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INTRODUCTION
The Langumir equation shows how molecules are 
attached to a solid surface, especially in surface chemistry 
and adsorption. It illustrates how gas molecules remain 
fixed to a surface by having a set number of identical sites 
and no interactions between adsorbed molecules. In 
electrochemical systems, the Langumir equation can be 
applied to explain how ions or molecules are adsorbed 
onto electrode surfaces, enabling electrochemical 
reactions and sensor performance. 

In the area of chemical engineering and physical 

chemistry, Langumir's theory of adsorption marks a 

significant turning point once in a hundred years (Swenson 

& Stadie, 2019). In spite of its simplicity, the Langumir 

adsorption equation sheds light on the basic physics of 

molecular interactions at surfaces and laid the foundation 

for later developments in engineering process design, 

adsorbent material development, and interface 

phenomena. The Langumir model has had an important 

impact on many different areas of chemical science, from 

materials science to chemical biology. With the 

development of better adsorption theories, this influence 

became much more noticeable and has continued until 

this day.  

Often used to model Type I adsorption isotherms, the 
Langumir equation is one of the most effective adsorption 
isotherm equations (Afonso et al., 2016). The kinetic 
technique that Langumir initially employed for 2D 
monolayer surface adsorption was also used in their article 
to develop the equation's 1D equivalent, which can be 
applied in ultra micropores with single file diffusion 
systems. 

The way reactants are adsorbed onto catalyst surfaces and 
how this affects reaction rates is clarified by the Langumir 
model of catalysis. This is essential to the design and 
optimization of catalytic processes. In environmental 
science, the Langumir equation can be used to model how 
pollutants adsorb onto materials like soil or activated 
carbon, emphasizing pollutant removal. To build adequate 
water and air filtration systems, this is required. In material 
science, the Langumir equation helps understand the 
interactions between different molecules and material 
surfaces when studying thin films and coatings. 

The Langumir Blodgett and Langumir Boguslavski 
equations, two fundamental and exceedingly complex 
non-linear differential equations in engineering and basic 
sciences, were studied and solved analytically. The article 
analyzes these two non-linear differential equations using 
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ABSTRACT 
The non-linear ordinary differential equations of Langumir and Van der Pol are challenging to 

solve analytically. Thus, this work aims to convert these non-linear equations into linear form so 

that they may be easily solved. Assuming that the coefficients of the two equations meet the 

linearizability requirements, they are presented in the appropriate linearizable formats. After 

achieving this, the generalized Sundman transformation was used to linearize the equations. The 

formulae 𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥, 𝐹𝑦𝐺 ≠ 0 defines the nonpoint transformation 

known as the generalized Sundman transformation (GST). Basic solutions for the two equations 

were obtained upon application of the GST. The conventional approach of variation of 

parameters was used to solve the linear equations that emerged from the linearization process. 
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an unusual and uncomplicated technique that they tagged 
the Akbari-Ganji Method, or AGM (Hassanvand et al., 
2023). AGM and numerical solution were compared in 
this research, and the findings show that this method is 
relatively simple and effective, making it suitable for use 
with other non-linear problems. The authors argued that 
there are significant benefits to this method of solving 
differential equations and that it can be used to solve a 
variety of sets of challenging differential equations that 
have not yet found workable solutions using other 
approaches.  

On the other hand, the Van der Pol equation represents 
the behaviour of specific types of electrical circuits, 
particularly oscillators. It is especially useful for explaining 
circuits with non-linear resistors, such as vacuum tube 
oscillators and other non-linear electrical components. 
The Van der Pol equation is used in control systems to 
study the dynamics of non-linear damping systems. It can 
be used to evaluate the behaviour and stability of control 
systems that display complicated oscillatory phenomena, 
such as limit cycles. The Van der Pol equation is used to 
investigate rhythmic phenomena such as heartbeats and 
neural firing patterns and to model the activity of neurons 
and brain oscillators to better understand how rhythms are 
generated in biological systems. 

