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INTRODUCTION
In traditional economic order quantity (EOQ) models, it 
is implicitly assumed that the demand rate is constant, 
inventory units have fixed costs, ordering and holding 
costs are fixed, and objects have an indefinite lifespan. 
Nonetheless, the demand rate for a lot of things (like 
computers, airplanes, fashion items, photographic films, 
televisions, computer chips, and so forth) might be in a 
dynamic state because the age of inventory affects demand 
negatively through depletion, spoiling, loss of quality, and 
diminished market potential. Harris created the first 
classical EOQ model in 1913. Later, a number of scholars, 
including Yahaya et al. (2019), Giri et al. (2000), Kar et al. 
(2001), and Chakrabarti et al. (1998), and others altered the 
standard EOQ model's assumptions in the situation of 
time-dependent linear demand rate, which assumed a 
constant increase or decrease in demand rate per unit of 
time—something that is rarely observed for many 
products. The assumption of the classical EOQ model is 
also modified by some researchers, such as Dash et al. 
(2014) and Ahmed and Musa (2016), in the case of a time-
dependent exponential demand rate. This is also 
uncommon for any product, as the demand rate of the 

majority of products may not change with the higher rate 
of change as exponential. 

Subsequently, scholars like Khanra et al. (2011), 
Uthayakumar and Karuppasamy (2017), and Priya and 
Senbagam (2018) created inventory models that included 
time-dependent quadratic demand rate, which is a 
quadratic function of time that best represents an 
accelerated or delayed rise or fall in demand rate. Demand 
rates typically increase more quickly for new things like 
gadgets, stylish clothing, and so forth.  

The traditional EOQ model, which Harris created in 1913, 
believed that goods had an endless lifespan and that the 
only reason inventories were depleted was a steady rate of 
demand. But sometimes, degradation causes inventory 
items to run out. Therefore, it is impossible to overlook 
the impacts of deterioration on inventory items. The 
inventory model for fashionable products that deteriorate 
at the end of the recommended storage time was initially 
studied by Whitin (1957). Some relevant research on 
inventory models that assume deterioration begins as soon 
as things are received can be found in Jaggi et al. (2019), 
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Mandal and Venkataraman (2019), Baraya and Sani (2016), 
and others. 

The traditional EOQ models made the assumption that 
retailers ought to cover the purchase price as soon as the 
goods arrive. But the majority of the time, the supplier 
gives the store a grace period to pay for the purchase, and 
the shop can make money by selling goods and collecting 
interest. Haley and Higgins (1973) were the first to 
introduce the idea of trade credit in the inventory 
literature. Subsequent scholars have developed an EOQ 
model with trade credit under a variety of assumptions, 
including Babangida and Baraya (2020), Jaggi et al. (2015), 
Shaikh et al. (2018), Musa and Sani (2012), and others. 

The premise of constant holding costs is used in the 
development of several inventory models. However, 
because the time value of money and price index fluctuate 
in real-world scenarios, many products' holding costs may 
be dynamic. For the majority of the items in stock, the 
holding cost is a linear function of the storage duration. 
Under a variety of assumptions, researchers like 
Babangida and Baraya (2019a), Dutta and Kumar (2015), 
Selvaraju and Ghuru (2018), Baraya and Sani (2011), and 
others create an inventory model with time-varying 
holding costs. 

The traditional inventory model forbids shortages. 
Nevertheless, there are instances when the provider 
cannot meet the client's needs from the available 
inventory; this is referred to as a stock-out or shortage 
scenario. Roy (2008) created an EOQ model for 
immediately decaying items with a price-dependent 
demand rate. In this model, shortages are permitted, the 
backlog is fully accounted for, and the deterioration rate 
and holding cost are considered as linearly increasing 
functions of time. An inventory model for non-
instantaneous deteriorating items with a stock-dependent 
demand rate, a time-varying holding cost, and fully 
backlogged shortages was created by Choudhury et al. 
(2013). 

Under the trade credit policy, Babangida and Baraya 
(2019b) created an inventory model for non-instantaneous 
deteriorating goods with two-phase demand and 
shortages. Complete backlogs and shortages are 
acceptable. In order to minimize the overall variable cost, 
the best period with positive inventory, cycle length, and 
order amount are identified. 

For the majority of commodities, including electronics, 
fashion, cars and their spare parts, photographic film, 
seasonal goods, and so on, the amount of time it takes for 
the next replenishment will determine whether or not the 
backlog is acceptable. As a result, the backlog rate ought 
to fluctuate based on how long it takes for the next 
replenishment. In other words, the backlog rate will 
decrease while the waiting time increases and vice versa. 
An EOQ-based model for non-instantaneous 
deteriorating items with a constant demand rate under 
allowable payment delays was created by Geetha and 
Uthayakumar (2010). Partial backlogs and shortages are 
permitted; the pace of backlogs varies based on the time it 

takes for the next replenishment. An inventory model for 
degrading items with a stock-dependent demand rate and 
time-varying deterioration was created by Sarkar and 
Sarkar (2013). Partial backlogs and shortages are 
permitted; the pace of backlogs is determined by the time 
it takes for the next replenishment. In accordance with the 
trade credit policy, Babangida and Baraya (2022) created 
an EOQ model for non-instantaneous deteriorating items 
with two-phase demand rates, linear holding costs, and 
time-dependent partial backlog rates. 

This study looked at an EOQ model for non-
instantaneous deteriorating items with linear holding 
costs, two-phase demand rates, time-dependent partial 
backlog rates, and two-level pricing strategies under trade 
credit policy. The adequate and necessary requirements 
for the ideal solution have been identified. In order to 
optimize the overall profit per unit time, the optimal time 
with positive inventory, cycle length, and order quantity 
will be determined. A few numerical examples have been 
given to illustrate the models' theoretical results. Through 
sensitivity analysis, the effects of changing a number of the 
proposed models' parameters on the decision factors were 
investigated, and suggestions for maximizing total profit 
were also offered. 

2. NOTATION AND ASSUMPTION. 

2.1 Notation: 

The following notations are used in the development of 
the inventory system. 

 𝐴     The fixed cost of each order 

𝐶     The purchasing cost per unit time 

𝑆1     Unit selling price during the interval [0, 𝑡𝑑] 

𝑆2      Unit selling price during the open interval[𝑡𝑑 , 𝑇], 
where 𝑆1 > 𝑆2 > 𝐶 

𝐶𝑏     Shortage cost per unit time 

𝐼𝐶      The interest charged in stock by the supplier 

𝐼𝑒     The interest earned 

𝑀     The trade credit period (in year for settling account) 

𝜃     The constant deterioration rate function 

𝑡𝑑     The length of time in which the product exhibit more 
deterioration 

𝑡1     Length of time in which the inventory has no 
shortage 

𝑇      The length of replenishment cycle time 

𝑄𝑚    The maximum inventory level 

𝐵𝑚     The backorder level during the shortage period 

𝑄      The order quantity during the cycle length i.e. 𝑄 =
𝑄𝑚 + 𝐵𝑚    
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C𝝅   Unit cost of lost sales per unit 

2.2 Assumptions 

In addition to assumptions 8 and 9, which are not taken 
into consideration in Babangida and Baraya (2021), this 
model develops under the following assumptions, which 
have been adapted from the aforementioned research. 

