

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316

 305

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

ORIGINAL RESEARCH ARTICLE

An Enhanced and Improved Half-Life Variable Quantum Time Round Robin
(EImHLVQTRR) CPU Scheduling Algorithm

Suleiman Ebaiya Abubakar1 and Ibrahim Isa1
1Department of Computer Science, Federal University of Education Kano State-Nigeria

INTRODUCTION
The multitasking capabilities of the evolving operating
system have made it possible for multiple tasks to run
concurrently in a system. Operating systems are
responsible for choosing tasks available in the ready queue
(RQ) and allocating them to the CPU; this act is called
Scheduling (Fiad et al., 2020). When discussing operating
systems, the terms multiprocessing and multitasking are
used. These terms are utilized interchangeably with one
another. In a multiple CPU system, it is called
multiprocessing; the CPU rapidly alternates between
programs, creating the illusion for user that all processes
are concurrently at the same time; this is referred to as
multitasking. The two forms of multitasking used are
non-preemptive and pre-emptive techniques. When an
operating system allots some portion of the CPU to the
available processes to run, it is referred to as preemptive
multitasking, while for non-preemptive multitasking,

every process holds the CPU control to execute to finish
(Sakshi et al., 2022). The primary aim of the CPU
scheduling algorithm is to maximize the system's speed,
fairness, and effectiveness. CPU utilization, context
switching, throughput, waiting time, turnaround time, and
response time are performance metrics (Vayadande et al.,
2023). The use of scheduling algorithms is crucial in a
situation where multiple processes are available for
execution and in deciding which of the processes should
go first. Round Robin (RR) algorithm is the most widely
utilized algorithm that prioritizes processes ready for
execution (Mostafa & Amamo, 2020). It executes the
process using time quantum (TQ) (Richardson & Istiono,
2022). If the burst time of any active process exceeds one
TQ, such process is moved to the tail of the RQ after
preemption. If new processes arrive in the queue, they are
again placed at the tail of the queue. RR is the most

Correspondence: Suleiman Ebaiya Abubakar. Department of Computer Science, Federal University of Education Kano State-

Nigeria. mall.sule10@gmail.com.

How to cite: Abubakar, S. E., & Isa, I. (2025). An Enhanced and Improved Half-Life Variable Quantum Time Round Robin
(EImHLVQTRR) CPU Scheduling Algorithm. UMYU Scientifica, 4(1), 305 – 316. https://doi.org/10.56919/usci.2541.030

ISSN: 2955 – 1145 (print); 2955 – 1153 (online)

https://doi.org/10.56919/usci.2541.030

A periodical of the Faculty of Natural and Applied Sciences, UMYU, Katsina

ABSTRACT
The processing speed and powers of Computer systems is a function of Central Processing Unit
(CPU) efficiency. Depending on the algorithm used to implement a particular system, the
turnaround time, waiting time, response time, and number of context switch are responsible for
reducing CPU idle time and, overall, slowing down computer system processing power. There
are many existing scheduling algorithms; among them is the “Improved Half Life Variable
Quantum Time with Mean Time Slice Round Robin (ImHLVQTRR) Algorithm,” which has
been proposed to address the starvation problem – delay in access to the requested resources
experienced in most of the earlier algorithms. This paper aims to enhance (the ImHLVQTRR)
algorithm by modifying the time quantum (TQ), thereby improving system performance. To
achieve this, a square root of the product of the processes average burst time and minimum burst
time was computed to determine the TQ. The computed TQ is then used to execute RQ
processes in an iterative manner within a specified period of time until the ready queue is empty.
Overall, the experimental analysis shows that the proposed (EImHLVQTRR) algorithm
performed better in terms of AWT of 371ms as against 390ms and 371ms, ATAT of 399ms as
against 423ms and 399ms, ART of 71ms as against 236ms and 88ms and NCS of 91 as against 46
and 65; AWT of 326ms as against 350ms and 326ms, ATAT of 351ms as against 378ms and
351ms, ART of 51ms as against 153ms and 59ms and NCS of 77 as against 45 and 57 in both
Zero and Non-Zero Arrival Time simulation results for the processes generated as shown in
Figure 10 & 13 respectively. The experimental results also show some significant improvement
as the ATAT of 22.6ms as against 27.2ms and 29.6ms, AWT of 13.4ms as against 18.0ms and
20.4ms, ART of 4.8ms as against 9.0ms and 11.8ms with equal number of context switch for
Zero Arrival Time; ATAT of 30.6ms as against 32.2ms and 40.6ms, AWT of 18.6ms as against
20.2ms and 28.6ms, ART of 18.6ms as against 10.6ms and 11.2ms and NCS of 4 as against 6 and
7 for Non-Zero Arrival Time experimental summary results shown in Table 3 & 4.