First-order approximation perturbation was used to solve 
the Van der Pol differential equation. 

𝑥′′(𝑡) − 𝛼(1 − 𝑥2(𝑡))𝑥′(𝑡) + 𝑥(𝑡) = 0. 

Two different solutions were found. The forcing function 
that eliminated resonance was produced by the first 
solution, which limited the initial conditions to be 

𝑥(0) 2 + 𝑥′2 = 4. This resulted in a stable solution; 
however, the initial conditions could only be around the 
origin of the phase plane space (Abbasi, 2024). The second 
solution allowed any initial conditions to be placed 
anywhere in the phase plane; nevertheless, the resulting 
forcing function produced resonance, making the system 
unstable over time. Phase plane graphs were used to 
compare the two solutions.  

When the damping force is not proportional to the 
velocity, the Van der Pol equation can be used to describe 
mechanical systems with non-linear damping, such as 
vibrating systems or mechanical oscillators. When 
developing control strategies for mechanical systems and 
robots that exhibit non-linear dynamic behaviour, the 
equation is helpful in the field of robotics. The Van der 
Pol equation can explain oscillatory behaviour in chemical 
kinetics where non-linear influences are present, such as 
in biological reactions and enzyme kinetics.  

The Van der Pol equation is a mathematical description of 
a second-order ordinary differential equation with cubic 
nonlinearities. Several studies incorporated time delay into 
the Van der Pol model (Elfouly & Sohaly, 2022). This 
study derives a delay differential equation from the Van 
der Pol model's differential equation and the resistor-

inductor-capacitor (𝑅𝐿𝐶) circuit. Because the Van der Pol 

delay model contains two delays, its applications can be 
reused in the proposed formula. In the case of minor 
delays, the Taylor series was used to obtain the ordinary 
differential equations from the delay differential 
equations. 

The Van der Pol equation, which reflects economic 
dynamics' non-linear and oscillatory nature, has been used 
to predict economic cycles and fluctuations. On rare 
occasions, it is employed to model particular 
environmental phenomena, such as climate oscillations, 
where non-linear feedback mechanisms are responsible 
for periodic behaviour. The Van der Pol equation can be 
used to explain the dynamics of population systems that 
display oscillatory behaviour, where nonlinearity plays a 
significant role in population fluctuations. 

The generalized Sundman transformation method was 
first used by Duarte et al. (1994), where only the Laguerre 
form of linearization was considered. Again, Mustafa et al. 
(2013) also examined the problem of linearization of non-
linear second-order ODEs to the Laguerre form through 
the use of generalized Sundman transformations (S-
transformations), as previously studied by Duarte et al. 
The outcomes acquired by Nakpim & Meleshko (2010) 
show that Duarte et al.’s use of the generalized Sundman 
transformation to solve the linearization problem for a 
second-order ordinary differential equation is insufficient. 

Subsequently, Orverem et al. (2021b) affirmed what 
Nakpim & Meleshko had previously mentioned—that the 
generalized Sundman transformation (GST) was 
insufficient via the Laguerre form. The Emden differential 
equation was then linearized by the authors using this 
technique. The method (GST) was also used to solve the 
equations of Yang-Baxter by Orverem et al. (2021a). 
Another contribution uses the linearization approach to 
obtain the solutions to the modified Ivey's equation and 
the variable frequency oscillator equation. Two methods 
of linearization are examined: differential forms (DF) and 
the generalized Sundman transformation (GST) (Orverem 
& Haruna, 2023). 

This research utilizes the non-Laguerre version of the 
generalized Sundman transformation to linearize the 
modified Langumir and Van der Pol second order non-
linear ordinary differential equations.  

METHOD 

The Generalized Sundman Transformation (GST) 

The formulae                                              

𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥, 𝐹𝑦𝐺 ≠ 0,            (1) 

define a generalized Sundman transformation, which is a 
nonpoint transformation. 

