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INTRODUCTION
The resonant-state expansion (RSE) is a rigorous 
perturbation method in electrodynamics recently invented 
in Cardiff (Muljarov et al, 2010). The method has been 
successfully applied to 1, 2, and 3-dimensional open 
optical systems (Armitage et al., 2014; Doost et al., 2012; 
Muljarov et al., 2010). It uses the solution of the non-
relativistic wave equation (the Schrödinger equation) in 
one dimension for an unperturbed basis of resonant states 
(RSs) for calculating the RSE. RSs have been studied for 
quite a long time (Siegert, 1939; Gamow, 1928). In 
quantum mechanics, they are referred to as the stationary 
states solution to the Schrödinger equation with purely 
boundary conditions of only outgoing waves (Hatano, 
2008; Tanimu and Muljarov, 2018; Tanimu and Bagudo, 
2020). These boundary conditions strictly define RSs. 
They appear, in the form of resonances, in almost every 
field of Physics, from classical mechanics and 
electrodynamics to quantum physics and gravity. In spite 
of this fact, however, many fundamental aspects are still 
to be investigated. Also, resonant phenomena are of 
increasing importance in quantum mechanics, especially in 
view of the rapid progress in the physics of semiconductor 
nanostructures, which various types of quantum potentials 
can describe. In a quantum system, RSs wave function 
leaks out of the system, which then causes exponential 
growth at the tail of the function. 

These states have complex energy eigenvalues with 
negative imaginary parts as the inverse of lifetime, causing 

them to decay exponentially in time, leaking out of the 
system (Siegert, 1939 and Gamow, 1928). Due to this 
exponential growth, the RSs wave function cannot be 
normalized by the usual normalization condition. As such, 
a special normalization condition (Muljarov et al., 2010; 
Siegert, 1939) is used. In this work, we study the 
convergence of the RSE by applying it to the non-
relativistic wave equation in one dimension. We first 
calculated the RSs wave numbers for a double well system 
and used them as unperturbed basis for calculating the 
RSE (Tanimu and Muljarov, 2018). We test the accuracy 
and study the convergence of the RSE for both symmetric 
and anti-symmetric triple well potential for different 

perturbations. Here, the potential with positions b = 0  or 

b ≠ 0 serves as a perturbation. 

THEORETICAL BACKGROUND AND 
METHOD 
Resonant state expansion (RSE) requires a potential with 
known analytical solution (in this case double well system 
composed of a delta functions) and uses it as a basis for 
calculating the RSE. RSE requires that the wave functions 
be normalized (Muljarov et al., 2010), so an appropriate 
normalization condition is required. Once this is achieved, 
the RSE could be investigated and used on different 
quantum mechanical problems.  
Normalization of Resonant states in 1D  
In one-dimensional quantum systems, it requires that the 
solutions to the wave functions for both even and odd 
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states have to be normalized but care has to be taken 
during the calculations. For bound states, this is an easy 
task, but for the resonant states, which have exponentially 
increasing tails, an additional term must be considered to 
normalize them correctly. An outer limit is required for 
their normalization and is given by R. It is found that the 

value of R can be taken arbitrarily, and thus, for 
convenience, we are free to choose the boundaries of the 
well as the limits of this normalization. The 
orthonormality condition is given by (Muljarov et al., 
2010): 

𝛿𝑛𝑚 = ∫ 𝑑𝑥𝜓𝑛(𝑥)𝜓𝑚(𝑥) −
𝜓𝑛(𝑎)𝜓𝑚(𝑎) + 𝜓𝑛(−𝑎)𝜓𝑚(−𝑎)

𝑖(𝑘𝑛 + 𝑘𝑚)
                                                                                       (1)

𝑎

−𝑎

 

It can be shown that this equation is suitable for the usual normalization of bound states as it reduces to the standard 

normalization condition as R tends to infinity the condition tends towards 𝛿𝑛𝑚 = ∫ 𝑑𝑥𝜓𝑛(𝑥)𝜓𝑚(𝑥)
∞

−∞
 which is the 

standard approach to normalizing the bound states. Utilizing the normalization condition, the constants are found as: 

𝐴𝑛 = (4𝑎 +
2

𝑘𝑛
sin(2𝑘𝑛𝑎) −

4

𝑖𝑘𝑛
𝑐𝑜𝑠2(𝑘𝑛𝑎))

−
1
2

                                                                                                                   (2) 

and 

𝐵𝑛 = (−4𝑎 +
2

𝑘𝑛
sin(2𝑘𝑛𝑎) +

4

𝑖𝑘𝑛
𝑠𝑖𝑛2(𝑘𝑛𝑎))

−
1
2

                                                                                                                 (3) 

Resonant State Expansion (RSE)  
So far, we have developed a system in which we can find its exact solutions in sub-sections (2.3) and (2.4). However, 
within quantum mechanics, the majority of the systems cannot be solved exactly, and we need to develop appropriate 
models to deal with them. Perturbation theory is extremely successful in dealing with those cases that can be modeled as 
a small change in a system that we can solve exactly. Once this change was made to the system, the new eigenvalues and 
eigenvectors of the perturbed system were calculated. Let's consider the perturbed Hamiltonian as:  

