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INTRODUCTION
Abd Al-Fattah et al. (2017) introduced the inverted 
Kumaraswamy (IKum) distribution and studied its 
properties. The IKum distribution can be used in long-
term reliability predictions, producing optimistic 
predictions of rare events occurring in the distribution's 
right tail compared with other distributions. 

Bayesian prediction is an important topic in statistical 
inference, where we try to use the previous data to predict 
future observations inside the same population with a 
specified probability. When the unobserved failures 
belong to the same sample, then the prediction is called 
one-sample Bayesian prediction, while it is called two-
sample Bayesian prediction when we want to predict by a 
new sample using an old sample. The Bayesian prediction 
was discussed by many authors based on different 
distributions with different types of censored samples. El-
Din and Shafay (2013) studied Bayesian prediction 
intervals based on progressively Type-II censored data. 
Shafay and Balakrishnan (2012) studied the Bayesian 
prediction intervals based on the Type-I hybrid censored 
data. Bayesian prediction intervals of generalized order 
statistics based on multiple Type-II censored data were 
discussed by Mohie El-Din et al. (2012); they also studied 

the Bayesian prediction for order statistics from a general 
class of distributions based on left Type-II censored data, 
see (2011). Latest El-Din et al. (2017) studied the one-
sample Bayesian prediction intervals based on Type-II 
progressively hybrid censored samples. All parametric 
statistical techniques, such as inference, modelling, 
survival analysis, and reliability, are based on statistical 
distributions. Fitting the data to a statistical model is 
critical when analyzing lifetime data. For this reason, 
several lifespan distributions have been established in the 
literature. The majority of lifespan models have a limited 
set of behaviours. Such distributions are unable to provide 
a better fit for all real scenarios. As a result, a variety of 
distribution classes have been created by expanding 
common continuous distributions. The family generated 
from continuous distributions is a new enhancement for 
developing and expanding classic distributions. The newly 
generated distributions have been extensively researched 
in a variety of fields, and they provide greater application 
flexibility. 

One of the most well-known lifetime distributions is the 
inverted Kumaraswamy distribution by Abd AL-Fattah et 
al. (2017). The distribution has a wide range of 
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ABSTRACT 
This article considers the problem of estimating additional parameters of the modified inverted 
Kumaraswamy (MIK) distribution using the inverse power function based on the general 
Kumaraswamy distribution. The parameters' maximum likelihood (MLE) estimators are 
obtained, while the Bayesian estimates are obtained using the maximum product spacing (MPS). 
We obtained a new model for generalizing the existing ones to make them more flexible and to 
aid their application in various fields. An expression for reliability measures, order statistics, and 
some other important properties are derived. The maximum likelihood estimation method is used 
to estimate the proposed model's unknown parameters. Finally, a simulation study was reported 
concerning different sample sizes and method schemes. The practical utility of the proposed 
distribution is demonstrated using two real-life datasets: (i) survival times (in months) of 101 
patients diagnosed with advanced acute myelogenous leukaemia, and (ii) strengths of 63 samples 
of 1.5 cm glass fibres, originally obtained by workers at the UK National Physical Laboratory. 
The results highlight the robustness and flexibility of the proposed model in reliability and 
survival analysis contexts. 
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applications in problems related to econometrics, 
biological sciences, survey sampling, engineering sciences, 
medical research, and life testing problems. In addition, it 
is employed in financial literature, environmental studies, 
and survival and reliability theory. Many researchers 
focused on the inverted distribution and its applications; 
for example, Calabria and Pulcini (1990) studied the 
inverse Weibull distribution, AL-Dayian (1999) 
introduced the inverted Burr Type XII distribution, Abd 
EL-Kader et al. (2003) also described the inverted Pareto 
Type I distribution, AL-Dayian (2004) discussed the 
inverted Pareto Type II distribution, and Aljuaid (2013) 
presented the exponentiated inverted Weibull distribution. 
Kumaraswamy (1980) presented a distribution with many 
similarities to the beta distribution. This distribution 
applies to many natural phenomena whose outcomes have 
lower and upper bounds, such as the height of individuals, 
scores obtained on a test, atmospheric temperatures, and 
hydrological data such as daily rainfall and daily stream 
flow (see Kumaraswamy, 1980; Jones, 2009; Yakubu and 
Doguwa, 2017; and Jamal et al., 2021).  

The current study contributes significantly to the growing 
literature on advanced lifetime distribution models and 
robust estimation methods. Habu et al. (2024) investigated 
the extension of the Topp-Leone distribution using 
Maximum Product Spacing (MPS) and Maximum 
Likelihood Estimation (MLE) techniques. Their findings 
emphasized the superior performance of MPS over MLE 
in terms of lower bias and RMSE, especially for smaller 
sample sizes, an observation consistent with the results of 
this study. Similarly, Obafemi et al. (2024) proposed a 
New Extension of the Topp-Leone Distribution (NETD) 
using a generalized logarithmic function, showcasing 
improved modelling flexibility for survival and reliability 
data. 

In parallel, Sadiq et al. (2023c) developed the New 
Generalized Odd Fréchet-Odd Exponential-G family, 
combining the strengths of two generalized structures to 
produce a highly adaptable distribution with superior 
performance in various data modelling contexts. Their 
approach resonates with the methodology adopted in the 
current study, particularly in extending existing models to 
better capture the characteristics of lifetime data. 

Earlier contributions by Sadiq et al. (2023a, 2023b) and 
Sadiq et al. (2022) introduced related flexible families such 
as the NGOF-G, NGOF-Exponentiated-G, and New 
Odd Fréchet-G distributions, all of which emphasized 
statistical properties and practical applications. Most 
recently, Sadiq et al. (2024) presented the Odd Rayleigh-G 
family, further advancing the field by providing 
comparative insights into distributional behaviour and 
estimation performance. 