We need to find the necessary format for a second-order 

ordinary differential equation 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),  that 
can be linearized to become a linear ordinary differential 
equation 
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𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾.                                                      (2) 

The function 𝑢 and its derivatives 𝑢′ and 𝑢′′ are defined 
by the first formula of equation (1), and its derivatives 

with respect to 𝑥 gives 

𝑢′𝐺 = 𝐹𝑥 + 𝐹𝑦𝑦′,                                                          (3) 

where 
𝑑𝑡

𝑑𝑥
= 𝐺(𝑥, 𝑦) and 

𝑑𝑦

𝑑𝑥
= 𝑦′. 

Differentiation of equation (3) gives 

𝑢′′𝐺2 + 𝑢′(𝐺𝑥 + 𝐺𝑦𝑦′) = 𝐹𝑥𝑥 + 2𝐹𝑥𝑦𝑦′ + 𝐹𝑦𝑦𝑦′2 +

𝐹𝑦𝑦′′,                                                                         (4) 

where 𝐹𝑥𝑦 = 𝐹𝑦𝑥. 

Substituting 𝑢′ from (3) into (4) and simplifying, we have 

𝑢′′ =
𝐺(𝐹𝑦𝑦′′+2𝐹𝑥𝑦𝑦′+𝐹𝑦𝑦𝑦′2+𝐹𝑥𝑥)−(𝐹𝑥𝐺𝑥+𝐹𝑥𝐺𝑦𝑦′+𝐹𝑦𝐺𝑥𝑦′+𝐹𝑦𝐺𝑦𝑦′2)

𝐺3 .     

                                                                                  (5) 

Next, by substituting equations (3) and (5) for 𝑢′ and 𝑢′′ 
respectively into equation (2) and simplifying, one has 
that 

𝑦′′ + 𝑓2𝑦′2
+ 𝑓1𝑦′ + 𝑓0 = 0,                                     (6) 

where 

𝑓2 =
(𝐹𝑦𝑦𝐺−𝐹𝑦𝐺𝑦)

𝐾
,                                                             (7) 

                                                    𝑓1 =
(2𝐹𝑥𝑦𝐺−𝐹𝑥𝐺𝑦−𝐹𝑦𝐺𝑥+𝐹𝑦𝛽𝐺2)

𝐾
,                                                   (8) 

𝑓0 =
(𝐹𝑥𝑥𝐺−𝐹𝑥𝐺𝑥+𝐹𝑥𝛽𝐺2+𝛼𝐹𝐺3−𝐺3𝛾)

𝐾
,                               (9) 

and 𝐾 = 𝐺𝐹𝑦 ≠ 0. Note from equation (2) that, 

𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡)  represent various functions.  

Equation (6) is the necessary form of a second order 
ordinary differential equation that can be mapped into a 
linear equation (2) through a generalized Sundman 
transformation (1). 

To obtain the sufficient conditions, one has to solve the 
compatibility system (7) to (9). One has to consider the 
system (7) to (9) as an overdetermined system of partial 

differential equations for the functions 𝐹 and 𝐺 with the 

coefficients 𝑓𝑖(𝑥, 𝑦), where 𝑖 = 0, 1, 2. 

The compatibility analysis depends on the value 𝐹𝑥. In 
this work, a complete solution is given for the case where 

𝐹𝑥 = 0. 

From the system (7)-(9), one sees that 

𝐹𝑦𝑦 =
𝑓2𝐺𝐹𝑦+𝐹𝑦𝐺𝑦

𝐺
,                                                            (10) 

𝛽 =
𝑓1𝐺+𝐺𝑥

𝐺2 ,                                                                 (11) 

and  

𝛾 =
𝛼𝐹𝐺2−𝑓0𝐹𝑦

𝐺2 .                                                              (12) 

Since 𝐹𝑥 = 0, differentiating 𝐹𝑦𝑦 from equation (10) with 

respect to 𝑥 and simplifying, on has that 

𝐺2𝑓2𝑥 + 𝐺𝐺𝑥𝑦 − 𝐺𝑥𝐺𝑦 = 0.                                           (13) 