1. The replenishment rate is infinite, i.e., the 
replenishment rate is instantaneous, and the lead 
time is zero. 

2. During the fixed period,𝑡𝑑 , there is no deterioration, 
and at the end of this period, the inventory item 

deteriorates at the rate 𝜃. 
3. There is no replacement or repair for deteriorating 

items. 
4. Demand rate before deterioration begins is assumed 

to be continuous time-dependent quadratic and is 

given by 𝑎 + 𝑏𝑡 + 𝑡2, where 𝑎 ≥ 0, 𝑏 ≠ 0, 𝑐 ≠
0𝑐 ≠ 0. Here 𝑎 is the initial demand rate, 𝑏 is the 

rate at which the demand rate changes and 𝑐 is the 
accelerated change in the demand rate. 

5. Demand rate after deterioration sets in is assumed 

to be constant and is given by 𝑑,𝑑 > 0. 

6. During the trade credit period 𝑀(0 < 𝑀 < 1),  e 
account is not settled; generated sales revenue is 
deposited in an interest-bearing account. At the end 
of the period, the retailer pays off all units bought 
and starts to pay the capital opportunity cost for the 
items in stock. No interest is earned after the trade 
credit period. 

7. The unit selling price is not the same as the unit 
purchasing cost. It is assumed that the unit selling 
price before deterioration sets in is greater than that 

after deterioration sets n (𝑆1 > 𝑆2 > 𝐶). 
8. Shortages are allowed and partially backlogged 

during the stock-out period; the backlogging rate is 
variable and depends on the waiting time for the 
next replenishment, i.e. the longer the waiting time 
is, the smaller the backlogging rate will be. The 
backlogging rate for negative inventory is given by 

𝐵(𝑡) =
1

1+𝛿(𝑇−𝑡)
, 𝛿 is backlogging parameter ( 0 <

𝛿 < 1)and  (𝑇 − 𝑡) is waiting time (𝑡1 ≤ 𝑡 ≤ 𝑇), 

1 − 𝐵(𝑡) is the remaining fraction lost. 

9. Holding cost 𝐶1(𝑡)per unit time is linear time-

pendent and is assumed to be 𝐶1(𝑡) = ℎ1 + ℎ2𝑡; 

where ℎ1 > 0 and ℎ2 > 0. 
 

3. MODELLING 
 

At the start of the cycle, 𝑄𝑚 units are ordered (i.e., at time 

𝑡 = 0). The inventory level gradually depletes due to 

market demand alone during the interval [0, 𝑡𝑑], and the 
demand rate is assumed to be time-dependent quadratic. 

At the time interval [𝑡𝑑 , 𝑡1], the inventory level depletes 
due to the combined effects of customer demand and 

deterioration, and the demand rate decreases to 𝑑. At time 

𝑡 = 𝑡1, the inventory level depletes to zero. Shortages 

occur at the time interval [𝑡1, 𝑇] and are partially 

backlogged; the backlogging rate is variable and depends 
on the waiting time for the next replenishment. Figure 1 
below illustrates the behavior of the inventory system.      

 
Figure 1: Graphical representation of the inventory 
system 

During the time interval [0,  𝑡𝑑], the change of inventory 

at any time 𝑡 is represented by    the following differential 
equation 

𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝑎 + 𝑏𝑡 + 𝑐𝑡2),   0 ≤ 𝑡 ≤  𝑡𝑑                         (1) 

with boundary conditions 𝐼1(0) =  𝑄𝑚 and 𝐼1(𝑡𝑑)  = 𝑄𝑑 .  
𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃𝐼2(𝑡) = −𝑑,     𝑡𝑑 ≤ 𝑡 ≤  𝑡1                      (2) 

With  the boundary condition 𝐼2(𝑡1) =  0 at 𝑡 = 𝑡1 and  

𝐼2(𝑡𝑑) =  𝑄𝑑 at 𝑡 = 𝑡𝑑 
𝑑𝐼3(𝑡)

𝑑𝑡
= −

  𝑑

1 + (𝑇 − 𝑡)
,   𝑡1 ≤ 𝑡 ≤  𝑇                      (3) 

with boundary condition 𝐼3(𝑡1) =  0 at 𝑡 = 𝑡1. 
The solution of equations (1), (2) and (3) are respectively 
given by 

𝐼1(𝑡) =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + 𝑎(𝑡𝑑 − 𝑡) +

𝑏

2
(𝑡𝑑

2 − 𝑡2)

+
𝑐

3
(𝑡𝑑

3 − 𝑡3)    0 ≤ 𝑡 ≤  𝑡𝑑           (4) 

𝐼2(𝑡) =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡) − 1),      𝑡𝑑 ≤ 𝑡 ≤  𝑡1                      (5) 

𝐼3(𝑡) = −
𝑑


[ln [1 + (𝑇 − 𝑡1)

− ln[1 + (𝑇 − 𝑡)],   𝑡1  ≤ 𝑡
≤ 𝑇                                                                                        (6) 

From Fig.1, using the condition 𝐼1(0) =  𝑄𝑚 in equation 
(4), the maximum stock level is given by 

𝑄𝑚 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

+ (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
)        (7) 

Similarly, the value of 𝑄𝑑 can be derived at 𝑡 = 𝑡𝑑, then it 
follows from equation (5) that 

𝑄𝑑 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)                                         (8) 

The maximum backordered inventory 𝐵𝑚 is obtained 

at 𝑡 = 𝑇, and then from equation (6), it follows that 

𝐵𝑚 =
𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]]                                     (9) 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 032 – 048. 

 35 

 

 https://scientifica.umyu.edu.ng/                      Ahmed et al., /USci, 4(2): 032 – 048, June 2025  
 

Consequently, the maximum inventory level 𝑄𝑚  and the 

maximum backordered inventory 𝐵𝑚 are added to 

determine the order size 𝑄 for the period  [0, 𝑇]. 