Taken together, these studies support the methodological 
choices in the present research, validating the efficacy of 
estimation methods and affirming the scientific value of 
developing extended distributions like the Modified 
Inverted Kumaraswamy (MIK). The current study adds to 
this literature by deriving a new distribution and 

empirically demonstrating its practical utility using real-life 
survival and reliability datasets. 

Despite the growing interest in the Modified Inverted 
Kumaraswamy (MIK) distribution and its variants, most 
existing studies have focused primarily on traditional 
parameter estimation techniques such as Maximum 
Likelihood Estimation (MLE), often overlooking 
alternative methods that may offer improved accuracy and 
efficiency, especially with small or moderate sample sizes. 
Furthermore, previous models based on the MIK 
distribution have limited flexibility in capturing diverse 
data behaviours due to a lack of structural generalization. 
Notably, little to no attention has been given to 
incorporating the inverse power function to enhance the 
flexibility of the MIK distribution. Additionally, 
comparative assessments of estimation techniques, 
particularly between MLE and Maximum Product Spacing 
(MPS) have been inadequately explored within this 
context. This study bridges these gaps by (i) introducing a 
novel generalization of the MIK distribution using the 
inverse power function, (ii) deriving key statistical and 
reliability properties of the new model, and (iii) rigorously 
comparing MLE and MPS based on bias and RMSE 
through extensive simulation studies and real-life 
applications. By addressing these gaps, this research 
contributes significantly to improving parameter 
estimation accuracy and expanding the applicability of 
generalized Kumaraswamy-type models in survival and 
reliability analysis. 

"Unlike classical lifetime distributions such as Weibull, 
Burr, and the standard Kumaraswamy, the proposed 
generalized MIK model augmented by the inverse power 
function offers enhanced flexibility in capturing a wider 
range of data behaviours, making it a robust and versatile 
alternative for reliability and survival analysis." 

Abd AL-Fattah et al. (2017) propose the inverted 
Kumaraswamy distribution, while the Modified Inverted 
Kumaraswamy (MIK) distribution using the inverse 
power function was generated from the inverted 
Kumaraswamy distributions, and by comparing their 
consistency and performance of the estimated parameters 
using two different methods of estimation (MLE and 
MPS) is the aim of this study.  The cumulative distribution 
function (cdf) and the probability density function (pdf) 
of our proposed distribution, called the modified inverted 
Kumaraswamy model, are given as: 

𝐹( 𝑥; 𝛼 , 𝛽, 𝜆) = (1 − (1 + 𝑥
1

𝜆)−𝛼)𝛽; 0 < 𝑥 <
∞, 𝛼, 𝛽, 𝜆 > 0     (1) 

𝑓(𝑥; 𝛼 , 𝛽, 𝜆) =
𝛼𝛽

𝜆
𝑥

1

𝜆
−1(1 + 𝑥

1

𝜆)−(𝛼+1)(1 − (1 +

𝑥
1

𝜆)−𝛼)𝛽−1; 0 < 𝑥 < ∞, 𝛼, 𝛽, 𝜆 > 0  (2) 

This research aims to compare the estimators methods 

and see which best fits the proposed distribution called the 

modified inverted Kumaraswamy distribution. By 

incorporating both theoretical advancements and practical 

applications, the proposed model not only generalizes the 
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MIK distribution but also presents a more powerful 

alternative to classical lifetime models, particularly in the 

domains of reliability engineering and biomedical survival 

analysis. This paper is organized as follows: Section 1 

presents the introduction and background of the study; we 

obtained some important representations for the MIK 

distribution in Section 2. The parameters were estimated 

using the maximum likelihood estimation (MLE) and 

maximum product of spacing (MPS) approach in Section 

3. The simulation study was conducted to show that the 

estimated parameters are efficient and consistent using 

MLE and MPS in Section 4. Finally, Section 5 concludes 

the paper. 

IMPORTANT REPRESENTATION 

In this section, we derived a useful representation for the 
MIK cdf and pdf using some standard 
generalized binomial series expansion for negative and 
positive power. However, equation (1) can be expressed 
by related to the mentioned expansion as; 

𝐹(𝑥) = ∑ (−1)𝑖∞
𝑖=1 (𝑖

𝛽
)(1 + 𝑥1/𝜆)−𝛼𝑖  (3) 

The simplest form of the probability density function 

(pdf) given in equation (2) can also be expressed by related 

to the mentioned expansion as; 

𝑓(𝑥) =
𝛼𝛽

𝜆
𝑥

1

𝜆
−1 ∑ (−1)𝑗∞

𝑗=0 (𝑗
𝛽−1

)(1 + 𝑥
1

𝜆)−𝛼(1+𝑗)−1

      (4) 

Using the generalized binomial theorem given as,  

0

(1 ) ( ) 1b b k

k

k

z z for b


− −

=

+ =    (5) 

Then, the last term of equation (4) reduces to; 

(1 + 𝑥
1

𝜆)−𝛼(1+𝑗)−1 = ∑ (−1)𝑘∞
𝑘=0 (−𝛼(1 + 𝑗) −

1𝑘)(𝑥
1

𝜆)𝑘     (6) 

Substituting equation (6) into equation (4) and simplifying 
further, we have; 

𝑓(𝑥) =
𝛼𝛽

𝜆
∑ (−1)𝑗+𝑘∞

𝑗,𝑘=0 (𝑗
𝛽−1

)(𝑘
−𝛼(1+𝑗)−1

)𝑥
1

𝜆
(1+𝑘)−1

 

      (7) 

Therefore, equation (7) is comfortably reduced to; 

𝑓(𝑥) = ∑ 𝜓𝑗
∞
𝑘=0 𝑥

1

𝜆
(1+𝑘)−1

   (8) 

where, 𝜓𝑗 =
𝛼𝛽

𝜆
∑ (−1)𝑗+𝑘∞

𝑗=0 (𝑗
𝛽−1

)(𝑘
−𝛼(1+𝑗)−1

)  

PARAMETER ESTIMATION METHODS  

In this section, the method of Maximum Likelihood 

Estimation (MLE) and Maximum Product Spacing (MPS) 

will be extensively used to estimate the parameter of the 

proposed distribution (MIK). 

