir+ 𝛽2Ih

𝑁r
+ μr) 

Let P(t)= 
𝛽1Ir+ 𝛽2Ih

𝑁r
+ μh 

𝑑𝑆h (t)

𝑑𝑡
= θr − P(t)Sr(t) 

⟹ 
𝑑𝑆r (t)

𝑑𝑡
+  P(t)Sr(t)≥ 0 

Using the Integrating factor, we have I.F= 𝑒∫ 𝑃(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝑃(𝑠)𝑑𝑠
𝑡

0
𝑑𝑆r (t)

𝑑𝑡
 + 𝑒∫ 𝑃(𝑠)𝑑𝑠

𝑡

0  P(t)Sr≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝑆r (t) 𝑒

∫ 𝑃(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝑆r (s)𝑒

∫ 𝑃(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ Sr(t) 𝑒∫ 𝑃(𝑠)𝑑𝑠
𝑡

0 - S (0) ≥ 0 

Sr(t) ≥ Sr(0)𝑒−∫ 𝑃(𝑠)𝑑𝑠
𝑡

0  

⟹ Sr(t) ≥ 0     (18) 

𝑑E𝑟(t)

𝑑𝑡
=

𝛽1Ir+ 𝛽2Ih

𝑁r
− (γ1 + μr)Er ≥ - (γ1 + μr) Er  

Let N = γ1 + μh 

⟹ 
𝑑E𝒓(t)

𝑑𝑡
 + N(t) Er(t)≥ 0 

Using Integrating factor, we have I.F= 𝑒∫ 𝑁(𝑠)𝑑𝑠
𝑡

0   

𝑒∫ 𝑁(𝑠)𝑑𝑠
𝑡

0
𝑑E𝒓(t)

𝑑𝑡
+ 𝑒∫ 𝑁(𝑠)𝑑𝑠

𝑡

0  N(t)Er(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝐸r(t) 𝑒

∫ 𝑁(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝐸r (s)𝑒

∫ 𝑁(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ Er(t) 𝑒∫ 𝑁(𝑠)𝑑𝑠
𝑡

0 - Er(0) ≥ 0 

Er (t) ≥ Er(0)𝑒−∫ 𝐹(𝑠)𝑑𝑠
𝑡

0  

⟹ Er(t) ≥ 0     (19) 

𝑑𝐼𝑟(t)

𝑑𝑡
= γ1Er − (𝜇 + 𝛿 + γ2)𝐼 ≥ -( 𝜇 + 𝛿 + γ2)I 

Let V= 𝜇 + 𝛿 + γ2 

⟹ 
𝑑𝐼𝑟(t)

𝑑𝑡
 + V(t)I(t) ≥ 0 

Using Integrating factor, we have I.F= 𝑒∫ 𝑉(𝑠)𝑑𝑠
𝑡

0  

𝑒∫ 𝑉(𝑠)𝑑𝑠
𝑡

0
𝑑I𝒓(t)

𝑑𝑡
 + 𝑒∫ 𝑉(𝑠)𝑑𝑠

𝑡

0  V(t)I(t) ≥ 0 

⟹ 
𝑑

𝑑𝑡
(𝐼r (t) 𝑒

∫ 𝑉(𝑠)𝑑𝑠
𝑡

0 ) ≥ 0 

∫
𝑑

𝑑𝑠
(𝐼r (s)𝑒

∫ 𝑉(𝑠)𝑑𝑠
𝑡

0
𝑡

0
) ≥ 0 

⟹ 𝐼r (t) 𝑒
∫ 𝑉(𝑠)𝑑𝑠

𝑡

0 - I (0) ≥ 0  

𝐼r (t) ≥ 𝐼r (0)𝑒−∫ 𝑉(𝑠)𝑑𝑠
𝑡

0  

⟹ 𝐼r (t) ≥ 0     (20) 

then the solutions Sh(t), Eh(t), Ih(t), Hh(t), Qh(t), Rh(t), Sr 
(t), Er(t) and Ir(t) are all positive for all t ≥ 0 