𝑄 =
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

+
𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]]                (10) 

(i) The total demand during the period  [𝑡𝑑 ,  𝑡1] is given by 

𝐷𝑀 = ∫ 𝑑
𝑡1

𝑡𝑑

𝑑𝑡 = 𝑑(𝑡1 − 𝑡𝑑)                             (11) 

(ii) The total number of deteriorated items per cycle is given by 

𝐷𝑃 = 𝑄𝑑 − 𝐷𝑀 =
𝑑

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)] (12) 

(iii) Total number of items sold 

𝑆𝑁 = 𝑄 − 𝐷𝑃 = (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑑(𝑡1 − 𝑡𝑑)

+
𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]]             (13) 

(iv) Sale Revenue (SR) 

𝑆𝑅 = 𝑆1 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

]

+ 𝑆2 [∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

+ ∫
  𝑑

1 − (𝑇 − 𝑡)
𝑑𝑡

𝑇

𝑡1

] 

= 𝑆1 (𝑎𝑡𝑑 + 𝑏
𝑡𝑑

2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑)

+ 𝑆2

𝑑

𝛿
[𝑙𝑛[1

+ 𝛿(𝑇 − 𝑡1)]]                       (14) 

(v) Purchasing cost (PC)  

𝑃𝐶 = 𝐶𝑄 = 𝐶 [
𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)

+
𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]]]          (15) 

(iv) The fixed ordering cost per order is given by 𝐴 
(v) The inventory holding cost for the entire cycle is given by 

𝐶𝐻 = ∫ (ℎ1 + ℎ2𝑡)𝐼1(𝑡)𝑑𝑡
𝑡𝑑

0

+ ∫ (ℎ1 + ℎ2𝑡)𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

            (16) 

Substituting the values of equations (4) and (5) in equation 

(16) 

𝐶𝐻 = ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4

+
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

+ ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4

+
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3

+
𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]                 (17) 

(vi) The backordered cost per cycle is given by 

𝑆𝐶 = 𝐶𝑏 ∫ −𝐼3(𝑡)𝑑𝑡
𝑇

𝑡1

=
 𝐶𝑏𝑑


((𝑇 − 𝑡1)

−
𝑙𝑛(1 + (𝑇 − 𝑡1))


)                    (18) 

(vii) The opportunity cost per cycle due to lost sales is 
given by 

𝐿𝐶 = 𝐶𝜋𝑑 ∫ (1 −
𝑑

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡1

= 𝐶𝜋𝑑 [(𝑇 − 𝑡1)

−
𝑙𝑛(1 + 𝛿(𝑇 − 𝑡1))

𝛿
 ]                (19) 

(vii) The total profit per unit time for a replenishment cycle 

(denoted by 𝑇𝑃(𝑡1 ,𝑇 ) is given by 

𝑇𝑃(𝑡1 ,𝑇 )

= {

𝑇𝑃1(𝑡1 ,𝑇 )                 0 < 𝑀 ≤ 𝑡𝑑

𝑇𝑃2(𝑡1 ,𝑇 )                  𝑡𝑑 < 𝑀 ≤ 𝑡1

𝑇𝑃3(𝑡1 ,𝑇 )                           𝑀 > 𝑡1

                   (20) 

where 𝑇𝑃1(𝑡1 ,𝑇 ), 𝑇𝑃2(𝑡1 ,𝑇 ), and  𝑇𝑃3(𝑡1 ,𝑇 ) are 

discussed for three different cases follows. 

Case 1: (𝟎 < 𝑀 ≤ 𝒕𝒅) 

The interest payable 

The interest payable is listed below since this is the time 
before degradation occurs and payment for goods is 

resolved using the capital opportunity cost rate 𝐼𝑐 for the 
items in stock. 

𝐼𝑃1 = 𝐶𝐼𝑐 [∫ 𝐼1(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+ ∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

] 

= 𝐶𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝑎

2
(𝑡𝑑 − 𝑀)2

+
𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1

− 𝜃(𝑡1 − 𝑡𝑑))]                             (21) 
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The interest earned 

While the retailer must settle the accounts at period 𝑀, he must arrange funds at a certain interest rate to finance his 

remaining stocks for the period 𝑀 to 𝑡𝑑 . In this scenario, the retailer can earn interest on sales revenue up to the trade 

credit period 𝑀. The interest earned is 

𝐼𝐸1 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑀

0

] = 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)   (22) 

The total profit per unit time for case 1 (0 < 𝑀 ≤ 𝑡𝑑) is  

𝑇𝑃1(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost- interest payable during the permissible delay period + interest earned during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)

𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]] − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

− (𝐶𝜋𝑑 +
𝑑𝐶𝑏

𝛿
) [(𝑇 − 𝑡1) −

𝑙𝑛(1 + 𝛿(𝑇 − 𝑡1))

𝛿
 ]

− 𝑐𝐼𝑐 [
𝑑(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝑎

2
(𝑡𝑑 − 𝑀)2 +

𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2 +
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑))]

+ 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)}                                                 (23) 

Case 2: (𝒕𝒅 < 𝑀 ≤ 𝒕𝟏) 

The interest payable 

The interest payable is higher when the credit period's endpoint is longer than the period without deterioration but less 
than or equal to the period with a positive inventory stock of the products. 

𝐼𝑃2 = 𝑐𝐼𝑐 [∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑀

] = 𝑐𝐼𝑐 [
𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1 − 𝑀))]                                                                           (24) 

The interest earned 

The retailer can earn interest on sales revenue up to the trade credit period 𝑀 in this scenario. However, in order to settle 

the accounts at period 𝑀, he must arrange funds at a specific interest rate to finance his remaining stocks for period 𝑀 

to 𝑡𝑑 . The interest earned is 

𝐼𝐸2 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

] + 𝑆2𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑀

𝑡𝑑

] 

= 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + 𝑆2𝐼𝑒 (

𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)                  (25) 

The total profit per unit time for case 2(𝑡𝑑 < 𝑀 ≤ 𝑡1) is 

𝑇𝑃2(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost- interest payable during the permissible delay period + interest earned during the cycle} 
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=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)

𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]] − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)]

− 𝐴 − ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

− (𝐶𝜋𝑑 +
𝑑𝐶𝑏

𝛿
) [(𝑇 − 𝑡1) −

𝑙𝑛(1 + 𝛿(𝑇 − 𝑡1))

𝛿
 ] − 𝑐𝐼𝑐 [

𝑑

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1 − 𝑀))]

+ 𝑆1𝐼𝑒 (𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + 𝑆2𝐼𝑒 (

𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)}                                                                         (26) 

Case 3: (𝑴 > 𝒕𝟏) 

The interest payable 

𝐼𝑃3 = 0, in this instance, since the retailer pays no interest and the payment delay period is longer than the period with a 
positive inventory. 