MAXIMUM LIKELIHOOD ESTIMATION   

The maximum likelihood method is the technique for 
estimating parameters in a continuous probability model. 

Suppose that 𝑋 is a random variable with a probability 

density function 𝑓(𝑥; 𝜃) where 𝜃 is a single unknown 

parameter. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be the observed values in a 
random sample of size n. In such a case, the log-likelihood 
function of the MIK distribution is expressed as 

𝐿(𝜃) = 𝑛 𝑙𝑜𝑔(𝛼) + 𝑛 𝑙𝑜𝑔(𝛽) − 𝑛 𝑙𝑜𝑔(𝜆) + (
1

𝜆
−

1) ∑ 𝑙𝑜𝑔 𝑥𝑖
𝑛
𝑖=1 − (𝛼 + 1) ∑ 𝑙𝑜𝑔 (1 + 𝑥

𝑖

1

𝜆)𝑛
𝑖=1 +

(𝛽 − 1) ∑ 𝑙𝑜𝑔 [1 − (1 + 𝑥
𝑖

1

𝜆)

𝛼

]𝑛
𝑖=1                              (9) 

Differentiating  equation (9) with respect to 𝛼, 𝛽, and 𝜆 

𝜕𝐿

𝜕𝛼
=

𝑛

𝛼
− ∑ 𝑙𝑜𝑔 (1 + 𝑥

𝑖

1

𝜆)𝑛
𝑖=1 − (𝛽 −

1) ∑
(1+𝑥𝑖

1
𝜆)

𝛼

𝑙𝑜𝑔(1+𝑥𝑖

1
𝜆)

[1−(1+𝑥𝑖

1
𝜆)

𝛼

]

𝑛
𝑖=1 =  0   (10) 

𝜕𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑ 𝑙𝑜𝑔 [1 − (1 + 𝑥

𝑖

1

𝜆)

𝛼

]𝑛
𝑖=1 = 0  (11) 

𝜕𝐿

𝜕𝜆
= −

𝑛

𝜆
−

1

𝜆2
∑ 𝑙𝑜𝑔 𝑥𝑖 − (𝛼 + 1) ∑

𝑥𝑖

1
𝜆 𝑙𝑜𝑔 𝑥𝑖

𝜆2(1+𝑥𝑖

1
𝜆)

𝑛
𝑖=1

𝑛
𝑖=1   −

(𝛽 + 1) ∑
𝛼(1+𝑥𝑖

1
𝜆)

𝛼−1

𝑥𝑖

1
𝜆 𝑙𝑜𝑔 𝑥𝑖

𝜆2[1−(1+𝑥𝑖

1
𝜆)

𝛼

]

𝑛
𝑖=1 = 0      (12) 

Therefore, equations (10), (11), and (12) are non-linear, 
and cannot be solved analytically, necessitating the use of 
analytical tools to solve them in numerical. 

MAXIMUM OF PRODUCT SPACING (MPS) 

Let 𝑥1, 𝑥2, . . . 𝑥𝑛 be a random sample from the MIK 

distribution have CDF 𝐹(𝑥; 𝜆, 𝛼, 𝛽) presented in equation 

(1) and 𝑥1, 𝑥2, . . . 𝑥𝑛represents the corresponding ordered 
samples. The spacing.  

𝛹 = 𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1));  ∀𝑖 = 1,2, . . . , 𝑛 + 1 (13) 

where 𝐹(𝑥(0)) = 0 and  𝐹(𝑥(𝑛+1)) = 1   

Therefore,  

𝐹(𝑥(𝑖); 𝑥; 𝜆, 𝛼, 𝛽) = [1 − [1 + 𝑥(𝑖)

1

𝜆 ]

−𝛼

]

𝛽

  (14) 

and  

𝐹(𝑥(𝑖−1); 𝑥; 𝜆, 𝛼, 𝛽) = [1 − [1 + 𝑥(𝑖−1)

1

𝜆 ]

−𝛼

]

𝛽

           (15). 
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Thus,  

𝜓 = [1 − [1 + 𝑥(𝑖)

1

𝜆 ]

−𝛼

]

𝛽

− [1 − [1 + 𝑥(𝑖−1)

1

𝜆 ]

−𝛼

]

𝛽

 (16) 

The parameter estimates are obtained by maximizing the 
function presented as; 

𝛺(𝑥; 𝜆, 𝛼, 𝛽) =
1

𝑛+1
∑ 𝑙𝑜𝑔

𝑛+1∑
𝑖=1    (17) 

The expression in equation (17) reduces to; 

𝛺(𝑥; 𝜆, 𝛼, 𝛽) =
1

𝑛+1
∑ 𝑙𝑜𝑔 [[1 − [1 + 𝑥(𝑖)

1

𝜆 ]

−𝛼

]

𝛽

−𝑛+1
𝑖=1

[1 − [1 + 𝑥(𝑖−1)

1

𝜆 ]

−𝛼

]

𝛽

]    (18) 

Differentiating equation (18) with respect to individual 
parameters yields the parameter estimates of 

𝜆𝑀𝑃𝑆, 𝛼𝑀𝑃𝑆, 𝛽𝑀𝑃𝑆and solving the nonlinear equations. 