ARTICLE HISTORY

Received December 13, 2024
Accepted March 4, 2025
Published March 31, 2025

KEYWORDS

Burst Time (BT), Gantt chart,
Ready Queue (RQ),
Remaining Burst Time (RBT),
Round Robin, and
Throughput.

© The authors. This is an Open

Access article distributed under

the terms of the Creative

Commons Attribution 4.0

License

(http://creativecommons.org/

licenses/by/4.0)

https://scientifica.umyu.edu.ng/
https://orcid.org/0009-0006-3921-2379
https://orcid.org/0009-0008-1542-1242
mailto:mall.sule10@gmail.com
https://doi.org/10.56919/usci.2541.030
https://doi.org/10.56919/usci.2541.030

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 306

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

frequently used technique for time-sharing systems, that is
multiusers operating systems (Hayatunnufus et al., 2020).
It utilizes shared resources effectively and enhances
response time. In the RR technique, dynamic time
quantum is used to enhance its performance. This paper
aimed at improving the efficacy of the existing
ImHLVQTRR algorithm to achieve optimum system
performance.

According to Matarneh (2009) & Singh et al. (2010), due
to the numerous scheduling existing algorithms, some of
the processes tend to benefit more than others due to the
size of their burst times. In order to have an effective
system, the following criteria are considered: CPU
Utilization – to enhance CPU efficiency and prevent CPU
cycle surplus, the CPU is required to be ideally 100% time
busy. Its consumption in a real-time system should be
between 40% and 90%. Throughput – This measures the
amount of processes or tasks completed in a specific time
frame. It is significant to increase throughput for better
efficiency and productivity of a system. Turnaround Time
(TAT) – The overall time processes required to complete
execution when it arrives at the ready queue. Minimizing
it is crucial as it impacts the overall system efficiency and
user satisfaction. Waiting Time (WT) – The time it takes
processes to wait before getting access CPU for execution.
It is also important to minimize it because it affects
scheduling algorithm efficiency and user satisfaction.
Response Time (RT) – The time required for system to react
to user’s request. Short response time signifies that the
system is executing tasks swiftly and efficiently. Context
Switch (CS) – This technique enables processes to switch
CPU from one state to another state during execution.
For an efficient and effective system, minimizing context
switch is very important.

The following are some of the existing CPU
scheduling algorithms: Priority Scheduling – This
technique is preemptive. It allows the operating system to
interrupt and switch between the highest-priority
processes to allocate the CPU. In a situation where
multiple processes have equal BT, the FCFS (First Come,
First Serve) technique is used to allot processes to the
CPU. Round Robin (RR) – This is a preemptive
technique. In this technique, processes are assigned a
fixed time slice to execute. Processes are executed in
rounds; if a process is not completed in the allotted time,
it is preempted and placed behind the available processes
in the ready queue. First-Come, First-Served (FCFS) –
The FCFS technique is a basic operating system
scheduling algorithm. This technique executes processes
in the FIFO (first in, first out) technique; the process that
requests the CPU first gets it. The sequence in which
processes appear in the queue determines their scheduling.
Shortest Job First (SJF) – Shortest Job First (SJF)
technique executes processes in order of the processes BT
from the smallest to the largest. The scheduler chooses
the process with the least burst time in the ready queue for
execution. This step is iterated until the RQ becomes
empty. This algorithm is considered to be non-
preemptive.

In the (Ashiru et al., 2014) proposed algorithm, the time
quantum was considered to be half of each processes’ BT

(i.e., TQ =
P(BTi)

2
) in the first round of execution and then

preempted for other processes to be executed, too. The
amount of processes’ burst times left are executed in the
second round to complete and terminate. This algorithm
significantly enhances multiprogramming regardless of the
differences in available processes’ BT. The starvation
issue of the Shortest Job First is hereby addressed since
each process must be executed halfway to pave the way
for other processes to access the CPU. The algorithm was
evaluated with a standard round-robin, and the results are
promising. The Mishra & Rashid (2014) proposed
algorithm employed both qualities of SJF and RR
algorithms with dynamic TQ. The SJF technique was used
in selecting processes for execution and RR technique to
execute processes. This algorithm initially arranged
processes in the RQ according to their burst times. After
sorting the processes, the first process BT determines the
TQ for executing available processes. For every round of
execution, the processes are rearranged in ascending order
of their BT in the RQ for execution, and the first process
BT is taken to be the next TQ for executing the remaining
processes. These steps are reiterated until the RQ is
empty. At the end, the average waiting time and
turnaround time, as well as the context switches, are
calculated. The experimental evaluation was done with
the Standard Round Robin for zero and non-zero arrival
times and the results indicated better performance than
the RR algorithm. Sharma & Kakhani (2015) algorithm
examined the “Adaptive Round Robin (ARR) Scheduling
Technique” aimed at enhancing system performance. The
TQ was determined to be the sum of the RQ available