The interest earned 

In this case, the period of delay in payment (𝑀) is greater than the period with positive inventory(𝑡1). In this case, the 
retailer earns interest on the sales revenue up to the permissible delay period, and no interest is payable during the period 

for the item kept in stock. Interest earned for the time period [0, 𝑇] 

𝐼𝐸3 = 𝑆1𝐼𝑒 [∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ (𝑀 − 𝑡1) ∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡
𝑡𝑑

0

] + 𝑆1𝐼𝑒 [∫ 𝑑𝑡𝑑𝑡
𝑡1

𝑡𝑑

+ (𝑀 − 𝑡1) ∫ 𝑑𝑑𝑡
𝑡1

𝑡𝑑

] 

= 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)] + 𝑆2𝐼𝑒 [−

𝑑

2
(𝑡1−𝑡𝑑)2 + 𝑀𝑑(𝑡1 − 𝑡𝑑)]            (27) 

The total profit per unit time for case 3 (𝑀 > 𝑡1) is  

𝑇𝑃3(𝑡1, 𝑇) =
1

𝑇
{Sales Revenue - Purchasing cost - Ordering cost - inventory holding cost - backordered cost - lost sales 

cost + interest earned during the cycle} 

=
1

𝑇
{(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) + 𝑆2𝑑(𝑡1 − 𝑡𝑑) + (𝑆2 − 𝐶)

𝑑

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡1)]] − 𝐶 [

𝑑

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)] − 𝐴

− ℎ1 [
𝑑𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 +
𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑

𝜃2
−

𝑑𝑡1

𝜃
]

− ℎ2 [
𝑑𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1

𝜃2
−

𝑑

𝜃3
+

𝑑

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝑑𝑡1
2

2𝜃
]

− (𝐶𝜋𝑑 +
𝑑𝐶𝑏

𝛿
) [(𝑇 − 𝑡1) −

𝑙𝑛(1 + 𝛿(𝑇 − 𝑡1))

𝛿
 ]

+ 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑀 − 𝑡1) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)]

+ 𝑆2𝐼𝑒 [−
𝑑

2
(𝑡1−𝑡𝑑)2 + 𝑀𝑑(𝑡1 − 𝑡𝑑)]}                                                                                              (28) 

Using the well-known approximations 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+ ⋯ and 𝑙𝑛(1 + 𝑥) = 𝑥 −

𝑥2

2
+ ⋯ when −1 < 𝑥 < 1 in 

equations(23), (26) and (28) yields 

𝑇𝑃1(𝑡1, 𝑇) =
𝑑

𝑇
{−

1

2
P1𝑡1

2 + Q1𝑡1 − R1 −
1

2
(𝐶𝜋𝛿 + 𝐶𝑏)𝑇2 − (𝑆2 − 𝐶)

𝛿

2
𝑇2 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇𝑡1 + (𝑆2 − 𝐶)𝛿𝑇𝑡1

+ (𝑆2 − 𝐶)𝑇}                                                                                                                                             (29) 

Where 

P1 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + (𝐶𝜋𝛿 + 𝐶𝑏) + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1) + (𝑆2 − 𝐶)𝛿], 
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Q1 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝑐𝐼𝑐(𝑀 + (𝑡𝑑 − 𝑀)𝜃𝑡𝑑)] 

 and 

R1 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
) − ℎ2 (

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐 (
𝑎

2
(𝑡𝑑 − 𝑀)2 +

𝑏

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2 +

𝑐

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+ 𝑑𝑀𝑡𝑑 −
𝑑𝑡𝑑

2

2
+

𝑑

2
(𝑡𝑑 − 𝑀)𝜃𝑡𝑑

2) + 𝑆1𝐼𝑒 (𝑎
𝑀2

2
+ 𝑏

𝑀3

3
+ 𝑐

𝑀4

4
)] 

Similarly,  

𝑇𝑃2(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
P2𝑡1

2 + Q2𝑡1 − R2 −
1

2
(𝐶𝜋𝛿 + 𝐶𝑏)𝑇2 − (𝑆2 − 𝐶)

𝛿

2
𝑇2 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇𝑡1 + (𝑆2 − 𝐶)𝛿𝑇𝑡1

+ (𝑆2 − 𝐶)𝑇}                                                                                                                                                 (30) 

Where 

P2 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + (𝐶𝜋𝛿 + 𝐶𝑏) + 𝐶𝐼𝑐 + (𝑆2 − 𝐶)𝛿], 

Q2 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝑐𝐼𝑐𝑀] 

 and 

R2 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
) − ℎ2 (

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

− 𝐶𝐼𝑐

𝑑

2
𝑀2 + 𝑆1𝐼𝑒 (𝑎

𝑡𝑑
2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + 𝑆2𝐼𝑒 (

𝑑𝑀2

2
−

𝑑𝑡𝑑
2

2
)] 

and 

𝑇𝑃3(𝑡1 ,𝑇 ) =
𝑑

𝑇
{−

1

2
P3𝑡1

2 + Q3𝑡1 − R3 −
𝑑

2
(𝐶𝜋𝛿 + 𝐶𝑏)𝑇2 − (𝑆2 − 𝐶)𝑑

𝛿

2
𝑇2 + 𝑑(𝐶𝜋𝛿 + 𝐶𝑏)𝑇𝑡1

+ (𝑆2 − 𝐶)𝑑𝛿𝑇𝑡1 + (𝑆2 − 𝐶)𝑑𝑇}                                                                                                   (31) 

Where 

P3 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + (𝐶𝜋𝛿 + 𝐶𝑏) + 𝑆2𝐼𝑒 + (𝑆2 − 𝐶)𝛿],  

Q3 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 −
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)} + 𝑆2𝐼𝑒𝑡𝑑 + 𝑆2𝐼𝑒𝑀] 

 and 

R3 = −
1

𝑑
[(𝑆1 − 𝐶) (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) − (𝑆2 − 𝐶)𝑑𝑡𝑑 −

𝐶𝑑𝜃𝑡𝑑
2

2
− 𝐴

− ℎ1 (
𝑎

2
𝑡𝑑

2 +
𝑏

3
𝑡𝑑

3 +
𝑐

4
𝑡𝑑

4 −
𝑑𝑡𝑑

2

2
+

𝑑𝑡𝑑
3𝜃

2
) − ℎ2 (

𝑎

6
𝑡𝑑

3 +
𝑏

8
𝑡𝑑

4 +
𝑐

10
𝑡𝑑

5 +
𝑑𝑡𝑑

4𝜃

4
)

+ 𝑆1𝐼𝑒 [(𝑎
𝑡𝑑

2

2
+ 𝑏

𝑡𝑑
3

3
+ 𝑐

𝑡𝑑
4

4
) + (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
) 𝑀] − 𝑆2𝐼𝑒

𝑑

2
𝑡𝑑

2 − 𝑆2𝐼𝑒𝑀𝑑𝑡𝑑] 
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4. Optimal Decision 

The best ordering practices that maximize the overall profit per unit of time are identified in this section. It has been 
determined what the necessary and sufficient conditions are for optimal solutions to exist and be unique. The necessary 

conditions for the total profit per unit time 𝑇𝑃𝑖(𝑡1, 𝑇) to be maximum are 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 for 𝑖 = 1, 2, 3. 