𝜕𝛺(𝑥;𝜆,𝛼,𝛽)

𝜕𝛼
=

1

𝑛+1
∑ 𝑙𝑜𝑔 [𝐴1(𝑖) − 𝐴2(𝑖−1)]𝑛+1

𝑖=1  (19) 

where 

𝐴(1)(𝑥(𝑖); 𝜆, 𝛼, 𝛽) =

𝛽[1−[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

]

𝛽−1

[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

𝑙𝑜𝑔[1+𝑥(𝑖)

1
𝜆 ]

[1−[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

]

𝛽   (20) 

and  

𝐴(2)(𝑥(𝑖−1); 𝜆, 𝛼, 𝛽) =

𝛽[1−[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

]

𝛽−1

[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

𝑙𝑜𝑔[1+𝑥(𝑖−1)

1
𝜆 ]

[1−[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

]

𝛽                (21) 

𝜕𝛺(𝑥;𝜆,𝛼,𝛽)

𝜕𝛽
=

1

𝑛+1
∑ 𝑙𝑜𝑔 [𝐵1(𝑖) − 𝐵2(𝑖−1)]𝑛+1

𝑖=1  (22) 

where 

𝐵(1)(𝑥(𝑖); 𝜆, 𝛼, 𝛽) =
[1−[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

]

𝛽

𝑙𝑜𝑔[1−[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

]

[1−[1+𝑥(𝑖)

1
𝜆 ]

−𝛼

]

𝛽  (23) 

and  

𝐵(2)(𝑥(𝑖−1); 𝜆, 𝛼, 𝛽) =

[1−[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

]

𝛽

𝑙𝑜𝑔[1−[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

]

[1−[1+𝑥(𝑖−1)

1
𝜆 ]

−𝛼

]

𝛽     (24) 

𝝏𝜴(𝒙;𝝀,𝜶,𝜷)

𝝏𝝀
=

𝟏

𝒏+𝟏
∑ 𝒍𝒐𝒈 [𝑲𝟏(𝒊) − 𝑲𝟐(𝒊−𝟏)]𝒏+𝟏

𝒊=𝟏  (25) 

where 

𝑲(𝟏)(𝒙(𝒊); 𝝀, 𝜶, 𝜷) =

𝜷[𝟏−[𝟏+𝒙(𝒊)

𝟏
𝝀 ]

−𝜶

]

𝜷−𝟏

𝜶[𝟏+𝒙(𝒊)

𝟏
𝝀 ]

−(𝜶+𝟏)

𝒙(𝒊)

𝟏
𝝀 𝒍𝒐𝒈 𝒙(𝒊)

𝝀𝟐[𝟏−[𝟏+𝒙(𝒊)

𝟏
𝝀 ]

−𝜶

]

𝜷   (26) 

and  

𝑲(𝟐)(𝒙(𝒊−𝟏); 𝝀, 𝜶, 𝜷) =

𝜷[𝟏−[𝟏+𝒙(𝒊−𝟏)

𝟏
𝝀 ]

−𝜶

]

𝜷−𝟏

𝜶[𝟏+𝒙(𝒊−𝟏)

𝟏
𝝀 ]

−(𝜶+𝟏)

𝒙(𝒊−𝟏)

𝟏
𝝀 𝒍𝒐𝒈 𝒙(𝒊−𝟏)

𝝀𝟐[𝟏−[𝟏+𝒙(𝒊−𝟏)

𝟏
𝝀 ]

−𝜶

]

𝜷  (27) 

The MPS is obtained by setting equations (19), (22), and 
(25) to zero and solving these questions simultaneously. 
Thus, these cannot be solved analytically, necessitating the 
use of analytical tools to solve them numerically. 

SIMULATION STUDY 

In this section, a numerical analysis will be conducted to 
evaluate the performance of MLE and MPS for MIK 
Distribution. 

Table 1 presents the result of the simulation study 
comparing the Maximum Likelihood Estimates (MLE) 
and Maximum Product Spacing (MPS) estimates for the 

parameters (𝛼 = 1, 𝛽 = 0.5,  𝑎𝑛𝑑 𝜆 = 0.4) across 

different sample sizes (𝑛). The bias for the estimated 

parameter (𝛼) by MLE decreases as the sample size 

increases, starting from 0.2926 at 𝑛 = 25 to 0.0332 at 𝑛 =
1000. The bias is consistently lower for MPS, starting 

from -0.0466 at 𝑛 = 25to  −0.0134 at 𝑛 = 1000. The 

RMSE for MLE decreases from 0.6797 at 𝑛 = 25 to 

0.1842 at 𝑛 = 1000. For MPS, the RMSE is consistently 

lower, starting from 0.5574 at 𝑛 = 25 to 0.1776 at 𝑛 =
1000. 

Similarly, the bias for the estimated parameter (𝛽) using 

MLE decreases from 0.1570 at 𝑛 = 25 to 0.0185 at 𝑛 =
1000. For MPS, the bias is consistently lower, starting 

from 0.0040 at 𝑛 = 25 to -0.0033 at 𝑛 = 1000. The 

RMSE for MLE decreases from 0.4129 at 𝑛 = 25 to 

0.0942 at 𝑛 = 1000. The RMSE is consistently lower for 

MPS, starting from 0.2918 at 𝑛 = 25 to 0.0877 at 𝑛 =
1000. Furthermore, the bias for the estimated parameter 

(𝜆) MLE decreases from 0.0460 at 𝑛 = 25 to 0.0089 at 

𝑛 = 1000. For MPS, the bias is consistently lower, 

starting from 0.0094 at 𝑛 = 25to −0.0017 at n = 1000. 

The RMSE for MLE decreases from 0.1846 at 𝑛 = 25 to 

0.0542 at 𝑛 = 1000. The RMSE is consistently lower for 

MPS, starting from 0.1742 at 𝑛 = 25 to 0.0528 at 𝑛 =
1000. 