Differentiating equation (11) with respect to 𝑥 and 
simplifying gives 

𝐺𝑥𝑥 =
2𝐺𝑥

2+𝐺𝐺𝑥𝑓1−𝐺2𝑓1𝑥

𝐺
.                                                 (14) 

Differentiating equation (11) with respect to 𝑦 and on 
simplification, it will result to 

𝐺𝑥𝑦 = 𝐺𝑓3 − 𝐺𝑦𝑓1,                                                      (15) 

where 𝑓3 = 𝑓1𝑦 − 2𝑓2𝑥 . 

Next, differentiate equation (12) with respect to 𝑥 and 𝑦 
respectively and simplify to have 

2𝐺𝑥𝑓0 − 𝐺𝑓0𝑥 = 0,                                                      (16) 

and  

𝛼 =
𝐺(𝑓0𝑓2+𝑓0𝑦)−𝐺𝑦𝑓0

𝐺3
.                                                       (17) 

Now, substitute equation (15) into equation (13) to have 

𝐺𝐺𝑦𝑓1 + 𝐺𝑥𝐺𝑦 − 𝐺2(𝑓2𝑥 + 𝑓3) = 0.                            (18) 

Comparing the mixed derivatives (𝐺𝑥𝑦)
𝑥

= (𝐺𝑥𝑥)𝑦 and 

simplifying, one can see that  

𝐺𝑥𝑓3 − 𝐺(𝑓3𝑥 + 𝑓1𝑓2𝑥 + 𝑓2𝑥𝑥) = 0.                            (19) 

Differentiating 𝛼 from equation (17) with respect to 𝑥 
and simplifying, one gets 

2𝐺𝑥(𝑓0𝑦 + 𝑓0𝑓2) + 𝐺𝑦(2𝑓0𝑓1 + 𝑓0𝑥) − 𝐺(2𝑓0𝑓3 +

4𝑓0𝑓2𝑥 + 𝑓0𝑥𝑦 + 𝑓0𝑥𝑓2 ) = 0.                                         (20) 

Differentiating 𝛼 from equation (17) with respect to 𝑦 
and simplifying, becomes: 

2𝐺𝐺𝑦𝑦𝑓0 − 6𝐺𝑦
2𝑓0 + 2𝐺𝐺𝑦(2𝑓0𝑓2 + 3𝑓0𝑦) − 𝐺2(𝑓4 +

2𝑓5 − 𝑓1𝑓3) = 0,                                                        (21) 

Where 

𝑓4 = 2𝑓0𝑦𝑦 − 2𝑓1𝑥𝑦 + 2𝑓0𝑓2𝑦 − 𝑓1𝑦𝑓1 + 2𝑓0𝑦𝑓2

+ 2𝑓2𝑥𝑥 , 

and  

𝑓5 = 𝑓2𝑥𝑥 + 𝑓2𝑥𝑓1 + 𝑓3𝑥 + 𝑓1𝑓3. 

If 𝑓3 ≠ 0, 𝑓5 ≠ 0 then from equation (19), we see that 
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𝐺𝑥 =
𝐺(𝑓3𝑥+𝑓1𝑓2𝑥+𝑓2𝑥𝑥)

𝑓3
.                                                       (22) 

Substituting 𝐺𝑥 into equation (16) and simplifying, we 
have that:  

𝑓0𝑥 =
2𝑓0(𝑓5−𝑓1𝑓3)

𝑓3
,                                                              (23) 

where 𝑓3 and 𝑓5 are as previously defined. 