Equilibrium Point Analysis 

These points are generated by setting the equations (1-9) 

above to zero, which will absolutely yield Equilibrium of 

Differential Systems Free from Diseases and the endemic 

equilibrium (DEE). At equilibrium states we have, 
𝑑𝑆h

𝑑𝑡
=

𝑑𝑆𝐸h

𝑑𝑡
=

𝑑𝐼𝑆h

𝑑𝑡
=

𝑑𝐻h

𝑑𝑡
=

𝑑𝑄h

𝑑𝑡
=

𝑑𝑅h

𝑑𝑡
=

𝑑𝑆𝑟

𝑑𝑡
=

𝑑E𝑟

𝑑𝑡
=

𝑑𝐼𝑟

𝑑𝑡
= 0 

Let 𝛼ℎ = 
𝛽rIr+ 𝛽hIh

𝑁h
 and 𝛼r = 

𝛽1Ir+ 𝛽2Ih

𝑁r
 

Therefore: 

λh − (𝛼ℎ + µ)𝑆h = 0         

𝛼ℎSh −(θ1 + μh)Eh= 0        

θ1Eh − (θ2 + θ3 + μh + δh + τ)Ih = 0                           

θ2Ih − (θ4 + δh + μh)Hh  = 0        

θ3Ih − (θ5 + μh + δh)Qh = 0                         

(θ4Hh + θ5Qh) − μhRh = 0                           

λr − (𝛼r + μr  )𝑆𝑟 = 0                                 

𝛼r𝑆𝑟 − (μ + γ1)Er=0      

 γ1E𝑟 − (𝜇𝑟 + 𝛿𝑟)𝐼𝑟=0                                 (21) 
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Equilibrium of Differential Systems Free from Diseases  

The equilibrium of Differential Systems Free from 
Diseases refers to the complete absence of a disease in the 
population. We consider all disease compartments to be 

zero. Therefore, we have  𝐼ℎ= 𝐼ℎ=𝐻ℎ= 𝑄ℎ = 𝐸𝑟= 𝐼𝑟=0. 
On putting these terms in equation (13) and solving 

simultaneously, we get the Equilibrium of differential 
systems free from the disease in the model. 

𝑆ℎ =
λh

μh
, 𝐸ℎ = 0, 𝐼ℎ = 0, 𝑄ℎ = 0, 𝐻ℎ = 0, 𝑅ℎ = 0, 𝑆𝑟 =

λr

μr
, 𝐸𝑟 = 0, 𝐼𝑟 = 0                              (22) 

 
Endemic equilibrium of the population 

When disease cannot be eliminated but still exists in the population, it is said to be an endemic equilibrium state. At this 
point, monkeypox is present in the susceptible population. Since there are both humans and rodents who are prone to 
being exposed to the disease, all compartments in the model will be taken into account in this scenario. If it is the endemic 

equilibrium state, then 𝐸ℎ= 𝐼ℎ=𝐻ℎ= 𝑄ℎ = 𝐸𝑟= 𝐼𝑟≠0 while taking into account the outcome for each compartment in 
consideration as follows: 

𝑆ℎ* = 
λh

𝛼ℎ+µh
            (23) 

𝐸ℎ*= 
𝛼ℎλh

(λh+μ)(θ1+ μh)
           (24) 

𝐼ℎ*= 
θ1𝛼ℎλh

(λh+μ)(θ1+ μh)(θ2+θ3+μh+δh+τh)
         (25) 

𝐻ℎ*= 
θ1𝛼ℎλhθ2

(λh+μ)(θ1+ μh)(θ2+θ3+μh+δh+τh)(θ4+δ+μ)
        (26) 

𝑄ℎ*=
θ1𝛼ℎλhθ3

(λh+μ)(θ1+ μh)(θ2+θ3+μh+δh+τh)
         (27) 

𝑅ℎ*= 
θ1𝛼ℎλhθ2Θ4+θ1𝛼ℎλhθ3θ5

μ(λh+μ)(θ1+ μh)(θ2+θ3+μh+δh+τh)(θ4+δ+μ)(λh+μ)(θ1+ μh)(θ2+θ3+μh+δh+τh)
     (28) 

𝑆𝑟*= 
λr

 𝛼𝑟 + 𝜇𝑟 
            (29) 

𝐸𝑟*=
λrαr

(𝛼𝑟 + 𝜇𝑟)(μr+γ1)
           (30) 

𝐼𝑟*= 
 γ1λrαr

(𝛼𝑟 + 𝜇𝑟)(μr+γ1)(μr+𝛿𝑟)
          (31) 

BASIC REPRODUCTION NUMBER 

As Diekmann et al. (1990) pointed out, the Next 

Generation Matrix approach sees the Reproduction 

number (Ro) as the highest eigenvalue model. 