The MPS consistently shows lower bias compared to 
MLE across all parameters and sample sizes. The MPS 
consistently shows lower RMSE compared to MLE across 
all parameters and sample sizes. This suggests that the 
MPS method generally provides more accurate and 
reliable estimates compared to the MLE method, 
especially for smaller sample sizes. 
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Table 1 Maximum Likelihood Estimates (MLE) and Maximum Product Spacing (MPS) Estimates of (𝜶 =1, 𝜷 

=0.5, 𝝀 =0.4) 

n Parameters  M.L.E   MPS  
Mean Bias RMSE Mean Bias RMSE  

𝛼 = 1 1.2936 0.2926 0.6797 0.9534 -0.0466 0.5574 

25 𝛽 =0.5 1.2936 0.1570 0.4129 0.5040 0.0040 0.2918 

 𝜆 =0.4 1.2936 0.0460 0.1846 0.4094 0.0094 0.1742 

 𝛼 = 1 1.2197 0.2197 0.5633 0.9606 -0.0394 0.4809 

50 𝛽 = 0.5 0.6222 0.1222 0.3285 0.5025 0.0025 0.2585 

 𝜆 =0.4 0.4447 0.0447 0.1614 0.4041 0.0041 0.1438  
𝛼 = 1 1.1389 0.1389 0.4264 0.9536 -0.0053 0.3702 

100 𝛽 =0.5 0.5826 0.0826 0.2471 0.4948 -0.0464 0.1890 

 𝜆 =0.4 0.4321 0.0321 0.1225 0.3987 -0.0013 0.1159  
𝛼 = 1 1.0944 0.0944 0.3727 0.9422 -0.0598 0.3368 

150 𝛽 =0.5 0.5578 0.0578 0.2094 0.4870 -0.0130 0.1702 

 𝜆 =0.4 0.4182 0.0182 0.1067 0.3973 -0.0070 0.1015  
𝛼 = 1 1.0779 0.0779 0.3338 0.9658 -0.0342 0.3000 

200 𝛽 =0.5 0.5469 0.0469 0.1830 0.4942 -0.0058 0.1508 

 𝜆 =0.4 0.4182 0.0182 0.0965 0.3973 -0.0027 0.0896  
𝛼 = 1 1.0601 0.0601 0.3026 0.9542 -0.0458 0.2783 

250 𝛽 =0.5 0.5382 0.0382 0.1628 0.4895 -0.0105 0.1430 

 𝜆 =0.4 0.4144 0.0144 0.0892 0.3935 -0.0065 0.0834  
𝛼 = 1 1.0489 0.0489 0.2465 0.9741 -0.0259 0.2301 

500 𝛽 =0.5 0.5300 0.0300 0.1328 0.4953 -0.0047 0.1159 

 𝜆 =0.4 0.4132 0.0132 0.0725 0.3970 -0.0030 0.0696  
𝛼 = 1 1.0332 0.0332 0.1842 0.9866 -0.0134 0.1776 

1000 𝛽 =0.5 0.5185 0.0185 0.0942 0.4967 -0.0033 0.0877 

 𝜆 =0.4 0.4089 0.0089 0.0542 0.3983 -0.0017 0.0528 

 

 
Figure 1: Bias and RMSE of MLE and MPS for each parameter estimates 

Figure 1 the plots comparing the bias and RMSE (Root 
Mean Square Error) of the MLE (Maximum Likelihood 

Estimation) and MPS (Maximum Product Spacing) 

methods for each parameter (𝛼, 𝛽, and 𝜆). 
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The bias for the estimated parameter (𝛼) decreases as the 
sample size increases for both methods. However, the 
MPS shows a slightly lower bias than MLE for larger 

sample sizes. The RMSE for the estimated parameter (𝛼) 
decreases as the sample size increases, with MPS having a 
lower RMSE compared to MLE, especially for smaller 
sample sizes. 

The bias for the estimated parameter (𝛽) is relatively small 
and stable across different sample sizes, with MPS 
showing a slightly lower bias than MLE. The RMSE for 

the estimated parameter (𝛽)  is small and decreases slightly 
as the sample size increases, with MPS having a marginally 
lower RMSE compared to MLE. 

The bias for the estimated parameter (𝜆) decreases as the 
sample size increases, with MPS showing a lower bias than 
MLE for larger sample sizes. The RMSE for the estimated 

parameter (𝜆) decreases as the sample size increases, with 
MPS having a lower RMSE compared to MLE, especially 
for smaller sample sizes. In conclusion, the MPS method 
generally performs better than the MLE method in terms 
of both bias and RMSE, particularly for smaller sample 
sizes. This suggests that MPS may be a more reliable 
method for parameter estimation in scenarios with limited 
data for the proposed MIK distribution. 

Table 2 presents the simulation study that compares the 
performance of the Maximum Likelihood Estimation 
(MLE) and Maximum Product Spacing (MPS) methods in 

estimating parameters (𝛼 =1, 𝛽 =0.5, 𝜆 =1.4) for various 

sample sizes (𝑛). The performance measures used include 
bias and Root Mean Square Error (RMSE). MLE and 
MPS methods improve estimation accuracy as the sample 
size increases. While the Bias and RMSE decrease 
consistently across all parameters. For larger sample sizes 

(𝑛 = 500, 𝑛 = 1000), both methods yield estimates 
closer to the true parameter values, indicating consistency 
of the estimators. 

Figure 2 shows the plots comparing the bias and RMSE 
(Root Mean Square Error) of the MLE (Maximum 
Likelihood Estimation) and MPS (Maximum Product 

Spacing) methods for each parameter (𝛼, 𝛽, and 𝜆). 

The bias for the estimated parameter (𝛼) decreases as the 
sample size increases for both methods. However, the 
MPS shows a slightly lower bias than MLE for larger 

sample sizes. The RMSE for the estimated parameter (𝛼) 
decreases as the sample size increases, with MPS having a 
lower RMSE compared to MLE, especially for smaller 
sample sizes. 

The bias for the estimated parameter (𝛽) is relatively small 
and stable across different sample sizes, with MPS 
showing a slightly lower bias than MLE. The RMSE for 

the estimated parameter (𝛽)  is small and decreases slightly 
as the sample size increases, with MPS having a marginally 
lower RMSE compared to MLE. 

