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INTRODUCTION
Fractional calculus is a specialized branch of applied 
mathematics that extends classical calculus to incorporate 
derivatives and integrals of non-integer order. It provides 
powerful tools for describing complex and irregular 
phenomena Akinyemi et al. (2022), Acey et al. (2019), 
Ahmed et al. (2020), Akinyemi and Huseen(2020); 
Benjamin and Mahony(1992); Gardner et al.: (1967), Helal 
(2009), Hirota (1971), Wakil (2006). The origins of 
fractional calculus date back to the works of Leibniz and 
Euler in the 17th and 18th centuries Kadomtsev et al.:( 
1970), Kalil et al. (2014). Over time, it has gained 
significant attention in fluid mechanics, plasma physics, 
engineering, and many other scientific disciplines. 
Differential equations involving fractional derivatives are 
known as non-classical differential equations. Leibniz was 
among the first to explore the generalization of 
differentiation and integration to non-integer orders. In 
the 19th and early 20th centuries, mathematicians like 
Augustin-Louis Cauchy and Karl Weierstrass contributed 
to the theoretical development of calculus. However, 
fractional calculus became more formally structured in the 
late 19th century, with significant contributions from 
Liouville and Riemann Koca and Atangans(2017). In the 
20th century, mathematicians such as Caputo, Miller, and 
Ross advanced the field by developing a systematic 
framework for fractional calculus. Today, fractional 
calculus is widely applied in various scientific and 
engineering domains, including physics, biology, and 
control theory. Its principles have been extensively studied 
in recent years due to their importance in modeling 
complex phenomena in applied physical sciences 
Korteweg and Vries (1895). Non-integer-order models 

have been particularly useful in representing processes in 
areas such as signal processing, fluid dynamics, acoustics, 
electromagnetism, analytical chemistry, and multiple 
engineering disciplines Kumar et al. (2018); Machado et 
al.:(2011), Miller and Ross (2003). Additionally, methods 
like the sine–cosine and tan techniques have been 
employed in solving fractional differential equations 
(Oldham and Spanier 1974). 

In recent times, there has been a growing interest in 
obtaining exact analytical solutions for nonlinear wave 
equations using appropriate methods Podlubny(1999), 
Samko et al. (1993), Sousa (2018), Tariq and 
Seadawy(2019), Wazwaz (2008). The investigation of exact 
traveling wave solutions for nonlinear partial differential 
equations (NPDEs) plays a vital role in comprehending 
nonlinear physical phenomena Xu (2005), Yusuf et al. 
(2019). These solutions offer valuable insights into the 
underlying mechanisms governing complex physical 
processes and dynamical behaviors described by nonlinear 
evolution equations. 

Among the various nonlinear evolution equations, the 
(3+1)-dimensional spacetime fractional modified 
Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) 
equation is a significant model. This equation provides a 
fundamental framework for exploring nonlinear dynamics 
in higher-dimensional settings. 

Ut + θ1U2Ux + θ2Uxxx + θ3 (Uyy + Uzz))x = 0. (1) 
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In the equation (1), the nonlinear term 𝑈2𝑈𝑥 is 
responsible for causing the waveform to steepen, while the 

dispersion term 𝑈𝑥𝑥𝑥 counteracts this by causing the 
waveform to spread out. The interplay between these two 
effects results in the formation of solitons. In the lowest-
order approximation, the dispersion effects are sufficiently 
weak that they can be neglected, allowing the nonlinear 
term to dominate and facilitate the creation of soliton 
structures. 

2  METHODOLOGY 

In this section, we briefly introduced the notation of the 
Beta derivative. 

2.1  Beta Derivative 

The beta derivative can be stated by Yusuf et al. (2019)  

1.   0
𝐴𝑇𝜂

𝛼(𝐹(𝜂)) = lim𝜖→0

𝐹(𝜂+𝜂𝜖(𝜂+
1

Γ(𝛼)
))−𝐹(𝜂)

𝜖
 

       along with the properties as comes next  

2.   0
𝐴𝑇𝜂

𝛼(𝑎𝐹(𝜂) + 𝑏𝐺(𝜂)) = 𝑎0
𝐴𝑇𝜂

𝛼𝐹(𝜂) + 𝑏0
𝐴𝐹𝜂

𝛼𝐺(𝜂)0
𝐴 

3.  𝑇𝜂
𝛼(𝑐) = 0, for any𝑐depicting a constant, 

4. 0
𝐴𝑇𝜂

𝛼(𝐹(𝜂). 𝐺(𝜂)) = 𝐺(𝜂)0
𝐴𝑇𝜂

𝛼𝐹(𝜂) + 𝐹(𝜂)0
𝐴𝑇𝜂

𝛼𝐺(𝜂) 

5. 0
𝐴𝑇𝜂

𝛼 (
𝐹(𝜂)

𝐺(𝜂)
) =

𝐺(𝜂)0
𝐴𝑇𝜂

𝛼𝐹(𝜂)−𝐹(𝜂)0
𝐴𝑇𝜂

𝛼𝐺(𝜂)

𝐺2(𝜂)
. 

𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔    𝜖 = (𝜂 +
1

Γ(𝛼)
)1−𝛼ℎ, ℎ 

                              0    𝑤ℎ𝑒𝑛    𝜖 → 0, 

therefore we have 

6.  0
𝐴𝑇𝜂

𝛼𝐹(𝜂) = (𝜂 +
1

Γ(𝛼)
)1−𝛼 𝑑𝐹(𝜂)

𝑑𝜂
, 𝑤𝑖𝑡ℎ    𝜁 =

𝑙

𝛼
(𝜂 +

1

Γ(𝛼)
)𝛼 ,  

where l is a constant. 

7.   0
𝐴𝑇𝜂

𝛼(
𝐹(𝜏)

𝐺(𝜂)
) = 𝑙

𝑑𝐹(𝜏)

𝑑(𝜏)
. 

The 𝛽-fractional derivative of the modified Korteweg –de 
Vries–Zakharov–Kuznetsov equation is expressed as:  

𝐷𝑡
𝛼𝑈 + 𝜃1𝑈2𝐷𝑥

𝛼𝑈 + 𝜃2𝐷𝑥𝑥𝑥
3𝛼 𝑈 + 𝜃3(𝐷𝑦𝑦𝑥

3𝛼 𝑈 +

𝐷𝑧𝑧𝑥
3𝛼 )𝑈 = 0. (2) 

 where the coefficients 𝜃𝑗 for 𝑗 = 1,2,3,4,5 are nonzero 

constants.  

3  ANALYSIS OF THE SINE-COSINE METHOD 

Here, we outline the key steps of the sine-cosine method, 
as introduced by Wazwaz (2008), which will be applied to 
solve nonlinear partial differential equations.  

Let assume 

𝑃(𝑈, 𝑈𝑡 , 𝑈𝑥, 𝑈𝑥𝑥 , 𝑈𝑦𝑦, 𝑈𝑧𝑧 , ⋯ ) = 0. (3) 

 This variable characterizes the dynamic wave solution 

𝑈(𝑥, 𝑡). It is beneficial to outline the key steps of the 
method. 

Step 1. In order to determine the traveling wave solution 
of equation (3), we introduce the wave transformation 
variable. 

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑃(𝜁),   𝜁 = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡 (4) 

Step 3. The Sine-Cosine method used the following 
changes:  

𝜕𝑢

𝜕𝑡
= −𝑐

𝑑

𝑑𝜁
, ⋯

𝜕2

𝜕𝑡2 = 𝑐2 𝑑2

𝑑𝜁2 ,       
𝜕

𝜕𝑥
=

𝑑

𝑑𝜁
,

𝜕2

𝜕𝑥2 =
𝑑2

𝑑𝜁2 (5) 

and so on for the rest of the derivatives. The 

transformation (5) converts the PDE (3) to an ODE.  

𝑄(𝑈, 𝑈𝜁 , 𝑈𝜁𝜁 , 𝑈𝜁𝜁𝜁 , ⋯ ) = 0, (6) 

where𝑈𝜁 denotes 
𝑑𝑈

𝑑𝜁
. 

Step 4. Next, we integrate the obtained ODE as many 
times as possible, assuming the constants of integration to 
be zero. 

Step .5 We may set the solution in the form of  

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝜆cos𝛽(𝜇𝜁), (7) 

or  

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝜆sin𝛽(𝜇𝜁), (8) 

where 𝛽, 𝜆, and 𝜇 are parameters that will be calculated. 

Step6. The derivatives of equation(7) and (8) gives  

𝑈 = 𝜆𝑐𝑜𝑠𝛽(𝜇𝜁) (9) 

𝑈𝑛 = 𝜆𝑛𝑐𝑜𝑠𝑛𝛽(𝜇𝜁) (10) 

(𝑈𝑛)𝜁 = −𝑛𝜇𝛽𝜆𝑛𝑐𝑜𝑠(𝜇𝜁)
𝑛𝛽−1

𝑠𝑖𝑛(𝜇𝜁) (11) 

(𝑈𝑛)𝜁𝜁 = −𝑛2𝜇2𝛽2𝜆𝑛𝑐𝑜𝑠(𝜇𝜁)
𝑛𝛽

+ 𝑛𝜇2𝜆𝑛𝛽(𝑛𝛽 −

1)𝑐𝑜𝑠𝑛𝛽−2(𝜇𝜁) (12) 

and  

𝑈 = 𝜆𝑠𝑖𝑛𝛽(𝜇𝜁) (13) 