Using the spectral radius ρ, Ro= ρ(FV-1.  

Theorem 1 

Examine the model of disease transmission provided by 

and see whether it meets the following presumptions  
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥) = ℱ𝑖(𝑥) − 𝓋𝑖(𝑥), 𝑖 =

1,.  .  . , 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝓋𝑖 = 𝓋 𝑖
− − 𝓋 𝑖

+ 

should x ≥ 0, then (should a compartment be empty, there 

cannot be any individual transfer out of the compartment) 

if xi = 0, the incidence of infection for the non-infected 

compartment is zero. 

ℱ𝑖 = 0 𝑖𝑓 𝑖 > 𝑚. (The population is free of the disease) 

If  𝑥𝑜  is an Equilibrium of differential systems free from 

the disease in the model, then 𝑥𝑜 is stable if Ro < 1, but 

unstable if Ro > 1, where Ro= ρ(FV-1). 

Proof 

Define Z1 = F – V. With V a nonsingular M-matrix and F 

non-negative, - Z1 = V – F. This means, 

s(Z1) constitutes a nonsingular M-matrix that displays the 

biggest true value among the matrix eigenvalues Z1. - Z1V-

1=1 - FV-1 ; FV-1 is nonnegative. 

Z1 is a non-singular M-matrix. FV-1 is non-singular in M-

matrix form. 

FV-1 is a non-negative hence all eigenvalues of FV-1   have 

either less magnitudes than ρ(FV-1).  

FV-1 is a nonsingular M-matrix whose, ⟺ ρ(FV-1) is 1. 

s(Z1) < 0 only hence if Ro < 1. Moreover, follows: 

1 - FV-1 is a single M-matrix; ρ(FV-1) = 1. s(Z1 ) = 0 ⟺ - 

Z1 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 3 NO. 4, December 2024, Pp 288 – 299 

 296 

 

 https://scientifica.umyu.edu.ng/                      Bolaji et al., /USci, 3(4): 288 – 299, December 2024  
 

Using equation (1-9), the infection States of the model are 

𝐸ℎ, 𝐼ℎ, 𝐻ℎ, 𝑄ℎ, 𝐸𝑟 and 𝐼𝑟. At Disease Free equilibrium, we 
have (

𝜆ℎ

μh
 , 0,0 ,0 ,0 ,0, 

𝜆𝑟

μr
 , 0 ,0) then the transmission matrix 

F and the Transition matrix V are given below.

F=   

[
 
 
 
 
 
 
 

 
𝛽rIr+ 𝛽hIh  

𝑁h
Sh  

0
0
0

 
𝛽1Ir+ 𝛽2Ih  

𝑁r
Sr 

0 ]
 
 
 
 
 
 
 

 and V =   

[
 
 
 
 
 
 

 
(θ1 + μh)Eh

(θ2 + θ3 + μh + δh + τ)Ih  −  θ1Eh

(θ4 + δh + μh)Hh − θ2Ih
 (θ5 + μh + δh)Qh −  θ3Ih

(μr + γ1)Er
(𝜇𝑟 + 𝛿𝑟)𝐼𝑟 − γ1E𝑟 ]

 
 
 
 
 
 

     (32) 

 Then 

F=    

[
 
 
 
 
 
0 𝛽h    0 0 0 𝛽r

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 𝛽2 0 0 0 𝛽1 
0   0   0 0 0 0 ]

 
 
 
 
 

  and V=   

[
 
 
 
 
 

𝐾1     0    0 0 0 0
− θ1 𝐾2 0 0 0 0
0 − θ2 𝐾3 0 0 0
0 − θ3 0 𝐾4 0 0
0 0 0 0 𝐾6 0
0 0 0 0 − γ1 𝐾7]