 

Table 2 Maximum Likelihood Estimates (MLE) And Maximum Product Spacing (MPS) Estimates of (𝜶 =1, 𝜷 

=0.5, 𝝀 =1.4) 

n Parameter  M.L.E   MPS  
  Mean Bias RMSE Mean Bias RMSE  

𝛼 = 1 1.3371 0.3371 0.7556 0.9562 -0.0438 0.5764 

25 𝛽 =0.5 0.6767 0.1767 0.4202 0.5039 0.0039 0.2851 

 𝜆 =1.4 1.5833 0.1833 0.6581 1.4285 0.0285 0.5705  
𝛼 = 1 1.2403 0.2403 0.6177 0.9552 -0.0448 0.5057 

50 𝛽 =0.5 0.6382 0.1382 0.3652 0.5035 0.0035 0.2654 

 𝜆 =1.4 1.5697 0.1697 0.5900 1.4111 0.0111 0.5283  
𝛼 = 1 1.1526 0.1526 0.4561 0.9515 -0.0485 0.3971 

100 𝛽 =0.5 0.5916 0.0916 0.2624 0.4959 -0.0041 0.1987 

 𝜆 =1.4 1.5244 0.1244 0.4616 1.3924 -0.0076 0.4166  
𝛼 = 1 1.1093 0.1093 0.3916 0.9389 -0.0611 0.3697 

150 𝛽 =0.5 0.5661 0.0661 0.2134 1.3713 -0.0115 0.1884 

 𝜆 =1.4 1.4924 0.0924 0.3970 0.4885 -0.0287 0.3865  
𝛼 = 1 1.0955 0.0694 0.3565 0.9536 -0.0464 0.3299 

200 𝛽 =0.5 0.5568 0.0435 0.1958 0.4914 -0.0086 0.1669 

 𝜆 =1.4 1.4815 0.0602 0.3633 1.3783 -0.0217 0.3458  
𝛼 = 1 1.0694 0.0694 0.3118 0.9547 -0.0453 0.2981 

250 𝛽 =0.5 0.5435 0.0435 0.3210 0.4909 -0.0091 0.1520 

 𝜆 =1.4 1.4602 0.0602 0.0892 1.3761 -0.0239 0.3136  
𝛼 = 1 1.0487 0.0487 0.2465 0.9712 -0.0288 0.2353 

500 𝛽 =0.5 0.5304 0.0304 0.1326 0.4941 -0.0059 0.1180 

 𝜆 =1.4 1.4456 0.0456 0.2539 1.3862 -0.0138 0.2439  
𝛼 = 1 1.0366 0.0366 0.1879 0.9855 -0.0145 0.1826 

1000 𝛽 =0.5 0.5204 0.0204 0.0974 0.4968 -0.0032 0.0905 

 𝜆 =1.4 1.4345 0.0345 0.1922 1.3933 -0.0067 0.1877 
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Figure 2: Bias and RMSE of MLE and MPS for each parameter estimates 

Table 3 Maximum Likelihood Estimates (MLE) And Maximum Product Spacing (MPS) Estimates of (𝜶 =1, 𝜷 

=0.5, 𝝀 =2.4) 

n Parameter  M.L.E   MPS  
Mean Bias RMSE Mean Bias RMSE  

𝛼 = 1 1.3421 0.3421 0.7746 0.9733 -0.0267 0.6097 

25 𝛽 = 0.5 0.6892 0.1892 0.4586 0.5162 0.0162 0.3123 

 𝜆 = 2.4 2.7172 0.3172 1.1303 2.4741 0.0741 0.9900  
𝛼 = 1 1.2548 0.2548 0.6260 0.9587 -0.0413 0.4041 

50 𝛽 = 0.5 0.6450 0.1450 0.3676 0.5004 0.0004 0.2063 

 𝜆 = 2.4 2.7069 0.3069 0.9891 2.3968 -0.0032 0.7329  
𝛼 = 1 1.1541 0.1541 0.4611 0.9587 -0.0278 0.5129 

100 𝛽 = 0.5 0.5915 0.0915 0.2598 0.5004 0.0114 0.2649 

 𝜆 = 2.4 2.6141 0.2141 0.8007 2.3968 0.0433 0.8945  
𝛼 = 1 1.1155 0.1155 0.4020 0.9598 -0.0402 0.3796 

150 𝛽 = 0.5 0.5707 0.0707 0.2284 0.5002 0.0002 0.1986 

 𝜆 = 2.4 2.5675 0.1675 0.6962 2.3877 -0.0123 0.6716  
𝛼 = 1 1.0938 0.0938 0.3644 0.9679 -0.0321 0.3350 

200 𝛽 = 0.5 0.5578 0.0578 0.2060 0.4983 -0.0017 0.1735 

 𝜆 = 2.4 2.5364 0.1364 0.6337 2.3862 -0.0138 0.6014  
𝛼 = 1 1.0776 0.0776 0.3222 0.9570 -0.0430 0.3027 

250 𝛽 = 0.5 0.5487 0.0487 0.1780 0.4919 -0.0081 0.1534 

 𝜆 = 2.4 2.5168 0.1168 0.5661 2.3637 -0.0363 0.5415  
𝛼 = 1 1.0552 0.0552 0.2541 0.9718 -0.0282 0.2456 

500 𝛽 = 0.5 0.5337 0.0337 0.1359 0.4951 -0.0049 0.1254 

 𝜆 = 2.4 2.4888 0.0888 0.4429 2.3770 -0.0230 0.4358  
𝛼 = 1 1.0359 0.0359 0.1875 0.9886 -0.0114 0.1866 

1000 𝛽 = 0.5 0.5199 0.0199 0.0962 0.4983 -0.0017 0.0921 

 𝜆 = 2.4 2.4578 0.0578 0.3266 2.3942 -0.0058 0.3308 
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Figure 3: Bias and RMSE of MLE and MPS for each parameter estimates 

Table 4: Literature Review Matrix and Comparative Findings of MLE and MPS Estimation Techniques 

Study Distribution Studied Sample Sizes 
Tested 

Findings on MLE vs. MPS 

Bakoban & Al-
Shehri 2021 

 A New Generalization of the 
Generalized Inverse  Rayleigh 
Distribution with Applications 

n = 25-200 MPS showed lower bias & RMSE; was 
more robust under small samples. 
 