𝐻 = 𝐻0 + 𝑉                                                                                                                                                                                      (4) 

where𝐻0 is the Hamiltonian of the unperturbed system, and 𝑉 is the perturbed potential. From Eq. (4) without derivation 
(Muljarov et al., 2010, Lind, 1992) 

(𝐻0)𝑛𝑚 = 𝑘𝑛𝛿𝑛𝑚                                                                                                                                                                            (5) 

𝐻𝑛𝑚 = 𝑘𝑛𝛿𝑛𝑚 +
𝑉𝑛𝑚

√𝑘𝑛𝑘𝑚
2

                                                                                                                                                             (6) 

𝑉𝑛𝑚 = ∫ 𝑉
𝑎

−𝑎

(𝑥)𝜓𝑛(𝑥)𝜓𝑚(𝑥)𝑑𝑥                                                                                                                                                  (7) 

Therefore, 

𝐻𝑛𝑚𝜒𝑣 = 𝜅𝑣𝜒𝑣                                                                                                                                                                                (8) 

The perturbed eigenvectors 𝜒𝑣 and eigenvalues 𝜅𝑣 can be determined by diagonalizing the Hamiltonian matrix𝐻𝑛𝑚. The 
simplicity of the method lies in the fact that the matrix contains terms based only on the unperturbed problem and the 
perturbation (Mostert, 2014). The eigenvalues and eigenvectors form a complete set, and thus, the perturbed wave 
function can be defined as: 

�̃�𝑣(𝑥) = ∑ 𝐵𝑛𝑣

𝑛

𝜓𝑛𝑣(𝑥)                                                                                                                                                               (9) 

Where 

𝐵𝑛𝑣 =
𝜒𝑣

√𝑘𝑛

                                                                                                                                                                                    (10) 

Unperturbed Resonant states 

To apply the RSE to a one-dimensional non-relativistic wave equation, we need a known suitable basis for RSs. We choose 
here the RSs of a Schrödinger equation with a double well as: 

𝑉(𝑥) = −𝛾𝛿(𝑥 − 𝑎) − 𝛾𝛿(𝑥 + 𝑎)                                                                                                                                           (11) 

which describes a double potential well (or barrier) system. Where a is the distance between the well and γ is the strength 
of the potential, which is the depth of the quantum well multiplied by its width. The solution to the Schrödinger equation 
for unperturbed basis RSs is thus given by (Tanimu and Muljarov, 2018, and Tanimu and Bagudo, 2022). 
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𝜓𝑛(𝑥) = {

𝐵𝑛𝑒𝑖𝑘𝑛𝑥 ,                                                                    𝑥 > 𝑎,                  

𝐶𝑛(𝑒𝑖𝑘𝑛𝑥 ± 𝑒−𝑖𝑘𝑛𝑥) − 𝑎 < 𝑥 < 𝑎,       

±𝐵𝑛𝑒−𝑖𝑘𝑛𝑥                                                                                          𝑥 < −𝑎                

                                                                (12) 

After some algebra obtained, the secular equation  

𝑒2𝑖𝑘𝑛𝑥 = 1 ±
2𝑖𝑘𝑛

𝛾
                                                                                                                                                                       (13) 

with upper and lower signs corresponding to even and odd states, respectively. This equation generates a complete set of 

spectra for unperturbed RSs. Eq. (13)is solved numerically with the help of the Newton-Raphson procedure in MATLAB 

(Tanimu and Muljarov, 2018; Tanimu and Bagudo, 2022). 

Verification of the RSE for a Triple well system  

In this section, we verify the convergence of the RSE for a triple well potential. The vast majority of the systems in 

quantum mechanics cannot be solved exactly unless employing the use of other models. Here, we make use of 

perturbation theory, which is extremely successful in dealing with those cases (Muljarov et al., 2010) with the formulation 

of the RSE method in sub-sec. (2.2), we need to have a well define perturbed potential to be used for the verification of 

the RSE and study its convergence. We first chose a simple perturbation so that the results could be tested and compared 

with the numerical results found through the RSE. This simple perturbation was added somewhere between the two 

existing well systems, see eq.(11), forming a triple well potential, and this perturbation was chosen to have the same 

strength as the two wells. The form of this potential as given by (Tanimu and Muljarov, 2018), is 

𝑉(𝑥) = −𝛾𝛿(𝑥 − 𝑎) − 𝛾𝛿(𝑥 + 𝑎) − 𝛽𝛿(𝑥 − 𝑏)                                                                                                                  (14) 

where𝛽 is an additional well (barrier) depending on the position of the perturbation. With 𝛽 > 0 (𝛽 < 0) corresponding 
to the well (barrier). 