𝑈𝑛 = 𝜆𝑛𝑠𝑖𝑛𝑛𝛽(𝜇𝜁) (14) 
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 (𝑈𝑛)𝜁 = −𝑛𝜇𝛽𝜆𝑛𝑆𝑖𝑛𝑛𝛽−1(𝜇𝜁)𝐶𝑜𝑠(𝜇𝜁) (15) 

 (𝑈𝑛)𝜁𝜁 = −𝑛2𝜇2𝛽2𝜆𝑛𝑠𝑖𝑛𝑛𝛽(𝜇𝜁) + 𝑛𝜇2𝜆𝑛𝛽(𝑛𝛽 −

1)𝑠𝑖𝑛𝑛𝛽−2(𝜇𝜁) (16) 

 and so on for the other derivatives.  

Step 7. By substituting equations (9) to (12) into the 
derived ODE (6), or alternatively equations (13) to (16) 
into the same equation (6), we obtain a trigonometric 
equation involving either the cosine or sine function 

depending on the chosen approach. The parameters 𝜆, 𝛽, 
and  𝜇 are then computed by first balancing the exponent 
of each pair of sine or cosine. We then collect the 

coefficients of the same power in 𝑐𝑜𝑠(𝜇𝜁) or 𝑠𝑖𝑛(𝜇𝜁) 
where these coefficients have to vanish and solve the 
resulting system of algebraic equations by using the 
computerized symbolic calculations to obtain the possible 

values of the unknown variables 𝜆, 𝛽, and  𝜇 

4  APPLICATION OF THE METHOD 

In this section, we demonstrate the application of the sine-
cosine method for solving the Korteweg-de-Vries 
Benjami-Bona-Mahony equation.  

Application 1 Consider the(3+1)-dimensional beta fractional 
modified Korteweg-de Vries Zakarov-Kuznetsov equation  

𝐷𝑡
𝛼𝑈 + 𝜃1𝑈2𝐷𝑥

𝛼𝑈 + 𝜃2𝐷𝑥𝑥𝑥
3𝛼 𝑈 + 𝜃3(𝐷𝑦𝑦𝑥

3𝛼 + 𝐷𝑧𝑧𝑥
3𝛼 ) = 0

 (17) 

Using the wave transformation  

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈(𝜁), (18) 

𝜁 =
𝑎

𝛼
(𝑥 +

1

Γ(𝛼)
)

𝛼
+

𝑏

𝛼
(𝑦 +

1

Γ(𝛼)
)

𝛼
+

𝑐

𝛼
(𝑧 +

1

Γ(𝛼)
)

𝛼
+

𝑑

𝛼
(𝑡 +

1

Γ(𝛼)
)

𝛼
  (19) 

Differentiating 𝑈(𝜁) with respect to 𝑥, 𝑦, 𝑧 and 𝑡 we have  

𝑑𝑈′ + 𝜃1𝑈2𝑈′ + (𝑎3𝜃2 + 𝑎𝑏2𝜃3 + 𝑎𝑐2𝜃3)𝑈′′′ = 0   
      (20) 

 Integrating equation (20) once, we get  

𝑑𝑈 + 𝜃1
𝑈3

3
+ (𝑎3𝜃2 + 𝑎𝑏2𝜃3 + 𝑎𝑐2𝜃3)𝑈′′ = 0 (21) 

 Using the proposed method, we set  

      𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝜆𝑠𝑖𝑛𝛽(𝜇𝜁), 

𝑜𝑟                    𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝜆𝑐𝑜𝑠𝛽(𝜇𝜁). (22) 

 Let the solution be  

𝑈 = 𝜆𝑐𝑜𝑠𝛽(𝜇𝜁) (23) 

𝑈′′ = −𝜆𝜇2𝛽2𝑐𝑜𝑠𝛽(𝜇𝜁) + 𝜆𝜇2𝛽(𝛽 − 1)𝑐𝑜𝑠𝛽−2(𝜇𝜁)
 (24) 

Inserting 𝑈 and  𝑈′′ in equation (21), we  

𝑑𝜆𝑐𝑜𝑠𝛽(𝜇𝜁) +
𝜃1

3
𝜆3𝑐𝑜𝑠3𝛽(𝜇𝜁) − (𝑎3𝜃2 + 𝑎𝑏2𝜃3

+ 𝑎𝑐2𝜃3) 

𝜆𝜇2𝛽2𝑠𝑖𝑛𝛽(𝜇𝜁) + (𝑎3𝜃2 + 𝑎𝑏2𝜃3 +
𝑎𝑐2𝜃3)𝜆𝜇2𝛽(𝛽 − 1)𝑐𝑜𝑠𝛽(𝜇𝜁) = 0 (25) 

