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INTRODUCTION
 Assessing structural integrity and geological hazards is 
crucial for ensuring safe and sustainable development 
practices, particularly in areas subject to mineral 
exploration and extraction activities.  The existence of 
mineral-bearing structures within the subsurface can 
influence the stability of a region.  Alex Ekwueme Federal 
University Ndufu-Alike Ikwo (AEFUNAI) campus may 
be sitting on clusters of mineral deposits and a vast 
accumulation of salt resources.  This hypothesis is built 
on the premise that AEFUNAI is located in a region 
known to harbor sizable mineral deposits ranging from 
lead-zinc (Pb-Zn) to salts.  Some of these deposits are 
mined locally and industrially (Abraham et al., 2023, 
2018b; Obassi et al., 2015; Nwachukwu, 2004).  Applying 
the magnetic geophysical method for these probes 
presents a detailed, cost-effective procedure for 
generating a picture of the subsurface at AEFUNAI.  The 
method has long been recognized as a powerful 
geophysical tool for investigating subsurface geological 
structures, offering valuable insights into the 
composition, geometry, and tectonic evolution of Earth's 

crust (Usman et al., 2024; Abraham et al., 2024; Abraham 
et al., 2018b).  The area of coverage by this study is located 

within geographic latitudes 6.11𝑜 and 6.13𝑜N and 

geographic longitudes 8.13𝑜 and 8.16𝑜E within the 
sedimentary terrain of southeastern Nigeria (Figure 1).  
Magnetic surveys have emerged as invaluable tools for 
regional geological investigations, particularly in areas 
characterized by complex geological settings and 
significant mineral potential (Ugodulunwa et al., 2021).  
This methodology has proven especially relevant in 
southeastern Nigeria, where diverse geological features 
and substantial mineral deposits present unique 
opportunities for geophysical exploration (Usman et al., 
2024; C; Abraham et al., 2018b; Amigun et al., 2015).  The 
Alex Ekwueme Federal University Ndufu-Alike (AE-
FUNAI) region, situated within the lower Abakaliki Basin, 
exemplifies such geological complexity.  The area is 
characterized by epigenetic fracture-controlled vein 
deposits, predominantly within gently dipping 
carbonaceous black shales.  These mineral outcrops, 
exposed through road cuts, agricultural activities, mining 
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ABSTRACT 
This research comprehensively investigates the subsurface geological structures at Alex Ekwueme 

Federal University Ndufu-Alike Ikwo (AE-FUNAI) in southeastern Nigeria.  This area is located 

near regions where significant lead-zinc (Pb-Zn) mineralization and salts have been discovered.  

The geological setting of the region is complex, involving the intersection of the West African 

Craton, Benue Trough, and Anambra Basin, providing a unique opportunity to study various rock 

types and structural features.  We applied integrated geophysical data processing methods of 

Analytic Signal (AS), Euler Deconvolution (ED), and 3D modelling of susceptibility contrast to 

delineate mineralized structures at the region.  Subsurface intrusions of dyke-like structures at 

average depths of 25 – 125 m were identified and mapped.  Major N-S and E-W trending fault 

systems were also delineated, which could serve as conduits for mineral-rich fluids.  Generally, 

results indicate the presence of significant magnetic anomalies related to subsurface geologic 

intrusions with potential mineral deposits.  Findings from this study will guide decision-making 

processes on siting building projects, future mineral exploration, and land-use planning in the 

study area. 
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operations, and fluvial channels, encompass 
approximately 54.56 km² (Bate et al., 2024; Abraham et 
al., 2023). 