Gabanakgosi & 
Oluyede (2024) 

The Topp-Leone-Gompertz-G 
Power Series Class of 
 Distributions with 
Applications 

n = 25-400 MLE provided faster convergence and 
better accuracy in parameter 
estimation. 

El Fotouh et al. 
(2022)  

Bayesian and Non-Bayesian 
 Estimation of Extended 
Exponential Distribution under 
Type-I Progressive Hybrid 
 Censoring 

n = 20–150 MLE outperformed MPS in reliability 
and survival modelling. 

Present Study 
(2025) 

Modified Inverted Kumaraswamy 
(MIK) 

n = 25-1000 MPS showed consistent superiority in 
bias and RMSE; more accurate even in 
large samples 

 

The bias for the estimated parameter (𝜆) decreases as the 
sample size increases, with MPS showing a lower bias than 
MLE for larger sample sizes. The RMSE for the estimated 

parameter (𝜆) decreases as the sample size increases, with 
MPS having a lower RMSE compared to MLE, especially 
for smaller sample sizes. In conclusion, the MPS method 
generally performs better than the MLE method in terms 
of both bias and RMSE, particularly for smaller sample 
sizes. This suggests that MPS may be a more reliable 
method for parameter estimation in scenarios with limited 
data for the proposed MIK distribution. 

Table 3 presents the simulation study that compares the 

performance of the Maximum Likelihood Estimation 

(MLE) and Maximum Product Spacing (MPS) methods in 

estimating parameters (𝛼 =1, 𝛽 =0.5, 𝜆 =2.4) for various 

sample sizes (𝑛). The study demonstrates that MPS is a 

robust and efficient estimation method compared to MLE 

for the given parameter values and distribution. It 

outperforms MLE in terms of bias and RMSE, especially 

for smaller sample sizes. This makes MPS an excellent 

choice for practical applications, particularly when data is 

limited or when high precision is critical. 

Figure 3 shows the plots comparing the bias and RMSE 

(Root Mean Square Error) of the MLE (Maximum 

Likelihood Estimation) and MPS (Maximum Product 

Spacing) methods for each parameter (𝛼, 𝛽, and 𝜆). 
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The bias for the estimated parameter (𝛼) decreases as the 
sample size increases for both methods. However, the 
MPS shows a slightly lower bias than MLE for larger 

sample sizes. The RMSE for the estimated parameter (𝛼) 
decreases as the sample size increases, with MPS having a 
lower RMSE compared to MLE, especially for smaller 
sample sizes. 

The bias for the estimated parameter (𝛽) is relatively small 
and stable across different sample sizes, with MPS 
showing a slightly lower bias than MLE. The RMSE for 

the estimated parameter (𝛽)  is small and decreases slightly 
as the sample size increases, with MPS having a marginally 
lower RMSE compared to MLE. 

The bias for the estimated parameter (𝜆) decreases as the 
sample size increases, with MPS showing a lower bias than 
MLE for larger sample sizes. The RMSE for the estimated 

parameter (𝜆) decreases as the sample size increases, with 
MPS having a lower RMSE compared to MLE, especially 
for smaller sample sizes. In conclusion, the MPS method 
generally performs better than the MLE method in terms 
of both bias and RMSE, particularly for smaller sample 
sizes. This suggests that MPS may be a more reliable 
method for parameter estimation in scenarios with limited 
data for the proposed MIK distribution. 

COMPARING THE FINDINGS WITH EXISTING 
STUDIES ON MLE VS. MPS ESTIMATORS  

In recent years, there has been a growing interest in 
exploring alternative estimation methods to the classical 
Maximum Likelihood Estimation (MLE), especially in the 
context of generalized and flexible lifetime distributions. 
One such method, the Maximum Product Spacing (MPS), 
has proven effective in several studies due to its 
robustness in parameter estimation, particularly for 
distributions with complex shapes or small sample sizes. 

Bakoban & Al-Shehri 2021 demonstrated that for a new 
generalization of the generalized inverse Rayleigh 
distribution with Applications, MPS outperformed MLE 
in terms of reduced bias and mean squared error (MSE), 
especially in smaller datasets. Similarly, Gabanakgosi & 
Oluyede (2024) showed that MLE estimates provided 
better convergence and less sensitivity to the shape of the 
likelihood surface, a finding echoed by El Fotouh et al. 
(2022), who applied MLE in the context of beta-
exponential distributions. 

Consistent with these findings, the present study shows 
that MPS yields lower bias and RMSE across all parameter 
estimates of the proposed Modified Inverted 
Kumaraswamy (MIK) distribution with inverse power 
transformation. Our simulation results support the 
argument that MPS is a more efficient and reliable 
alternative to MLE for newly derived flexible 
distributions, confirming and extending previous 
conclusions in the literature. 

Furthermore, from Table 4, it is important to highlight 
that classical lifetime distributions such as the Weibull and 
Burr models have been widely studied using both MLE 
and MPS estimation techniques. Several studies (e.g., 
Gabanakgosi & Oluyede 2024; Bakoban & Al-Shehri 
2021) have shown that, although MLE provides consistent 
estimates asymptotically, it often suffers from 
convergence issues and large estimation variances for 
small sample sizes or skewed data. In contrast, MPS 
estimation techniques have proven to be more robust, 
offering smaller biases and lower RMSE values under 
similar conditions. Our findings for the Modified Inverted 
Kumaraswamy (MIK) distribution mirror these 
observations. While both MLE and MPS estimators 
perform better as the sample size increases, MPS remains 
superior, particularly in representing the tail behaviour and 
structural flexibility of the MIK distribution, similar to 
what has been observed in studies involving Burr-type and 
Weibull-related families. This further emphasizes the 
practical advantage of using MPS for modelling 
generalized lifetime data where high precision is required 
under limited observations. 