The value of (𝑡1, 𝑇) obtained from 
𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 and for which the sufficient condition 

{(
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1
2 ) (

𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑇2 ) − (
𝜕2𝑇𝑃𝑖(𝑡1,𝑇)

𝜕𝑡1 𝜕𝑇
)

2

} > 0 is satisfied gives a maximum value for the total profit per unit time 

𝑇𝑃𝑖(𝑡1, 𝑇). 

For case 1 (𝟎 < 𝑴 ≤ 𝒕𝒅) 

The necessary condition for the total profit 𝑇𝑃1(𝑡1, 𝑇) in equation (38) to be the maximum are 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
=

0, which give 

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−P1𝑡1 + Q1 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} 

Setting 
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{P1𝑡1 − Q1 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} = 0                                                                                                                        (32) 

and 

𝑇 =
1

{(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿}
(P1𝑡1 − Q1)                                                                                                                              (33) 

Since (𝑡𝑑 − 𝑀) ≥ 0, (𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) > 0, it should be noted that 

(P1𝑡1 − Q1) = [(𝑆2 − 𝐶)𝛿 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + 𝐶𝜃(𝑡1 − 𝑡𝑑)

+ 𝐶𝜋(𝛿 − 1) + (𝐶𝜋𝛿 + 𝐶𝑏)𝑡1 + 𝑐𝐼𝑐((𝑡1 − 𝑀) + 𝜃(𝑡𝑑 − 𝑀)(𝑡1 − 𝑡𝑑))] > 0 

Similarly,  

𝜕𝑇𝑃1(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
P1𝑡1

2 + Q1𝑡1 − R1 +
[(𝐶𝜋𝑍𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
}                                                      (34) 

 

Setting  
𝜕𝑇𝑃1(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
P1𝑡1

2 + Q1𝑡1 − R1 +
[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
} = 0                                                                   (35) 

Substituting 𝑇 from equation (33) into equation (35) yields 

{P1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡1
2 − 2Q1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡1

− (Q1
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R1)} = 0                                                                            (36) 

Let 

∆1= {P1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡𝑑
2 − 2Q1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡𝑑

− (Q1
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R1)} − (2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R1 + Q1

2), 

then the following result is obtained. 

Lemma 1  

(i) If   ∆1≥ 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) (say 𝑡11
∗ ) which satisfies equation (36) not only exists but also is unique. 

 
See the proof in Appendix 1a 
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(ii) If   ∆1< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) which satisfies equation (36) does not exist. 

See the proof in Appendix 1b  

Therefore, the value of 𝑡1 (denoted by 𝑡11
∗ ) can be found from equation (36) and is given by 

 

 𝑡11
∗ =

Q1

P1
+

1

P1
√

[(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿](2P1R1−Q1
2)

(P1−[(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿])
                                                                                                                     (37) 

Once the value of 𝑡11
∗  is obtained, then the value of 𝑇 (denoted by 𝑇1

∗) can be found from (33) and is given by 

𝑇1
∗ =

1

[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]
(P1𝑡11

∗ − Q1)                                                                                                                   (38) 

Equations (37) and (38) give the optimal values of 𝑡11
∗  and 𝑇1

∗ for the profit function in equation (23) only if Q1 satisfies 
the inequality given in equation (39) 

2P1R1 > Q1
2                                                                                                                                                                                 (39) 

Theorem 1  

(i) If  ∆1≥ 0, then the total profit 𝑇𝑃1(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡11
∗ , 𝑇1

∗), where 

(𝑡11
∗ , 𝑇1

∗) is the point which satisfies equations (36) and (32), if all principal minors are negative definite i.e., if 
 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) < 0, (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

)
|

|
> 0. 

See the proof in Appendix 1c 

(ii) If  ∆1< 0, then the total profit 𝑇𝑃1(𝑡1, 𝑇) has a maximum value at the point (𝑡11
∗ , 𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

[(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿]
(P1𝑡𝑑 − Q1) 

See the proof in Appendix 1d 

Proof of part (ii). When  ∆1< 0, then 𝐹1(𝑡1) < 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞). Therefore, 
𝜕𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇
=

𝐹1(𝑡1)

𝑇2 < 0 for all 𝑡1 ∈

[𝑡𝑑 , ∞) which implies 𝑇𝑃1(𝑡1,   𝑇) is a strictly decreasing function of 𝑡1. Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value 

when 𝑡1 is minimum. Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value at the point (𝑡11
∗ ,   𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

{(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿}
(P1𝑡𝑑 − Q1). This completes the proof. 

For case 2 (𝒕𝒅 < 𝑴 ≤ 𝒕𝟏) 

The necessary condition for the total profit 𝑇𝑃1(𝑡1, 𝑇) in equation (23) to be the maximum are 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
=

0, which give 

𝜕𝑇𝑃2(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−P2𝑡1 + Q2 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} 

Setting 
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{P2𝑡1 − Q2 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} = 0                                                                                                                 (40) 

and 

𝑇 =
1

{(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿}
(P2𝑡1 − Q2)                                                                                                                               (41) 
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Since (𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) ≥ 0, it should be noted that 

(P2𝑡1 − Q2) = [(𝑆2 − 𝐶)𝛿𝑡1 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + (𝐶𝜋𝛿 + 𝐶𝑏)𝑡1 + 𝑐𝐼𝑐(𝑡1 − 𝑀)] > 0 

Similarly, 

𝜕𝑇𝑃2(𝑡1, 𝑇)

𝜕𝑇
 = −

𝑑

𝑇2
{−

1

2
P2𝑡1

2 + Q2𝑡1 − R2 +
[(𝐶𝜋𝑍𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
}                                     (42) 

Setting  
𝜕𝑇𝑃2(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
P2𝑡1

2 + Q2𝑡1 − R2 +
[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
} = 0                                                                   (43) 

Substituting 𝑇 from equation (41) into equation (43) yields 

{P2([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P2)𝑡1
2 − 2Q2([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P2)𝑡1

− (Q2
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R2)} = 0                                                                         (44) 

Let 

∆2= {P2([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P2)𝑀2 − 2Q2([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P2)𝑀
− (Q2

2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R2)} 
Lemma 2  

(i) If ∆2≥ 0, then the solution of 𝑡1 ∈ [𝑀, ∞) (say 𝑡12
∗ ) which satisfies equation (44) not only exists but also is 

unique. 
 