The geological framework comprises the Cretaceous 
sequence of the lower Benue Trough (Figure 1), 
consisting of minor intrusions, limestone, shale, and 
pyroclastics, classified under the Albian-age Asu River 
geological group (Rock et al., 2022; Ugodulunwa et al., 
2021; Ekwe et al., 2020).  Lead-zinc mineralization in the 
Abakaliki region, formed through hydrothermal processes 
at approximately 140°C, manifests in four primary lodes: 
Ishiagu, Enyigba, Ameri, and Ameka (Abraham et al., 
2023).  Evidence suggests that a significant portion of the 
Enyigba lode extends into the AE-FUNAI periphery 
(Ugodulunwa et al., 2021).  The southeastern region of 
Nigeria, including the vicinity of AE-FUNAI, is 
characterized by complex geological formations 
associated with the West African Craton, Benue Trough, 
and Anambra Basin.  The region's geological evolution 
has been influenced by tectonic processes, including 
rifting, sedimentation, and magmatism, resulting in 
diverse lithologies and structural features.  Moreover, 
mineralized zones, such as lead-zinc deposits in the 
Abakaliki area and coal seams in the Afikpo Basin, 
underscore the economic importance of understanding 
the region's subsurface geology.  The Nigeria-Benue 
trough took shape after a sequence of tectonic events and 
repeated sedimentation during the Cretaceous period.  
The separation of the continents led to the sudden 
formation of a rift (aulacogen) filled with transgressive 
and regressive sedimentary deposits (Ugwu and Alasi, 
2016).  The lower Benue trough is supported below by a 
thick sedimentary succession set down in the Cretaceous 
era.  The Abakaliki Anticlinorium is characterized by four 
geological formations: the Nkporo Shale (Campanian), 
the Awgu Shale (Caniacian), the Asu River Group 
(Albian), and the Eze-Aku Shale (Turonian) (Figure 2).  
These sedimentary deposits were shaped by significant 
tectonic events occurring in two stages, resulting in the 
folding of the sediments.  The Cenomanian and Santonian 
deformations substantially impacted the area (Ezema et 
al., 2014; Olade, 1975; Nwachukwu, 1972).  Multiple 
intrusive bodies due to magmatism that affected the Eze-
Aku and Asu River Group are found within the shale 
formation.  The majority of these intrusions have been 
obscured by the shale formation, which constitutes the 
predominant superficial geology of the region.  
Intermediate intrusions are visible on the surface and are 
observable in certain areas of the study area, such as 
Abakaliki town.  These intrusions manifest as sills (Ezema 
et al., 2014; Ofoegbu, 1985; Eze and Mamah, 1985).  The 
Asu River Group is primarily composed of shale, with 
occasional occurrences of siltstone, limestone, sandstone, 
and intercalations. 

Recent geological assessments have identified critical 
challenges in the region, including the formation of 
sinkholes and widespread structural damage to buildings.  

These phenomena are attributed to subsurface instability 
caused by the dissolution of mineral-bearing formations 
and subsequent cavity development (Chibuogwu et al., 
2023).  The combination of unauthorized mining activities 
and naturally occurring geological processes has 
heightened concerns about ground stability and regional 
structural integrity (Usman et al., 2023; Rock et al., 2017; 
Ako et al., 2014).  This investigation aims to delineate 
subsurface structures within the AE-FUNAI vicinity, 
focusing on identifying mineral-bearing formations and 
potential geohazards.  The research holds significant 
implications for infrastructure development and mineral 
resource management, contributing to our understanding 
of southeastern Nigeria's subsurface geological 
architecture. 

Quantitative interpretation of potential field data involves 
analyzing parameters such as depth, horizontal 
positioning, source geometry, and variations in physical 
properties (Abraham et al., 2023; Aboud et al., 2023; 
Alqahtani et al., 2022; Essa and Abo-Ezz, 2021; Essa et 
al., 2021; Ganguli et al., 2021; Eshaghzadeh et al., 2020; 
Abraham and Alile, 2019; Aboud et al., 2018; Srivastava 
and Agarwal, 2010; Abdelrahman et al., 2003; Büyüksaraç 
et al., 2005).  Numerous geophysical studies have been 
conducted in the vicinity of Abakaliki and surrounding 
areas.  These investigations include the use of Vertical 
Electrical Sounding (VES) to evaluate aquifer 
characteristics (Ugwu and Alasi, 2016), determining the 
depth to magnetic sources near Abakaliki and estimating 
Curie Point Depth (CPD) (Abraham et al., 2018b), and 
using aeromagnetic data for hydrocarbon and mineral 
exploration prospects (Ugodulunwa et al., 2021; Ezema et 
al., 2014).  Additionally, seismic refraction and VES 
techniques have been employed to examine the 
sedimentary sequence deposition in the region (Agha and 
Arua, 2014).  