Exact solution 

Here, the same approach is used as in the previous sub-sec. (2.3), but with the additional boundary conditions that the 

wave function be continuous at x = b, and obtain the secular equation for triple well potential. The secular equation of 

this perturbed system is given by 

𝑒2𝑖𝑘𝑛𝑎 =
(−2𝑖𝑘𝑛 + 𝛽)(−2𝑖𝑘𝑛 − γ)

γ(−2𝑖𝑘𝑛 − 𝛽)
                                                                                                                                       (15) 

Eq. (15) shows a special case for b = 0 (symmetric). However, for the case of b ≠ 0(anti-symmetric), we have the 
following transcendental equation: 

((−2𝑖𝑘 − γ)𝑒𝑖𝑘𝑏 + γ𝑒2𝑖𝑘𝑎𝑒−𝑖𝑘𝑏) (γ𝑒2𝑖𝑘𝑎𝑒𝑖𝑘𝑏 (1 +
𝛽

𝑖𝑘
) − (−2𝑖𝑘 − γ) (1 −

𝛽

𝑖𝑘
) 𝑒−𝑖𝑘𝑏)

− ((−2𝑖𝑘 − γ)𝑒𝑖𝑘𝑏 −  γ𝑒2𝑖𝑘𝑎𝑒−𝑖𝑘𝑏) ((−2𝑖𝑘 − γ)𝑒−𝑖𝑘𝑏 + γ𝑒2𝑖𝑘𝑎𝑒𝑖𝑘𝑏)

= 0                                                                                                                                                                    (16) 

The resonant states with odd (anti-symmetric) wave functions are not affected by the delta-function potential at x =
0 since the wavefunctions vanish at x = 0. Hence we can use the solution from the double well system without change. 
Eqs. (13), (15), and (16)are solved numerically using the Newton-Raphson method in MATLAB to find the exact solutions 
for the unperturbed and perturbed RSs wave numbers for both even and odd states, respectively. These results are 
presented in Figures 1 - 2.

RESULT AND DISCUSSION 
In this section, the resonant state expansion (RSE) is 

tested by comparing the numerical solutions found 

through the RSE against the exact solutions found in the 

sub-sec. (2.4). The results from sub-sec. (2.3) serves as the 

unperturbed basis for the RSE. 
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a. RSE for a symmetric triple well 

Figure 1 shows that the accuracy of the perturbation is 

maintained by comparing the numerical solutions found 

through the RSE to that of the exact solutions in sub-sec. 

(2.4). Figure 1 (a) shows that the numerical results of the 

RSE match exactly with the exact values for the triple well 

potential for b = 0. This indicates a simple perturbation 

into the system, which is not the case for≠ 0, which shows 

some deviation due to the effect of perturbation into the 

system. It has been shown that forb = 0 only even states 

are perturbed while odd states do not change by this 

perturbation. You can deal with a 2 times smaller matrix 

between even states only. The graph also shows the 

similarity between the spectrum of the numerical solutions 

found through the RSE and the exact solutions to that of 

the unperturbed RSs. Figure 1 (b) shows the relative error 

between the RSE results and exact solutions for different 

basis size N.  We can see that from the graph, there is a 

constant change in the relative error with an increase in 

the number of basis size N. As we increase N, the RSE 

result eventually converges to the exact solution (Doost et 

al., 2012).  

b. RSE for anti-symmetric triple well 

Figure 2 shows the convergence of the RSE to the exact 

values for the anti-symmetric. Here the perturbation was 

chosen to be away from the centre(i. e. , b ≠ 0) to clearly 

observe the effect of the perturbation. We fixed the 

parameter γ = β = 5/a and varied position b to notice 

clearly the convergence of the RSE. It was observed that 

the spectrum is quite different from that of the 

unperturbed RSs for both even and odd states. This is due 

to the effect of applying strong perturbations into the 

system. 

 
Figure 1 (a): Perturbed wave numbers plotted in the complex k-plane for a triple well potential for b = 0, γ =β = 
2 with unperturbed RSs wave numbers for a double well potential calculated via Equation (13). The RSE results 
are calculated via Equation (6), while the exact solutions for a symmetric potential are calculated using 
Equation (15) 
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 Figure 1(b): Relative error between the RSE results and exact solutions for different basis size N. 

 
 Figure 2: As in Fig. 1 (a), but for b = 4a/5, γ =β = 5/a 
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CONCLUSION 

The RSE has been re-introduced into a non-relativistic 
wave equation in one dimension. In this work, we test the 
method on exactly solvable one-dimensional systems of 
triple well potential. Our work appears to be careful and 
thorough, looking at the convergence testing the accuracy 
of the perturbation as the number of basis sizes increases 
for both symmetric and anti-symmetric cases. A standard 
form of normalization used in the RSE is given. The 
graphs show that the accuracy is maintained for almost all 
the states considered within the spectrum, with 
inaccuracies only occurring at the extreme end of the real 
axis. Unlike other available commercial solvers, this 
method has shown to be quite an efficient and well-suited 
computational tool for calculating high-quality RSs. 
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