The proof is similar to Appendix 1a, hence is omitted 

(ii) If ∆2< 0, then the solution of 𝑡1 ∈ [𝑀, ∞) which satisfies equation (44) does not exist. 
 
The proof is similar to Appendix 1b, hence is omitted 

Therefore,, the value of 𝑡1 (denoted by 𝑡12
∗ ) can be found from equation (44) and is given by 

𝑡12
∗ =

Q2

P2
+

1

P2

√
[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿](2P2R2 − Q2

2)

(P2 − [(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿])
       (45) 

Once the value of 𝑡12
∗  is obtained, then the value of 𝑇 (denoted by𝑇2

∗) can be found from (41) and is given by 

𝑇2
∗ =

1

[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]
(P2𝑡12

∗ − Q2)                                                                                                                   (46) 

Equations (45) and (46) give the optimal values of 𝑡12
∗  and 𝑇2

∗ for the profit function in equation (26) only if Q2 satisfies 
the inequality given in equation (47) 

2P2R2 > Q2
2                                                                                                                                                                                 (47) 

Theorem 2  

(i) If  ∆2≥ 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡12
∗ , 𝑇2

∗), where 

(𝑡12
∗ , 𝑇2

∗) is the point which satisfies equations (44) and (40), if all principal minors are negative definite i.e., if 
 

(
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

) < 0, (
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡2
2 |

(𝑡12
∗ ,   𝑇2

∗)

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

(
𝜕2𝑇𝑃2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

)
|

|
> 0. 

The proof is similar to Appendix 1c, hence is omitted 

(ii) If  ∆2< 0, then the total profit 𝑇𝑃2(𝑡1, 𝑇) has a maximum value at the point (𝑡12
∗ , 𝑇2

∗) where 𝑡12
∗ = 𝑡𝑑  and 𝑇2

∗ =
1

[(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿]
(P2𝑡𝑑 − Q2) 
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The proof is similar to Appendix 1d, hence is omitted. 

For case 3 (M> 𝒕𝟏) 

The necessary condition for the total profit 𝑇𝑃3(𝑡1, 𝑇) in equation (28) to be the maximum are 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑇𝑃3(𝑡1, 𝑇)

𝜕𝑡1 
=

𝑑

𝑇
{−P3𝑡1 + Q3 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} 

Setting 
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑡1 
= 0 gives 

{P3𝑡1 − Q3 + (𝐶𝜋𝛿 + 𝐶𝑏)𝑇 + (𝑆2 − 𝐶)𝛿𝑇} = 0                                                                                                                 (48) 

and 

𝑇 =
1

{(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿}
(P3𝑡1 − Q3)                                                                                                                       (49) 

Since(𝑡1 − 𝑡𝑑) > 0, it should be noted that 

(P3𝑡1 − Q3) = [(𝑆2 − 𝐶)𝛿𝑡1 + ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) + ℎ2 (𝑡1 −
𝑡𝑑

2
) 𝑡𝑑 +

ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + +(𝐶𝜋𝛿 + 𝐶𝑏)𝑡1 +
1

𝑑
{𝑆1𝐼𝑒 (𝑎𝑡𝑑 + 𝑏

𝑡𝑑
2

2
+ 𝑐

𝑡𝑑
3

3
)} + 𝑆2𝐼𝑒𝑡1 − 𝑆2𝐼𝑒(𝑡𝑑

+ 𝑀)] > 0 

Similarly, 

𝜕𝑇𝑃3(𝑡1, 𝑇)

𝜕𝑇
= −

𝑑

𝑇2
{−

1

2
P3𝑡1

2 + Q3𝑡1 − R3 +
[(𝐶𝜋𝑍𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
}                                              (50) 

Setting  
𝜕𝑇𝑃3(𝑡1,𝑇)

𝜕𝑇
= 0 to obtain 

−
𝑑

𝑇2
{−

1

2
P3𝑡1

2 + Q3𝑡1 − R3 +
[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑇2

2
} = 0                                                                            (51) 

Substituting 𝑇 from equation (49) into equation (51) yields 

{P3([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P3)𝑡1
2 − 2Q3([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P3)𝑡1

− (Q3
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R3)} = 0                                                                                   (52) 

Let 

∆3𝑎= {𝑃3([𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − 𝑃3)𝑡𝑑
2 − 2𝑄3([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − 𝑃3)𝑡𝑑 

               −(𝑄3
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]𝑅3)} > 0  

∆3𝑏= {P3([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P3)𝑀2 − 2Q3([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P3)𝑀
− (Q3

2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R3)} < 0 

Lemma 3  

(i) If ∆3𝑏≤ 0 ≤ ∆3𝑎, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀] (say 𝑡13
∗ ) which satisfies equation (52) not only exists but also is 

unique. 
The proof is similar to Appendix 1a, hence is omitted. 
 

(ii) If ∆3𝑎< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀] which satisfies equation (52) does not exist. 
The proof is similar to Appendix 1b, hence is omitted 

Therefore,, the value of 𝑡1 (denoted𝑡13
∗  by) can be found from equation (52) and is given by 

𝑡13
∗ =

Q3

P3
+

1

P3

√
[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿](Q3

2 − 2P3R3)

([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P3)
                                                                                    (53) 

Once the value of 𝑡13
∗  is obtained, then the value of 𝑇 (denoted by𝑇3

∗) can be found from (62) and is given by 
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𝑇3
∗ =

1

[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]
(P3𝑡13

∗ − Q3)                                                                                                          (54) 

Equations (53) and (54) give the optimal values of 𝑡13
∗  and 𝑇3

∗ for the profit function in equation (28) only if Q3 
satisfies the inequality given in equation (55) 

2P3R3 > Q3
2                                                                                                                                                                          (55) 

Theorem 3  

(i) If  ∆3𝑎≥ 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) is concave and reaches its global maximum at the point (𝑡13
∗ , 𝑇3

∗), where 

(𝑡13
∗ , 𝑇3

∗) is the point which satisfies equations (52) and (48), if all principal minors are negative definite i.e., if 
 

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

) < 0, (
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

) < 0 

and 

|

|

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡3
2 |

(𝑡13
∗ ,   𝑇3

∗)

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

(
𝜕2𝑇𝑃3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

)
|

|
> 0. 

The proof is similar to Appendix 1c, hence is omitted  

(ii) If ∆3𝑎< 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a maximum value at the point (𝑡13
∗ , 𝑇3

∗) where  𝑡13
∗ = 𝑀 and 

𝑇3
∗ =

1

{(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿}
(𝑃3𝑀 − 𝑄3). 