Recent advancements include the work by Abraham et al. 
(2024, and 2023), which applied magnetic inversion 
techniques to explore the spatial extent and geometry of 
magnetic structures and their role in mineralization 
processes in southeastern Nigeria.  Their methodology 
incorporated 3D magnetic data inversion, Euler 
deconvolution, analytic signal analysis, Enhanced Local 
Wavenumber (ELW) technique, and Particle Swarm 
Optimization (PSO) to determine source characteristics.  
Their findings revealed magnetic bodies with 
susceptibilities exceeding 0.00188 SI, extending to depths 
of nearly 5.5 km and spanning approximately 18 km in the 
EW direction at the Ngbo–Ekerigwe area.  However, no 
ground magnetic survey has been conducted in the entire 
region, which could have confirmed some potential areas 
and improved the resolution of identified anomalies.  
Given the vast expanse of southeastern Nigeria, more 
investigations are still needed in this direction.  Inversion 
of magnetic survey data can offer restrictions on 
subsurface susceptibility allotments (Büyüksaraç et al., 
2005; Lelievre, 2003).  
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Figure 1.  Map of Nigeria showing the general geology (modified from Abraham et al., 2018a).  The location of 
the study is inserted. 

The Abakaliki region is recognized as a highly mineralized 
zone, with substantial deposits of lead, zinc, sodium 
chloride, silver, and limestone, as reported in various 
studies (Abraham et al., 2018a; Ugwu and Alasi, 2016; 
Ezema et al., 2014).  These resources are evidenced by the 
area's prevalence of local and small-scale mining activities.  
Magnetic susceptibility correlates directly with the 
concentration of magnetic minerals such as iron oxides, 
pyrrhotite, cobalt, nickel, and metallic iron is a key 
parameter in exploring economically valuable mineral 
deposits.  Therefore, The magnetic survey data analysis 
can provide critical insights for identifying potential 
drilling locations (Lelievre, 2003).  2D and 3D inversion 
modeling have significantly contributed to the availability 
of robust datasets for mineral exploration (Büyüksaraç et 
al., 2005).  Local magnetic anomalies and 3D voxel-based 
modeling techniques are now indispensable tools in 
modern exploration targeting (MacLeod and Ellis, 2013).  

Magnetic inversion delineates magnetic bodies rich in 
magnetite and other magnetic minerals and provides 
structural insights into mineralized zones (Couto et al., 
2017).  These techniques are instrumental in interpreting 
complex ore bodies, with magnetic data playing a crucial 
role in characterizing their geometry and distribution 
(Leâo-Santos et al., 2015).  

MATERIALS AND METHODS 

The magnetic method measures Earth's magnetic field 
variations caused by subsurface geological structures, 
including faults, fractures, igneous intrusions, and mineral 
deposits.  These variations are influenced by the magnetic 
properties of the underlying rocks and minerals, providing 
indirect but valuable information about the subsurface 
geology.  For this study, the master plan of AEFUNAI 
was obtained and reproduced into grids and sub-grids.  
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The realized sub-grids were assigned regions of 
approximately 1000 x 1000 m, which were used for 
various study phases.  This research covers phase one as 
stipulated on the grid.  The GPS and magnetic compass 
gadgets were utilized to locate the various grid points on 
the map to ensure comprehensive spatial coverage and 
data density.  High-resolution geomagnetic data of the 
AEFUNAI region was collected using the ground-based 
Geometrics G-856AX portable proton precession 
magnetometer.  Data was acquired using 100 m line 
spacing.  The raw magnetic data underwent corrections 
for diurnal variations, cultural noise, and instrumental 
drift.  Data were gridded to a uniform grid spacing of 18.5 
m (Figure 2) to facilitate subsequent analysis.  The 
International Geomagnetic Reference Field (IGRF) (2020 
model) was subtracted from the data.  The polynomial 
fitting technique was employed to separate the regional 
and residual components of the magnetic field.  This 
separation allowed for removing long-wavelength 
variations associated with deep-seated geological 
structures, revealing shorter-wavelength anomalies 
indicative of near-surface geological features.  Figure 3 
shows the resulting residual magnetic field anomalies for 
the coverage region. 