Then equation (25) is satisfied if the following algebraic 
system of equations holds: 

(𝛽 − 1) ≠ 0, (26) 

3𝛽 = 𝛽 − 2, (27) 

𝑑𝜆 = (𝑎3𝜃2 + 𝑎𝑏2𝜃3 + 𝑎𝑐2𝜃3)𝜆𝜇2𝛽2, (28) 

𝜃1
𝜆2

3
= −(𝑎3𝜃2 + 𝑎𝑏2𝜃3 + 𝑎𝑐2𝜃3)𝜇2𝛽(𝛽 − 1). (29) 

Solving the above systems, we obtained the following 
results 

𝛽 = −1, 

𝜇 = −√
𝑑

𝑎3𝜃2+𝑎3𝜃2+𝑎𝑐2𝜃3+𝑎𝑏2𝜃3
, 

𝜆 = −√
6𝑑

𝑎𝜃1
. 

Substituting the obtained results in (21), we get  

𝑈(𝑥, 𝑦, 𝑧, 𝑡) =

−√
6𝑑

𝜃1
𝑠𝑒𝑐 (√

𝑑

𝑎3𝜃2+𝑎3𝜃2+𝑎𝑐2𝜃3+𝑎𝑏2𝜃3
(𝜁))         𝑑 > 0,

 (30) 

𝑈(𝑥, 𝑦, 𝑧, 𝑡) =

√
6𝑑

𝜃1
𝑐𝑠𝑐 (√

𝑑

𝑎3𝜃2+𝑎3𝜃2+𝑎𝑐2𝜃3+𝑎𝑏2𝜃3
(𝜁))         𝑑 > 0. (31) 

 For 𝑑 < 0, we get the following solutions 

𝑈(𝑥, 𝑦, 𝑧, 𝑡) =

−√
6𝑑

𝜃1
𝑠𝑒𝑐ℎ (√

𝑑

𝑎3𝜃2+𝑎3𝜃2+𝑎𝑐2𝜃3+𝑎𝑏2𝜃3
(𝜁)), (32) 

𝑈(𝑥, 𝑦, 𝑧, 𝑡) =

√
6𝑑

𝜃1
𝑐𝑠𝑐ℎ (√

𝑑

𝑎3𝜃2+𝑎3𝜃2+𝑎𝑐2𝜃3+𝑎𝑏2𝜃3
(𝜁)). (33) 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 062 – 066. 

 65 

 

 https://scientifica.umyu.edu.ng/                      Muhammad et al., /USci, 4(2): 062 – 066, June 2025  
 

 (a) (b)  (c)       

(d) (e)    (f)  

Figure  1: Analytical comparison of the fractional (𝟑 + 𝟏) dimensional modified Korteweg-de Vries Zakharov-

Kuznetsov (mKdV-ZK) equation using the Beta fractional derivative for various 𝜶, values time intervals. 

5  RESULTS AND DISCUSSION 

In this section, we discuss the behavior of analytical 
solutions for the fractional (3+1)-dimensional modified 
Korteweg-de Vries–Zakharov-Kuznetsov (mKdV-ZK) 
equation by employing the Beta fractional derivative and 
the sine-cosine method. Using computational tools like 
Mathematica, we illustrate 2D and 3D graphical solutions 

for various values of 𝛼, 𝜃1, 𝜃2, 𝜃3, and different 

parameters 𝑎, 𝑏, 𝑐, 𝑑, across different time intervals. 

Figures 1(a) to 1(f) showcase the 2D and 3D graphical 
representations of Eq. (21), derived using the sine-cosine 

method. Specifically, for 𝛼 = 4.5, 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑦 =
𝑧 = 𝑡 = 1, and 𝜃1 = 2, 𝜃2 = 4, 𝜃3 = 5, the 3D surface 
and 2D graphical solutions over various time intervals are 
displayed in Figures 1(a), 1(b), and 1(c). Similarly, Figures 
1(d), 1(e), and 1(f) depict the 3D and 2D solutions under 
the same parameter settings and time intervals. The results 

reveal that increasing 𝛼 amplifies wave activity, whereas 

decreasing 𝛼 reduces wave intensity.  

6  CONCLUSION 

This study focused on applying the sine-cosine method to 
derive new exact solutions for the modified fractional 
(3+1)-dimensional Korteweg-de Vries–Zakharov-
Kuznetsov equation using the Beta fractional derivative 
approach. The objective was successfully achieved, and 
the research also includes 3D and 2D graphical 

representations of the solutions. The results highlight the 
sine-cosine method as a reliable and effective approach for 
solving nonlinear partial differential. 
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