Substituting 𝐺𝑥 into equation (18) and simplifying, 
results to 

𝐺𝑦 =
𝐺𝑓3(𝑓2𝑥+𝑓3)

𝑓5 
.                                                                (24) 

Substituting 𝐺𝑥 into equation (14), one differentiates 

equation (22) with respect to 𝑥 and simplify to have as 
follows: 

𝑓2𝑥𝑥𝑥 = 𝑓3
−1𝑓5(𝑓5 + 𝑓3𝑥) − 2𝑓1𝑓5 + 𝑓2𝑥𝑓1

2 + 𝑓1
2𝑓3 −

𝑓1𝑥𝑓3 − 𝑓2𝑥𝑓1𝑥 − 𝑓3𝑥𝑥.                                             (25) 

Next, substitute 𝐺𝑥 into equation (15). Differentiating 𝐺𝑥 

from equation (22) with respect to 𝑦 and simplifying 
gives: 

𝑓2𝑥𝑥𝑦 = 𝑓3
−1𝑓5𝑓3𝑦 − 𝑓1𝑓3𝑦 − 2𝑓3𝑓2𝑥 − 𝑓2𝑥𝑦𝑓1 −

2𝑓2𝑥
2 − 𝑓3𝑥𝑦 .                                                              (26) 

Substituting 𝐺𝑦 from equation (24) into equation (21) 

and simplifying, we have: 

𝑓3𝑓5(6𝑓0𝑦𝑓2𝑥 + 2𝑓2𝑥𝑦𝑓0 + 4𝑓2𝑥𝑓0𝑓2 + 2𝑓3𝑦𝑓0 +

4𝑓0𝑓2𝑓3 + 𝑓1𝑓5) − 𝑓3
2(6𝑓2𝑥

2 𝑓0 + 12𝑓2𝑥𝑓1𝑓3 −

6𝑓0𝑦𝑓5 + 6𝑓0𝑓3
2) − 𝑓4𝑓5

2 − 2𝑓5
3 = 0.                        (27) 

Linearization of the Modified Langumir and Van der 
Pol Differential Equations via GST 

The original Langumir differential equation is given by  

3𝑦𝑦′′ + 3𝑦′2 + 4𝑦𝑦′ + 𝑦2 − 1 = 0.                        (28) 

Not all of the linearizability requirements were met by the 
coefficients of equation (28) using the GST as given here. 
As a result, we alter equation (28) to meet every 
linearizability requirement.  

The modified Langumir equation is given as 

3𝑦𝑦′′+4𝑦2𝑦′ + 𝑦2 = 0                                            (29) 

To put equation (29) in the form of (6), we divide all 

through by 3𝑦 to have                              

𝑦′′ +
4𝑦

3
𝑦′ +

𝑦

3
= 0.                                                  (30) 

The coefficients of equation (30) are given as: 𝑓0 =
𝑦

3
, 𝑓1 =

4𝑦

3
, 𝑓2 = 0, 𝑓3 =

4

3
≠ 0, where  𝑓3 = 𝑓1𝑦 −

2𝑓2𝑥 , 𝑓4 = 2𝑓0𝑦𝑦 − 2𝑓1𝑥𝑦 + 2𝑓0𝑓2𝑦 − 𝑓1𝑦𝑓1 +

2𝑓0𝑦𝑓2 + 2𝑓2𝑥𝑥 and 𝑓5 = 𝑓2𝑥𝑥 + 𝑓2𝑥𝑓1 + 𝑓3𝑥 + 𝑓1𝑓3. 

That is, 

𝑓4 =
−16𝑦

9
, 

𝑓5=

16𝑦

9
≠ 0. 

Testing the sufficient conditions, we have from equation 
(23) that 

𝑓0𝑥 = 2𝑓0

(𝑓5 − 𝑓1𝑓3) 

𝑓3
. 

That is, 0 = 0. 

Equation (26) becomes 0 = 0. Equation (25) now 
becomes 

0 = 𝑓1
2𝑓3

2 − 2𝑓1𝑓3𝑓5 + 𝑓5
2,                                        (31) 

that is, 

0 =
256𝑦2

81
−

512𝑦2

81
+

256𝑦2

81
=

512𝑦2

81
−

512𝑦2

81
= 0. 