Analytic signal (AS):  

The analytic signal (AS) processing technique was 
employed as it combines both amplitude and phase 

information from magnetic anomalies, facilitating the 
identification of subtle magnetic signatures associated 
with geological boundaries and lithological variations 
(Usman et al., 2024; Rajagopalan, 2003).  The AS 
technique has proven especially valuable in complex 
geological terrains where traditional magnetic 
interpretation methods may be limited by interference 
effects and varying magnetization directions (Abraham et 
al., 2024; Nabighian et al., 2005).  The interpretation of 
magnetic anomalies presents significant challenges due to 
the complex relationship between observed signals and 
their geological sources.  Magnetic data interpretation is 
particularly complicated by horizontal displacements of 
anomalies relative to their sources (skewness), which 
occurs because geomagnetic field vectors and induced 
magnetization directions typically deviate from vertical 
orientations (Roest et al., 1992; Nabighian, 1972).  The 
analytic signal (AS) function, although not a directly 
measurable physical property, plays a crucial role in 
geophysical interpretation due to its independence from 
both the magnetization direction and the inducing field 
orientation.  This unique characteristic ensures that bodies 
of similar geometry produce identical analytic signal 
responses.  Additionally, the AS peaks are symmetric and 
are positioned directly above the edges of broader bodies 
or over the centres of narrower ones, providing valuable 
spatial information about subsurface structures (Cooper 
and Cowan, 2006). 

 
Figure 2.  Total Magnetic Intensity field map.  This shows the resulting gridded data acquired from the study 
area. 
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Figure 3.  Residual Magnetic Anomaly Map.  This plot is the resulting residual map after the regional-residual 
anomalies separation. 

The Analytic Signal is given by Equation (1): 
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where T is the observed field at x and y. 

Assuming the anomalies result from vertical contacts, the 
Analytic Signal (AS) can provide an estimate of source 
depth using a straightforward amplitude half-width 
approach, achieving depth accuracy of approximately 
30%.  This method circumvents challenges commonly 
associated with the traditional reduction-to-pole process 
for ∂T, particularly when the influence of natural remanent 
magnetization on source magnetization distribution is 
uncertain (Riedel, 2008).  Figure 4 illustrates the 
calculation of AS, demonstrating how it facilitates the 
determination of source characteristics without requiring 
assumptions about the magnetization direction of the 
source body.  Processing was realized with Geosoft 
software. 

Euler Deconvolution: We applied Euler deconvolution 
techniques to analyze the residual magnetic field, 
facilitating depth estimation and spatial localization of 
magnetic sources.  By examining the second vertical 
derivative signatures, this methodology revealed distinct 
magnetic features, including structural discontinuities, 
intrusive bodies, and mineralized structures. 

The Standard 3D form of Euler’s equation can be defined 
(Reid et al., 1990) as Equation (2): 
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      (2) 

Where x, y, and z are the coordinates of a measuring point, 
xo, yo, and zo are the coordinates of the source location 
whose total field is detected at x, y, and z, b is a base level, 

and 𝜂 is a structural index (SI).  The Structural Index (SI) 
is an exponential parameter that reflects how the magnetic 
field diminishes with distance based on the geometry of 
the source body.  The specific value of the SI depends on 
the nature of the source being analyzed (Whitehead and 

Musselman, 2005).  For example, an SI value of 𝜂 = 0 

indicates a geological contact, 𝜂 = 1 corresponds to the 

top of a vertical dyke or the boundary of a sill, 𝜂 = 2 
represents the centre of a horizontal or vertical cylinder, 

and 𝜂 = 3 is associated with the centre of a magnetic 
sphere or dipole (Thompson, 1982; Reid et al., 1990).  The 
implementation of Euler deconvolution is depicted in 
Figure 5 (a and b) for structural indexes of 0 and 1. 

3D Modeling of Susceptibility Contrast: We 
constructed three-dimensional (3D) geological models by 
integrating the processed magnetic data, enabling 
comprehensive spatial visualization of subsurface 
structures.  The models incorporated analytic signal-
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derived magnetic susceptibility contrasts, providing 
quantitative insights into magnetic properties and 
facilitating three-dimensional characterization of 
geological features for mineralization targeting and 
structural analysis.  Three windows were taken on the four 
isolated anomaly structures in Figure 4.  The 3D modeling 
results are displayed in Figure 6 (a, b, c) respectively. 

RESULTS AND DISCUSSION  

Analysis of the magnetic anomalies revealed significant 
subsurface structures and their potential implications for 
mineral exploration and geologic stability.  Results from 
this study successfully delineate four distinct anomalous 
zones (locations A, B, C, and D) within the study area 
(Figure 4).  These zones, characterized by varying 
magnetic intensities and structural depths, suggest the 
presence of mineralized geologic features, including 
intrusions and fault-controlled systems (Figure 5).  The 
results provide critical insights into these structures' spatial 
distribution, geometry, and depth, which were further 
validated by comparative evaluations of depth solutions 
and 3D models (Figure 6).  The discussion in this section 
presents a detailed interpretation of the identified 

anomalies, focusing on their geophysical signatures, 
potential geological implications, and relevance to mineral 
exploration and environmental considerations. 