APPLICATION TO REAL LIFE DATASETS 

First Dataset 

The first dataset represents 63 observations of the 
strengths of 1.5cm glass fibres, originally obtained by 
workers at the UK National Physical Laboratory. The data 
sets are as follows (Wani and Shafi, 2021): “0.55, 0.74, 
0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 
1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 
1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 
1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 
1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 
1.82, 1.84, 1.84, 2.00, 2.01, 2.24”. 

Table 5: The Estimates (MPSs), Log-likelihoods and Goodness of Fits Statistics of the models based on 
strengths of 1.5cm glass fibres (dataset 1) 

Model 𝝀 𝜶 𝜷 LL AIC     BIC 

MIK 0.3782 1.7729 6.4087 -35.7952 77.5904   84.0198 
TIHLIK 0.0563 0.3066 4.8367 -619.957 1245.914   1252.343 
MOKEIK 142.5074 6.1266 119.996 -215.7044 437.4088  443.8382 
IK - 5.3804 84.9139 -39.1953 82.3906  86.6769 

Table 5  indicates that the  MIK  distribution exhibits the 
minimum AIC and BIC values of  77.5904 and 84.0198.  
Therefore, among the considered distributions, the  MIK 
distribution provides a better fit than the other models 
based on the strengths of the 1.5cm glass fibres dataset. 

Second Dataset  

The second dataset consists of  Survival times (in months)  
of a sample of 101 patients with  Advanced Acute 
myelogenous leukaemia. The datasets are as follows 
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(Yakubu and Doguwa,  2017): “0.03, 8.882, 41.118, 6.151, 
17.303, 0.493, 9.145, 45.033, 6.217, 17.664, 0.855, 11.48, 
46.053, 6.447, 18.092, 1.184, 11.513, 46.941, 8.651, 18.092, 
1.283, 12.105, 48.289, 8.717, 18.750, 1.48, 12.796 ,57.401, 
9.441, 20.625, 1.776, 12.993, 58.322, 10.329, 23.158, 2.138, 
13.849, 60.625, 11.48, 27.73, 2.5, 16.612, 0.658, 12.007, 
31.184, 2.763, 17.138, 0.822, 12.007, 32.434, 2.993, 20.066, 

1.414, 12.237, 35.921, 3.224, 20.329, 2.5, 12.401, 42.237, 
3.421, 22.368, 3.322, 13.059, 44.638, 4.178, 26.776, 3.816, 
14.474, 46.48, 4.441, 28.717, 4.737, 15, 47.467, 5.691, 
28.717, 4.836, 15.461, 48.322, 5.855, 32.928, 4.934, 15.757, 
56.086, 6.941, 33.783, 5.033, 16.48,   6.941, 34.211, 5.757, 
16.711, 7.993, 34.77, 5.855, 17.204, 8.882, 39.539, 5.987, 
17.237”. 

Table  6: The Estimates (MPSs), log-likelihoods, and goodness of fit statistics of the models based on the 
survival time of patients with leukaemia (dataset 2) 

Model 𝝀 𝜶 𝜷 LL AIC             BIC 

MIK 1.8982 1.8022 9.0267 -413.1645 832.329        840.174 
TIHLIK 7.8031 0.0872 8.8932 -1565.013 3136.026       3143.871 
MOKEIK 6.4589 0.9722 5.9775 -448.9365 903.873       911.718 
IK - 0.7733 3.6416 -416.5064 837.0128      842.243 

 
Table 6 displays the Maximum Product of Spacing 
Estimates outcomes for parameters in the MIK  
distribution and three comparator distributions.  The  
MIK  distribution demonstrated the lowest AIC and BIC 
values at  832.329 and 840.174, indicating models based 
on the survival time of leukaemia patients. This finding 
suggests that the MIK distribution is the most suitable 
model among the considered distributions for accurately 
representing the characteristics of the dataset based on the 
goodness of fit statistic AIC. 

CONCLUSION 

In this study, a new distribution was developed by 
modifying the inverted Kumaraswamy distribution using 
the inverse power function, and its parameters were 
estimated using Maximum Likelihood Estimation (MLE) 
and Maximum Product Spacing (MPS) techniques. A 
comprehensive simulation study was conducted across 
various sample sizes (n = 25, 50, 100, 150, 200, 250, 500, 
and 1000) to evaluate the performance of both estimation 
methods. The results consistently showed that MPS 
outperformed MLE in terms of lower bias and root mean 
square error (RMSE), particularly for smaller sample sizes. 
As the sample size increased, both methods demonstrated 
improved accuracy, with reduced bias and RMSE values 
converging toward the true parameter values. MPS 
produced more accurate and precise estimates even in 
smaller datasets and exhibited faster convergence. From a 
scientific and practical perspective, MPS proved to be a 
more reliable and efficient estimation method, making it a 
preferable choice in situations where precision in 
parameter estimation is critical. While MLE remained a 
viable option for larger datasets, MPS maintained a slight 
edge in accurately capturing the underlying distribution 
characteristics. 

The practical utility of the proposed distribution was 

demonstrated using two real-life datasets: (i) survival times 

(in months) of 101 patients diagnosed with advanced 

acute myelogenous leukaemia, and (ii) strengths of 63 

samples of 1.5 cm glass fibres, originally obtained by 

workers at the UK National Physical Laboratory (Wani 

and Shafi, 2021). The results highlight the proposed 

model's robustness, flexibility, and applicability in both 

reliability and survival analysis contexts. 

It is recommended that future research extend the 
proposed model to regression-based survival frameworks 
and assess its performance with larger and more complex 
datasets. Comparative studies should be explored with 
other recent distributions and estimation methods, such as 
Bayesian techniques. Developing software tools for easy 
implementation is encouraged. Additionally, the model’s 
applicability in various fields like medicine, finance, and 
engineering should be further investigated. 
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