Again, this condition is satisfied. Next, we check condition 
(27), which is reduced to 

𝑓3𝑓5(𝑓1𝑓5) − 𝑓3
2(−6𝑓0𝑦𝑓5 + 6𝑓0𝑓3

2) − 𝑓4𝑓5
2 − 2𝑓5

3 =

0.                                                                               (32) 

That is 

64𝑦

27
(

64𝑦2

27
) −

16

9
(

−32𝑦

9
+

32𝑦

9
) +

4096𝑦3

729
−

8192𝑦3

729
 = 

4096𝑦3

729
−

16

9
(0) +

4096𝑦3

729
−

8192𝑦3

729
 = 

8192𝑦3

729
−

8192𝑦3

729
= 0. 

We can see that this equation can be linearized using the 
generalized Sundman transformation because all the 

necessary conditions are met. We already note that 𝐹𝑥 =
0.                                         

Next, we find equations (10), (22) and (24) as follows: 

𝐹𝑦𝑦 =
𝐹𝑦𝐺𝑦 + 𝑓2𝐹𝑦𝐺

𝐺
=

𝐹𝑦𝐺𝑦

𝐺
, 

𝐺𝑥 =
𝐺(𝑓2𝑥𝑥+𝑓2𝑥𝑓1+𝑓3𝑥)

𝑓3
 = 

𝐺(0)
4

3⁄
= 0, 

and 

𝐺𝑦 =
𝐺𝑓3(𝑓2𝑥+𝑓3)

𝑓5
 = 

𝐺

𝑦
. 

We take the solution 𝐹 = 𝑦2 and 𝐺 = 𝑦, which satisfies 

𝐹𝑥, 𝐹𝑦𝑦,   𝐺𝑥  and 𝐺𝑦 respectively. We therefore have from 

equation (1) that, 𝑢 = 𝑦2, 𝑑𝑡 = 𝑦𝑑𝑥. 

To find 𝛼, 𝛽 and 𝛾, we have from equations (17), (11) and 
(12) that 
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𝛼 =
𝐺(𝑓0𝑦 + 𝑓0𝑓2) − 𝐺𝑦𝑓0

𝐺3
=

𝑦
3⁄ −

𝑦
3  ⁄

𝑦3
= 0, 

𝛽 =
𝐺𝑥 + 𝐺𝑓1

𝐺2
=

4𝑦2

3 
⁄

𝑦2
=

4

3
, 

and 

𝛾 =
𝛼𝐹𝐺2 − 𝐹𝑦𝑓0

𝐺2
=

−
2𝑦2

3
⁄  

𝑦2
=

−2

3
. 

Therefore, 𝛼 = 0, 𝛽 =
4

3 
 and 𝛾 =

−2

3
  respectively. 

Now, 𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾 (that is equation (2)) becomes 

𝑢′′ +
4 

3
𝑢′ =

−2

3
,  

 or 

3𝑢′′ + 4𝑢′ + 2 = 0. 

The characteristics equation of the homogeneous 
equation is 

𝑟2 +
4

3
𝑟 = 0. 

That is 

𝑟 (𝑟 +
4

3
) = 0 ⟹  𝑟1 = 0, 𝑟2 =

−4

3
. 

Therefore, the homogeneous solution is now 

𝑢ℎ = 𝑐1 + 𝑐2𝑒
−4𝑡 

3 . 

Using the method of variation of parameters, we have that 

for 𝑛 = 2, and 𝑢ℎ = 𝑐1 + 𝑐2𝑒
−4𝑡 

3 ;  

𝑢𝑝 = 𝑣1 + 𝑣2𝑒
−4𝑡

3 .   

Since 𝑦1 = 1, 𝑦2 = 𝑒
−4𝑡

3  and 𝜙(𝑡) =
−2

3
, it follows that 

𝑣′1 + 𝑣′2(𝑒
−4𝑡

3 ) = 0, 

𝑣′
2 (

−4

3
𝑒

−4𝑡
3 ) =

−2

3
, 

and 

𝑣′2 =
𝑒

4𝑡
3

2
. 