Initial assessment of the residual magnetic anomalies 
(Figure 3) reveals the presence of anomalous magnetic 
source bodies within the subsurface, mostly in the study 
area's central, northern and eastern regions.  Positive 
anomalies ranging between 46-240 nT are observed in the 
north and central areas and could represent anomalous 
intrusions within the subsurface of the general shale 
geology.  Negative anomalies (-4- -340 nT) could also be 
seen southwards, northwards, and westwards of the study 
area.  While these could also represent a magnetic 
response of the shale geology in the region, the presence 
of other magnetic source bodies within the shale 
formation could cause the anomalies. 

To confirm if the magnetic anomalies within the region 
were caused by crustal thinning or intrusions, we applied 
the analytic signal (AS) technique to the magnetic 
anomalies (Figure 4).  Locations of the AS maxima 
determine the outlines of magnetic sources (Abraham et 
al., 2022; Obande et al., 2014; Roest et al., 1992).   

 
Figure 4.  Result of Analytic Signal computations on the magnetic anomalies.  Four isolated anomalous 
structures have been identified from the computations (circles A, B, C, and D). 
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(a) 

(b) 
Figure 5.  Euler depth solutions plotted on Analytic Signal map.  (a) SI=0 for geologic contacts.  (b) SI=1 for 

top of a vertical dyke or the edge of a sill investigation. 
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(a)      (b) 

  
(c) 

Figure 6. 3D inversion result for computed windows.  (a) Window A result obtained from clipping 
susceptibilities lower than 0.007 SI.  (b) Window B result obtained from clipping susceptibilities lower than 
0.006 SI.  (c) Windows CD results obtained from clipping susceptibilities lower than 0.006 SI.  

A distinct isolation of subsurface anomalous structure 
could be observed (A, B, C, D) with a high positive 
response rate >8600 nT/km.  The isolated structures are 
considered mineralized geologic structures intruding on 
the subsurface at these locations.  These contrasting 
geologic structures within the subsurface, as exposed from 
the AS computations, are significant for this study.  
Abraham et al. (2018a, 2022 and 2023) submitted that 
some of the locations within southeastern Nigeria had 
notable intrusions within the subsurface, which was 
responsible for most of the mineralization in the region.  
Structure D appears larger and could well be extensive 
within the subsurface.  This structure and environment's 
location would be more stable than its counterparts in A 
and C.  This is due to the larger diameter and extensive 
spread of the anomalous structure within the area.  Our 
study has identified significant magnetic anomalies 
corresponding to intrusions, particularly at locations A, B, 
C, and D. However, while the previous works (Abraham 
et al., 2024, 2023; Ugodulunwa et al., 2021; Ekwe et al., 
2020; Ugwu et al., 2016; Ezema et al., 2014; Eze and 
Mamah, 1985) reported mineralization primarily 
associated with granitic intrusions, this study suggests that 
the anomalies may also relate to fault-controlled structures 
within a shale-dominated geological setting.  Structure D, 
for instance, is interpreted as a dyke or sill with a larger 

extent and higher mineralization potential than previously 
documented features (Nwachukwu, 2004; Nwachukwu, 
1972) in similar settings.  Consequently, we would advise 
possible sitting of building structures at location D against 
similar actions at locations A and C. Locations A and C 
may not be very stable or give way in the long run if the 
geologic structure within these locations is unstable or 
bear soluble minerals. 