 
 
 
 
 

    (33) 

Where   k1=  θ1 + μh , k2=(θ2 + θ3 + μh + δh + τ) , k3= θ4 + δh + μh , k4= θ5 + μh + δh , k6= μr + γ1 , k7=  

𝜇𝑟 + 𝛿𝑟 

V-1=  

[
 
 
 
 
 
 
 
 
 
  

1

𝐾1
    0    0 0 0 0

        
θ1

𝐾1𝐾2
        

1

𝐾2
0 0 0 0

 
θ1θ2

𝐾1𝐾2𝐾3

θ2

𝐾2𝐾3

1

𝐾3
0 0 0

 
θ1 θ3

𝐾1𝐾2𝐾4

θ3

𝐾2𝐾4
0

1

𝐾4
0 0

0 0 0 0
1

𝐾6
0

0 0 0 0
γ1

𝐾6𝐾7

1

𝐾7]
 
 
 
 
 
 
 
 
 
 

 Then, FV-1=

[
 
 
 
 
 
  

𝛽hθ1

𝐾1𝐾2
    

𝛽h

𝐾2
    0 0

𝛽r γ1 

𝐾6𝐾7

𝛽r

𝐾7

 𝑂  0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

𝛽1θ1

𝐾1𝐾2

𝛽1

𝐾2
0 0

𝛽2 γ1 

𝐾6𝐾7

𝛽2  

𝐾7

0 0 0 0 0 0 ]
 
 
 
 
 
 

   (34) 

Now we have, 

R0= 
1

2
 
𝛽2 γ1 𝐾1𝐾2+ 𝛽hθ1𝐾6𝐾7+√4𝛽1𝛽r γ1 𝐾1𝐾2𝐾6𝐾7θ1+ 𝛽2

2 γ1
2𝐾1

2𝐾2 
2−2𝛽2𝛽ℎγ1𝐾1𝐾2𝐾6𝐾7θ1+𝛽ℎ

2𝐾6
2𝐾7

2θ1
2

𝐾1𝐾2𝐾6𝐾7
   (35) 

The Disease-free Equilibrium exhibits both locally asymptotically stability and instability when R0 < 1 and otherwise. 

Where   k1=  θ1 + μh , k2=(θ2 + θ3 + μh + δh + τ) , k3=θ4 + δh + μh , k4= θ5 + μh + δh , k6= μr + γ1 , k7=  

𝜇𝑟 + 𝛿𝑟 

SENSITIVITY ANALYSIS OF R0 

Using the standardized forward sensitivity index as the 
ratio of variable change to parameter change, sensitivity 
analysis evaluates variable relative change when parameter 
changes, it also evaluates, under a certain set of 
assumptions, the effects of varying values of an 
independent variable on a specific dependent (Kalyan et 
al., 2021). Partially derivative products may be used as an 
alternate definition of the awareness indicator when the 
variable is an identifiable component of the parameter in 
question. The factors that impact the dynamics of the 
monkeypox virus model are weighted based on their 
sensitivity indices, we can identify the most sensitive 
characteristics that significantly affect the basic 
reproduction and demonstrate how specific parameters 

can impact the growth or decline of the basic reproductive 
number. To obtain the sensitivity analysis of the basic 

reproductive number𝑅0, we use the procedure in (Chitnis 
et al., 2008). The standardized forward sensitivity index of 

a variable 𝜁 under the parameter 𝜐 can be defined through 
the following formula as, 

𝑆𝜐
𝜁 

= 
∂𝜁 

∂𝜐 
 x 

𝜐 

𝜁 
     (36) 

Having considered the above formula (36), we can have 

the expression for 𝑅0 as, 

𝑆𝜐
𝑅0 

= 
∂𝑅0 

∂𝜐 
 x 

𝜐 

𝑅0 
     (37) 
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For each parameters 𝑅0 and their numerical values are 

given in Table 3 are used to get the sensitivity indices. We 

shall have the sensitivity index of 𝑅0  with respect to the 

parameter 𝜇r which is as follows, 

𝑆𝜇r 
𝑅0 

= 
∂𝑅0 

∂𝜇r  
 x 

𝜇r 

𝑅0 
= -1.87524853710-7   (38) 

We use the above formula to obtain the sensitivity indices 
of the remaining 11 different parameters which include  

𝛽h, 𝛽2, 𝜇h, τ, 𝜃1, 𝛿h, 𝜃3, 𝜃2, 𝛿r, 𝛽r, 𝛽1 .    