Substituting this into the first equation above we have; 

𝑣′
1 =

−1

2
. 

Integrating, we have: 

𝑣1 = − ∫
1

2 
𝑑𝑡 =

−𝑡

2
 

and  

𝑣2 =
1

2
∫ 𝑒

4𝑡
3 =

3

8
𝑒

4𝑡
3 . 

Therefore 

𝑢𝑝 =
−𝑡

2
+

3

8
, 

and hence, the general solution is  

𝑢 = 𝑐1 + 𝑐2𝑒
−4𝑡

3 −
𝑡

2
+

3

8
,  

where 𝑐1,  𝑐2  are arbitrary constants.  

We can now apply the GST to the equation as: 

𝑦2 = 𝑐1 + 𝑐2𝑒
−4𝑡

3 −
𝑡

2
+

3

8
,   𝑡 = 𝜙(𝑥). 

That is 

𝑦 = √𝑐1 + 𝑐2𝑒
−4𝜙(𝑥)

3 −
𝜙(𝑥)

2
+

3

8
, 

where 𝑡 = 𝜙(𝑥) is the solution of 

𝑑𝑡

𝑑𝑥
= (𝑐1 + 𝑐2𝑒

−4𝑡
3 −

𝑡

2
+

3

8
)

1
2. 

The original Van der Pol differential equation is given as 

𝑦′′ − 𝜇(1 − 𝑦2)𝑦′ + 𝑦 = 0.                                         (33) 

A survey reveals that the coefficients in the 
aforementioned equation are unable to satisfy all of the 
linearizable conditions, necessitating the modification of 
the equation to achieve our objective. 

The modified Van der Pol differential equation we want 
to consider is given as 

𝑦′′ + 𝑦𝑦′ + 𝑦 = 0.                                                                (34) 

Equation (34) above is in the necessary form of equation 
(6) with the coefficients given as 

𝑓0 = 𝑦, 𝑓1 = 𝑦,  𝑓2 = 0, 

and  

𝑓3 = 1 ≠ 0,  𝑓4 = −𝑦, 𝑓5 = 𝑦 ≠ 0. 

Testing the sufficient linearizability conditions, we see 
that equation (23) becomes 

𝑓0𝑥𝑓3 = 2𝑓0(𝑓5 − 𝑓1𝑓3) = 2𝑦(𝑦 − 𝑦) = 0. 

Equation (25) is satisfied and becomes 

𝑓2𝑥𝑥𝑥𝑓3 = 𝑓5(𝑓5) − 2𝑓1𝑓3𝑓5 + 𝑓1
2𝑓3

2 = 𝑦2 − 2𝑦2 + 𝑦2

= 0. 
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Equation (26) is also satisfied as 

𝑓2𝑥𝑥𝑦 = 𝑓3
−1𝑓5𝑓3𝑦 − 𝑓1𝑓3𝑦 − 2𝑓3𝑓2𝑥 − 𝑓2𝑥𝑦𝑓1 − 2𝑓2𝑥

2

− 𝑓3𝑥𝑦 = 0. 

Finally, equation (27) is reduced to 

𝑓3𝑓5(𝑓1𝑓5) − 𝑓3
2(6𝑓0𝑓3

2 − 6𝑓5𝑓0𝑦) − 𝑓4𝑓5
2 −

2𝑓5
3 = 𝑦(𝑦2) − 1(−6𝑦 + 6𝑦) − (−𝑦)𝑦2 − 2𝑦3 

=𝑦3 + 6𝑦 − 6𝑦 + 𝑦3 − 2𝑦3 = 0. 