We computed the Euler deconvolution of the magnetic 
field to further examine these structures and estimate their 
possible depths.  Figure 5 (structural index, SI = 0) shows 
a plot of Euler solutions superimposed on the AS map.  
Figure 5 (a) indicated that the identified subsurface 
anomalous structures were not principally affected by 
geologic contacts in the study area.  A notable clustering 
of Euler solutions at the central region (E - W), having 
depths ranging from 85 – 110 m, is not directly connected 
to any identified structures and could represent a fracture.  
Similar trending Euler solution clusters (N – S (depths 
ranging 50 – 120 m), NE – SW (depths ranging 57 – 125 
m)) could be seen in the western region, and a N – S 
trending (depths ranging 25 – 57 m) on the structure at 
location C (Figure 5 (a)).  This structure could represent a 
geologic fault system at the location.  This hypothesis is 
drawn from observation noticed on the 3D model 
computations on structure D location.  Figure 5 (b) (SI = 
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1) shows direct agreement of the Euler solutions 
clustering on identified structures.  Given the structural 
index chosen for Figure 5 (b), the alignment of Euler 
solutions confirms the presence of structures earlier 
identified.  Structures at locations A, B, and C could be 
interpreted as dyke structures intruding the subsurface at 
this location.  The structure at location D could represent 
a dyke or sill structure, depending on further 
investigations.  The respective depths of the interpreted 
dyke structures indicate depths ranging from 25 – 120 m 
(structure A), 29 – 125 m (structure B), 25 – 75 m 
(structure C), and 25 – 100 m (structure D).  The estimated 
depths of these structures promise possible mineral 
exploration, especially at locations A, B, and C at localized 
scale and structure at locations D and industrialized scale.  
Similar techniques applied in other parts of the world 
(Aboud et al., 2023; MacLeod and Ellis, 2013; Riedel, 
2008; Roest et al., 1992) have revealed subsurface dykes 
and mineralized structures associated with tectonic 
activities.  The clustering of Euler solutions observed in 
our study, particularly for structures at location D, mirrors 
findings from these works, which identified fault-
controlled mineralization at comparable depths.  
However, the amplitudes and lateral extents of anomalies 
reported in this study, especially at structure D, exceed 
those typically documented in other geological studies, 
suggesting a unique mineralization environment. 

A 3D evaluation of these structures (Figure 6) presents a 
possible nature of these anomalous structures within the 
subsurface.  While a minimal structural ensemble is 
observed from the model result at location A, a significant 
subsurface structure is observed at locations B, C, and D. 
The possible N – S geologic fault trending (Figure 5 (a) 
structure D) is confirmed in the 3D model result.  Further 
evaluation of identified locations is advised to enable 
possible mineral exploitation.  We also advise caution or 
outright avoidance of establishing high-rising building 
structures or heavy constructional edifices at locations A 
and B as these locations could be unstable to bear such 
weights, or there may be a future need for immediate 
exploration and exploitation of the identified structures 
for minerals. 

CONCLUSION 

A successful geophysical assessment of the AE-FUNAI 
vicinity using a land-based magnetic survey method has 
been conducted.  AE-FUNAI environs host compelling 
isolated subsurface geologic structures whose depths, 
locations, nature, and expanse have been estimated.  This 
was achieved using residual magnetic anomaly analysis, the 
analytic signal (AS) technique, Euler deconvolution, and 
3D modeling.  The findings revealed significant magnetic 
anomalies, primarily in the central, northern, and eastern 
regions, indicative of subsurface intrusions and potential 
mineralized structures within the shale-dominated 
geology.  Positive magnetic anomalies (46–240 nT) were 
observed in the northern and central regions, suggesting 
the presence of intrusions, while negative anomalies (-4 to 
-340 nT) in the southern, northern, and western regions 

may represent a combination of shale responses and 
magnetic source bodies.  The AS analysis identified four 
key anomalous structures (A, B, C, and D) with high 
response rates (>8600 nT/km), interpreted as mineralized 
intrusions.  Structure D, characterized by its extensive 
spread and larger diameter, is likely the most stable and 
suitable for industrial-scale mineral exploration.  In 
contrast, structures A, B, and C, with depths ranging from 
25 to 125 meters, are recommended for localized 
exploration.  Euler deconvolution results confirmed these 
structures' depths and highlighted additional fault-
controlled features, particularly a north-south trending 
fault associated with structure D. 3D modeling validated 
the geometry and extent of the identified anomalies, 
confirming the potential for significant mineralization at 
structures A, B, C, and D. While structure D appears to be 
the most promising target for large-scale exploitation, 
structures A and B are less stable and unsuitable for heavy 
construction, requiring further evaluation to mitigate risks 
of instability or future mineral extraction activities.   While 
we recommend further investigations at identified sites, 
we advise caution in setting up heavy buildings or 
construction structures at these locations.  Some of the 
identified structure locations could pose safety issues or 
conflicting economic interests in the near future. 
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