The proof is similar to Appendix 1d, hence is omitted 

(iii) If ∆3𝑏> 0, then the total profit 𝑇𝑃3(𝑡1, 𝑇) has a maximum value at the point (𝑡13
∗ , 𝑇3

∗) where  𝑡13
∗ = 𝑡𝑑 and 

𝑇3
∗ =

1

{(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿}
(𝑃3𝑡𝑑 − 𝑄3) 

The proof is similar to Appendix 1d, hence is omitted 

5. NUMERICAL RESULTS 

Example 5.1 (𝑴 ≤ 𝒕𝒅) 

The following parameters were adopted from Babangida and Baraya (2021) in addition to ℎ1, 𝛿, 𝐶𝜋 and 𝐶𝑏 which are not 
considered in their study. The parameters and their values are as follows: 

Table 1: parameters and their  Values 

Parameter(s) Value(s) 

𝐴 $250/order 

ℎ1 $2 unit/year 

ℎ2 $15 unit/year 

𝜃 0.01 unit/year 

𝑎 180 unit 

𝑏 30 unit 

𝑐 15 unit 

𝑑 120 unit 

𝑡𝑑 0.1354 year 

𝑀 0.0888 year 

𝐼𝑐 0.1 

𝐼𝑒 0.08 

𝐶𝑏 $30 

𝛿 0.85 

𝐶𝜋 1 

It  is seen that 𝑀 ≤ 𝑡𝑑 , ∆1=46.7063 > 0, 2𝑃1𝑅1 =58.7894,𝑄1
2 = 0.0851 and 2𝑃1𝑅1 > 𝑄1

2. Substituting the above values 
in equation (39), (37), (23) and (56).  
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The result is obtained in the table below. 

Table 2: Optimal Solutions for case 1 

Parameters Values 

𝑡11
∗  0.4739 (172 days) 

𝑇1
∗ 0.5424 (197 days) 

𝑇𝑃1(𝑡11
∗ , 𝑇1

∗) $311.6589 

𝐸𝑂𝑄1
∗ 73.3331 unit. 

Example 5.2 (𝑴 > 𝒕𝒅) 

The values of the parameters are same as in example 5.1 [as in Babangida and Baraya (2021)] except that 𝑀 = 0.1523. It 
is seen that  𝑀 > 𝑡𝑑, ∆2= 45.0853 > 0, 2𝑃2𝑅2 = 58.0326,= 𝑄2

2 = 0.1496 and 2𝑃2𝑅2 > 𝑄2
2. Substituting the above 

values in equation (46), (45), (26) and (56). The result is obtained in the table below  

Table 3: Optimal Solutions for case 2 

Parameters Values 

𝑡12
∗  0.4730 (172 days) 

𝑇2
∗ 0.5386 (196 days) 

𝑇𝑃2(𝑡12
∗ , 𝑇2

∗) $323.7361 

𝐸𝑂𝑄2
∗ 72.8984 unit. 

Example 5.3 (𝑴 > 𝒕𝟏) 

The values of the parameters are same as in example 5.1 except that 𝑀 = 0.36. It is seen that  𝑀 > 𝑡𝑑 , ∆3𝑎= 22.8756 >
0, ∆3𝑏= −2.0383 < 0 2𝑃3𝑅3 = 31.0511,𝑄3

2 = 0.2916 and 2𝑃3𝑅3 > 𝑄3
2. Substituting the above values in equation (54), 

(53),  (28) and (56). The result is obtained in the table below.   

Table 4: Optimal Solutions for case 3 

Parameters Values 

𝑡13
∗  0.3473 (126 days) 

𝑇3
∗ 0.3892 (142 days) 

𝑇𝑃3(𝑡13
∗ , 𝑇3

∗) $423.6718 

𝐸𝑂𝑄3
∗ 55.0559 unit. 

It is readily visible from the table above that average total profit per unit for case 1 and case 2 of the suggested model is 
greater than that of Babangida and Baraya (2021). Thus, the optimal result is case 3. 

6. SENSITIVITY ANALYSIS 

The sensitivity analysis of some model parameters of the optimal result is performed by changing each of the parameters from 

−6%, −4%, −2, +2, +4  𝑡𝑜 + 6% taking one parameter at a time and keeping the remaining parameters unchanged. The 
effects of these changes of parameters on cycle length, optimal time with positive inventory total profit and economic order 
quantity per cycle are discussed and summarised in Table 6 below: 

Table 5: Comparison table 

Comparison of our model with Babangida and Baraya (2021) 

Models Average total profit  
per unit for case 1 

Average total profit  
per unit for case 2 

Average total profit  
per unit for case 3 

Babangida and Baraya (2021) $4.1341 $4.3176 - 
Proposed Model $4.2410 $4.3460 $7.1653 

 

7. DISCUSSION ON SENSITIVITY ANALYSIS 

Based on the results shown in Table 6, the following 
managerial insights are obtained. 

(i) From Table 6, it is obviously seen that the higher the 

rate of deterioration (𝜃) the lower the optimal time 

with positive inventory (𝑡1
∗), cycle length (𝑇∗), order 

quantity (𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) and 
vice versa. This implies that the retailer needs to take 

all the necessary measures to avoid or reduce 
deterioration in order to maximize higher profit. 

(ii) From Table 6, it is apparently seen that as the unit 

selling price before deterioration sets in (𝑆1) 
increases, the optimal time with positive inventory 

(𝑡1
∗), cycle length (𝑇∗) and order quantity (𝐸𝑂𝑄∗) 

decrease while the total profit 𝑇𝑃(𝑇∗) increases and 
vice versa. This implies that as the selling price 
increases the retailer will order less quantity to enjoy 
the benefits of trade credit more frequently. 
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(iii) From Table 6, it is evidently seen that as the unit 

selling price after deterioration sets in (𝑆2) increases, 

the optimal time with positive inventory (𝑡1
∗), cycle 

length (𝑇∗), order quantity (𝐸𝑂𝑄∗) and the total 

profit 𝑇𝑃(𝑇∗) increase and vice versa. This implies 
that as the selling price is increasing the retailer 
maximizes higher profit. 

(iv) From table 6, it evidently seen that as the unit cost 
of lost sales per unit   
(𝐶𝜋)  increases the optimal time with positive 

inventory (𝑡1
∗) also increases while cycle length (𝑇∗), 

order quantity (𝐸𝑂𝑄∗) and the total profit 𝑇𝑃(𝑇∗) 
decrease.This implies that the retailer should order 
less quantity when the unit cost of lost sales is high. 

 
Table 6. Effect of some model parameters from -6% to +6% on decision variables.  