Table 3. Parameters and their sensitivity indices  

Parameters Values Sensitivity indices Reference Value 

𝜇r 0.002 -1.87524853710-7 Bhunu and Mushayabasa(2011) 

𝛽h 0.000063 -1.73182805710-7 Bhunu and Mushayabasa(2011) 

𝜇h 1.5 -0.4624230659 Bhunu and Mushayabasa(2011) 

𝜏 2.0 0.1643704234 Assumed 

𝜃1 0.2 0.03866711564 Peter et al. (2022) 

𝛿h 0.2 0.01643704234 Odom et al. (2009) 

𝜃3 0.1375 0.01130046661 Assumed 

𝜃2 0.001 0.0001779936876 Assumed 

𝛽2 0.027 0.009355014423 Bhunu and Mushayabasa(2011) 

𝛿r 0.4 0.03264884276 Emeka et al. (2018) 

𝛽r 0.0025 0.00003916740274 Bhunu and Mushayabasa(2011) 

𝛽1 0.075 0.00003916740274 Assumed 

       

 

Figure 2. Sensitivity of some important parameters 

RESULTS AND DISCUSSIONS 

The essence of the formulated model in Figure 1 with the 
model equations (1 - 11) explains the transmission 
dynamics of monkeypox in the two population and their 
interaction as it relates to the variables and parameters in 
Table 1 and Table 2. This shows the reality of how 
monkeypox is being transmitted and takes into detail the 
incubation stage of both rodent and human populations 
and the rate at which the disease progresses therefore, the 
need for prevention and intervention. By the process of 

evaluation and derivation, we obtain the basic 
reproduction number as seen in equation (27). We use this 
as a key variable to determine if monkeypox can be 
eradicated or will continue to evade the population. The 
basic reproduction number is a threshold below which the 
generation of secondary cases is insufficient to maintain 
the spread of the monkeypox virus within the population. 
If the basic reproduction number is less than 1, then the 
number of infected humans and rodents will decrease 
from the population, and the monkeypox virus will die off; 
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should the count of those with the disease rise, the 
monkeypox virus will continue to spread (Driesche and 
Watmough, 2022). From the analysis of the model, it is 
clear that the model satisfies stability, positivity, drug-free 
equilibrium, and other properties. The model can also 
become endemic, as seen in equation (15 to 23). When the 
sensitivity indices provided in Table 3 are reviewed, the 
index of the natural death rate of rodents and the 
transmission rate from diseased humans to vulnerable 
humans is extremely near to zero. This means that their 
alterations have the least predictive power of the results of 
the model. It implies that changes in the population 
dynamics of rodents as a result of natural mortality may 
not be a more determinate of the expanding tendencies in 
the spread of the illness, and hence, this mechanism of 
transmission is not a more likely trend in the monkeypox 
disease dynamics. A rise in the natural death rate of 
humans is also a factor of the monkeypox disease.  