Now that all the sufficient conditions are satisfied, we 

proceed to determine 𝐹 and 𝐺 noting that 𝐹𝑥 = 0, from 
equations (10), (22) and (24) to be: 

𝐹𝑦𝑦 =
𝐹𝑦𝐺𝑦

𝐺
,  

𝐺𝑥 = 0, 

and 

𝐺𝑦 =
𝐺(0 + 1)

𝑦
=

𝐺

𝑦
. 

Take 𝐹 = 𝑦2, 𝐺 = 𝑦 and we see that, this solution 
satisfied all the conditions above. Now, equations (17), 
(11) and (12) becomes 

𝛼 =
𝐺(𝑓0𝑦+𝑓0𝑓2)−𝐺𝑦𝑓0

𝐺3 =
𝑦−𝑦

𝑦3 = 0, 

𝛽 =
𝐺𝑥+𝐺2𝑓1

𝐺2    =
𝑦2

𝑦2 = 1 

and 

𝛾 =
𝛼𝐹𝐺2−𝐹𝑦𝑓0

𝐺2 =
−2𝑦2

𝑦2   = −2. 

Therefore, 𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾 from equation (2) 
becomes  

𝑢′′ + 𝑢′ = −2,   

or 

 𝑢′′ + 𝑢′ + 2 = 0. 

Characteristics equation of the homogeneous part is 

𝑟2 + 𝑟 = 0  ⟹ 𝑟(𝑟 + 1) = 0 

 or  

𝑟1 = 0, 𝑟2 = −1. 

  Therefore, the homogeneous solution is 

𝑢ℎ = 𝑐1 + 𝑐2𝑒−𝑡.  

Using the method of variation of parameters for 𝑛 = 2 

and 𝑢ℎ = 𝑐1 + 𝑐2𝑒−𝑡, we have: 

𝑢𝑝 = 𝑣1𝑒0 + 𝑣2𝑒−𝑡. 

Since 𝑦1 = 𝑒0, 𝑦2 = 𝑒−𝑡 and 𝜙(𝑡) = −2, it follows that 

𝑣1
′ + 𝑣2

′ (𝑒−𝑡) = 0, 

𝑣2
′ (−𝑒−𝑡) = −2, 

and 

𝑣2
′ =

2

𝑒−𝑡
. 

Substituting into the first equation above, we have; 

 𝑣1
′ = −2. 

Integrating, we have; 

𝑣1 = − ∫ 2𝑑𝑡 = −2𝑡, 

and 

𝑣2 = ∫
2

𝑒−𝑡
𝑑𝑡 = 2 ∫ 𝑒𝑡 𝑑𝑡 = 2𝑒𝑡. 

Therefore 

𝑢𝑝 = −2𝑡 + 2, 

and hence the general solution is now  

𝑢 = 𝑢ℎ + 𝑢𝑝 = 𝑐1 + 𝑐2𝑒−𝑡 − 2𝑡 + 2,  

or 

𝑢 = 𝑐1 + 𝑐2𝑒−𝑡 − 2𝑡,  

where  𝑐1 + 2 = 𝑐1 and 𝑐1, 𝑐2 are arbitrary constants. 

Applying the generalized Sundman transformation, we 
have that 

𝑦2(𝑥) = 𝑐1 + 𝑐2𝑒−𝑡 − 2𝑡 , 𝑡 = 𝜙(𝑥), 

so that 

𝑦(𝑥) = √𝑐1 + 𝑐2𝑒−𝜙(𝑥) − 2𝜙(𝑥), 

where 𝑡 = 𝜙(𝑥) is the solution of  

𝑑𝑡

𝑑𝑥
= √𝑐1 + 2 + 𝑐2𝑒−𝑡 − 2𝑡. 

CONCLUSION 

This work uses the generalized Sundman transformation 
strategy to linearize the modified Langumir and Van der 
Pol non-linear second order ordinary differential 
equations. The conventional approach of variation of 
parameters is used to solve the linear equations that 
emerged from the linearization process. The two 
equations' solutions can be found by applying the 
Sundman transformation. 
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