Parameter % change in 
Parameter 

% change in 

𝒕𝟏
∗  

% change in 

𝑻∗ 

% change in 

𝑬𝑶𝑸∗ 
% change in 𝑻𝑷(𝒕𝟏

∗ , 𝑻∗) 

𝜽 −6% 0.0711 0.0595 0.0478 0.0151 

−4% 0.0473 0.0397 0.0318 0.0101 

−2% 0.0237 0.0198 0.0159 0.0050 

2% -0.0236 -0.0198 -0.0159 -0.0050 

4% -0.0473 -0.0400 -0.0318 -0.0101 

6% -0.0709 -0.0593 -0.0476 -0.0151 

𝑺𝟏 −6% 36.1743 37.4237 31.6385 -19.8899 

−4% 25.3085 26.1886 22.1435 -13.9385 

−2% 13.3811 13.8499 11.7126 -7.3830 

2% -15.5517 -16.1063 -13.6266 8.6183 

4% -34.8953 -36.1544 -30.5975 19.3948 

6% -64.2589 -66.6184 -56.4069 35.8740 

𝑺𝟐 −6% -24.2549 -24.8304 -21.0158 -20.8158 

−4% -15.2895 -15.6297 -13.2277 -14.3218 

−2% -7.2839 -7.4361 -6.2930 -7.3411 

2% 6.7147 6.8385 5.7870 7.6210 

4% 12.965 13.1893 11.16116 15.4670 

6% 18.8260 19.1318 16.1897 23.4987 

𝑪𝝅 −6% -0.0057 0.0097 0.0078 0.0033 

−4% -0.0038 0.0065 0.0052 0.0022 

−2% -0.0019 0.0032 0.0026 0.0011 

2% 0.0019 -0.0032 -0.0026 -0.0011 

4% 0.0038 -0.0065 -0.0052 -0.0022 

  6% 0.0057 -0.0097 -0.0078 -0.0032 

  
8. CONCLUSION 

This research developed an economic order quantity 
model for non-instantaneous deteriorating items with two 
phase demand rates, linear holding cost, time dependent 
partial backlogging rate and two-level pricing strategies 
under trade credit policy. The purpose of the model is to 
determine the optimal time with positive inventory, cycle 
length and order quantity such that the total profit of the 
inventory system has a maximum value. Some numerical 
examples have been given to illustrate the theoretical 
result of the model. Sensitivity analysis of some model 
parameters on the decision variables has been carried out, 
and suggestions towards maximising the total profit were 
also given. The retailer can maximize the total profit by 
ordering less quantity and shorten the cycle length if the 
rate of deterioration, unit purchasing cost, and interest 
charged, ordering cost and shortage cost increase and unit 
selling price before deterioration start, unit selling price 
after deterioration start and interested earned decrease. 
The model can be used in inventory control and 
management of items such as food items (e.g. beans, 
maize, corns, millet), electronics (e.g. mobile phones, 
computers), automobiles, fashionable items, etc. The 
proposed model can be extended by considering factors 

such as variable deterioration, inflation and time value of 
money, quantity discount, and order size dependent trade 
credit. 
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APPENDIX1a: Proof of lemma 1(i) 

From equation (36), a new function 𝐹1(𝑡1) is defined as follows 

𝐹1(𝑡1) = {P1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡1
2 − 2Q1([(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1)𝑡1

− (Q1
2 − 2[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿]R1)},                   𝑡1 ∈ [𝑡𝑑 , ∞)    (57) 

Taking the first-order derivative of 𝐹1(𝑡1) with respect to 𝑡1 ∈ [𝑡𝑑 , ∞), it follows that 

𝐹1(𝑡1)

𝑑𝑡1
= 2{[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1}(P1𝑡1 − Q1) < 0 

Because (P1𝑡1 − Q1) > 0 

And 

{[(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿] − P1} = − [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] < 0 

Hence 𝐹1(𝑡1) is a strictly decreasing function of 𝑡1 in the interval [𝑡𝑑 , ∞).  Moreover, lim
𝑡1→∞

𝐹1(𝑡1) = −∞ and 𝐹1(𝑡𝑑)  = ∆1≥

0. Therefore, by applying intermediate value theorem, there exists a unique 𝑡1 say 𝑡11
∗ ∈ [𝑡𝑑 , ∞) such that 𝐹1(𝑡11

∗ ) = 0. Hence 

𝑡11
∗  is the unique solution of equation (36). 

APPENDIX 1b: proof of lemma 1(ii) 

If ∆1< 0, then from equation (37), 𝐹1(𝑡1) < 0. Since 𝐹1( 𝑡1) is a strictly decreasing function of 𝑡1 ∈ [𝑡𝑑 , ∞) and 

𝐹1(𝑡1) < 0 for all 𝑇 ∈ [𝑡𝑑 , ∞). Therefore,, a value of 𝑇 ∈ [𝑡𝑑 , ∞) such that 𝐹1(𝑡1) = 0 cannot found. This completes 
the proof. 

APPENDIX 1c: proof of Theorem 1(i) 

When ∆1≥ 0, it is seen that 𝑡11
∗  and 𝑇1

∗ are the unique solutions of equations (36) and (32) respectively from Lemma l(i). 

Taking the second derivative of 𝑇𝑃1(𝑡1, 𝑇) with respect to 𝑡1 and 𝑇, and then finding the values of these functions at the 

point (𝑡11
∗ , 𝑇1

∗), it follows that  

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗ P1 < 0 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

=
𝑑

𝑇1
∗ {(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿} 

𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

= −
𝑑

𝑇1
∗ {(𝐶𝜋𝛿 + 𝐶𝑏) + (𝑆2 − 𝐶)𝛿} < 0 

and 

(
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) − (
𝜕2𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

)

2

=
𝑑2𝐶𝑏𝛿

𝑇1
∗2 (2𝐶𝑏𝛿 + [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (

𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)]) > 0(58) 

It is therefore conclude from (58) and Lemma 1 that 𝑇𝑃1(𝑡11
∗ ,   𝑇1

∗) is concave and (𝑡11
∗ ,   𝑇1

∗) is the global maximum 

point of 𝑇𝑃1(𝑡1, 𝑇). Hence the values of 𝑡1 and 𝑇 in (37) and (38) are optimal. 
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APPENDIX 1d: proof of Theorem 1(ii) 

When  ∆1< 0, then 𝐹1(𝑡1) < 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞). Therefore, 
𝜕𝑇𝑃1(𝑡1,   𝑇)

𝜕𝑇
=

𝐹1(𝑡1)

𝑇2 < 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞) which 

implies 𝑇𝑃1(𝑡1,   𝑇) is a strictly decreasing function of 𝑡1. Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value when 𝑡1 is 

minimum. Therefore, 𝑇𝑃1(𝑡1,   𝑇) has a maximum value at the point (𝑡11
∗ ,   𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

{(𝐶𝜋𝛿+𝐶𝑏)+(𝑆2−𝐶)𝛿}
(P1𝑡𝑑 − Q1). This completes the proof. 
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