The parameter of the transmission rate from diseased rats 
to humans, has a moderate impact on the model outputs. 
It implies that actions targeting this transmission channel 
may influence the overall spread of monkeypox. 
Monkeypox's spread is influenced in part by the speed at 
which infected humans infect rodents. A more important 
influence on the outcomes of the model is indicated by a 
higher positive sensitivity index for the parameter 
assessing the rate of transmission from infected to 
susceptible rodents. It shows that this transmission route 
considerably influences the dynamics of monkeypox. A 
positive sensitivity index clearly shows that the capacity of 
recovered infected rats to spread the infection determines 
the dynamics of monkeypox mostly. The death rate for 
infected people underlines the need of knowing how 
monkeypox affects the population. The death rate of 
infected rodents shows a greater positive sensitivity index 
when compared to the mortality rate of infected humans, 
therefore stressing the need of treating the disease's effect 
on the rodent population. Understanding the mechanics 
of transmission from exposed to infected individuals and 
changes in the rate at which exposed individuals become 
infected can help one to control the spread of monkeypox. 
Though it might not have as great of an influence as other 
intervention elements, the rate at which infected people 
are admitted to the hospital determines the general 
dynamics of monkeypox. The encouraging sensitivity 
index of quarantine individuals with modest problems is a 
key intervention tactic for stopping the spread of the 
disease. As the diagnosis of an infected person parameter 
shows, changes in the efficacy or precision of spotting 
infected people have the most impact on the model 
results. A timely and precise diagnosis is essential for both 
efficient therapy and control of monkeypox. The positive 
sensitivity index of Isolating persons with modest 
problems is an essential intervention technique in reducing 
the spread of the disease, as we can see from (Somma et 
al. 2019) how it reduces the spread of monkeypox in the 
population. Diagnosis of the infected person parameter 
has the highest positive sensitivity index, indicating that 
changes in the efficiency or accuracy of diagnosing 

infected individuals have the most substantial impact on 
the model outputs. Similar studies like that of (Huang et 
al. 2022) and (Peter et al. 2021) have shown that timely and 
correct laboratory diagnosis and Isolation of infected 
humans are critical for efficient care and control of 
monkeypox within a susceptible population and human-
to-human interaction was the most sensitive parameter in 
their sensitivity analysis which further support the notion 
that diagnosis, hospitalization and Isolation help in 
reducing our model’s basic reproduction number.  

The basic reproduction number is sensitive to changes in 

diagnosis (τ), contact rate (𝜃1), and death rate (𝛿h). A 
diagnosis in disease progression leads to a reduction in the 
basic reproduction number, suggesting that it can reduce 
the spread of the disease. Initially increasing the 
transmission potential, higher contact rates later decline in 
response to intervention strategies. As death rates 
resulting from the illness increase, the sensitivity of the 
basic reproduction number falls linearly. Increasing 
diagnosis results in a reduction in Ro and with a slight 
increase of the basic reproduction number, which still 

reduces as the contact rate 𝜃1 keeps increasing shows that 
because of the intervention strategies, the possibility of 
transmission of new infection is reduced. Public health 
experts must improve on the understanding of the disease 
transmission, laboratory diagnosis, and prevention which 
can be achieved through awareness of diagnosis, Isolation, 
and hospitalization so as to curtail the spread of the 
disease within the population. The value of Ro also shows 
that public health must put in all effort in maintaining a 
low transmission rate, as also pointed out by (Allehiany et 
al. 2023), and also address any factor that could lead to an 
increase of disease transmission. 

CONCLUSION 

This study develop a mathematical model that has nine 
compartmental models developed using ordinary 
differential equations. When the fundamental 
reproductive number is smaller than unity, it was 
demonstrated that the model exhibited a drug-free 
equilibrium point that was locally asymptotically stable. 
This indicates that if the interventions are not adhered to, 
the disease will continue to evade human and rodent 
population as seen in equation (15 to 23). MATLAB was 
used to plot the graph in Figure 2, and Maple software was 
used in the sensitivity analysis which offers helpful 
information on the relative significance of various 
components in the transmission model of monkeypox. 
The diagnosis, rates of infection transmission for humans 
and rodents, rates of natural and disease-related mortality 
for humans and rodents, and the rates at which infected 
humans moved to the intervention strategies are all highly 
sensitive to the model (for instance, the rates of contacts 
from infected to quarantine demonstrate that individuals 
with robust immune systems can fend off the illness). It is 
evident that the implementation of a diagnosis strategy will 
significantly mitigate the transmission of monkeypox to 
both humans and rats; nonetheless, controlling the 
disease's spread within the rodent population will provide 
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challenges and so future research should investigate the 
role of vaccination and rodent control measures in 
reducing transmission. The impact of interventions related 
to these traits on stopping the disease's spread will be 
greater. Future research should investigate the role of 
vaccination and rodent control measures in reducing 
transmission among the rodent population. 
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