processes’ BT divided by 2n (i.e., 𝑇𝑄 =
𝑆𝑢𝑚(𝐵𝑇𝑖)

2𝑛
) where

n stands for the size of the processes. The processes were
organized in ascending and descending sequences of their
BT in the two phase's experimental analysis. In both
cases, there were improvements compared to the existing
algorithms like standard Round Robin and Adaptive
Round Robin algorithms.

The proposed (Sohrawordi et al., 2019) algorithm used a
dynamic time quantum of average of processes bust time

values (i.e., Tq = Average(BTi)) available in the queue,
after which processes are assigned CPU to execute for the
first round. The executed processes are terminated and
eliminated from the RQ; otherwise, they are placed behind
the processes in the RQ. For the next round of execution,
the processes left in the queue are orderly sorted again and
a new TQ is recalculated to execute the processes. These
steps are repeated till the queue is empty. The (Mody &
Mirkar 2019) proposed algorithm focused on the essential
part of CPU Scheduling. Here, the time slice was
dynamically determined using two components known as
Delta and Smart Time Quantum (STQ). The TQ is
determined to be the sum of STQ and Delta, where STQ
stands for the disparity between the nearby processes’
burst times while the Delta is (STQ)/2. The available
processes are originally organized in the RQ in sequence
of their BT, and each process is executed for one TQ.

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 307

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

In every round of execution, a new TQ is calculated. Any
active process after a round of execution with RBT not up
to one Time Quantum (TQ) is reassign CPU to finish and
then removed from the queue. In this algorithm,
processes with shorter BT were given higher priority to
complete executing and terminate in a single round. The
algorithm proposed by (Qazi et al., 2019) is a modified
version of the RR algorithm aimed at reducing ATAT,
AWT, and NCS. The algorithm sorts all incoming
processes based on their BT and dynamically assigns an
optimal TQ as the square root of the sum of mean of the
processes’ burst times and combine time(C.T) where the
C.T is the sum of the highest burst time and the lowest
burst to each process using SJF algorithm. The process
with the least execution time (ET) is executed first. When
a new process arrives at the RQ when the BT is not 0 (i.e.,
the RQ is not empty), a new TQ is again computed for the
next execution cycle. The dynamic TQ was in the context
of Web Server Scheduling where multiple user’s requests
must be served concurrently. The algorithm was compare
with five other existing algorithms like RR, IRR, SARR,
SJRR, and ARRS scheduling algorithms, and the results
are promising. Ali et al. (2020) proposed an algorithm
mainly focused on improving the Round Robin
scheduling algorithm to increase CPU utilization and
throughput and minimize AWT, ATT, ART, and NCS. In
this technique, the TQ is dynamically determined as
approximate sum of the mean BT of available processes

and the minimum BT (i.e., TQ = ceil(Mean. (BT) +
Min(BT)) named “Enhanced Time Quantum (ETQ).”
The algorithm operates in two phases; in the first phase,
when the ETQ is determined process with the shortest BT
is given more priority and allocated CPU first. This phase
is repeated until all the processes are executed for one
ETQ, and the processes that complete execution are
terminated and removed from the RQ. In the second
phase, the remaining processes in the RQ are sorted in
sequential order of their BT for another round of
execution. In this phase, processes are allocated CPU for
execution. When the outstanding burst time of the active
process is not up to or is same as one ETQ, the process is
reassigned CPU to further execute to finish and terminate.
These steps are repeated till the ready queue becomes
empty. This algorithm was evaluated with standard round
robin where the proposed (HYRR) technique
outperformed the round robin algorithm.

Abdelhafiz (2021) proposed algorithm mainly focused on
calculating effective time quantum that optimizes the
scheduling algorithm performance. This technique
assumed the processes are all available in the RQ sorted
according to their BT. Then, the TQ is determine to be
median of the ready queue processes BT multiplied by 2

(i.e., TQ = 2 ∗ Median(BTi)). The median is taken to be
the middle process’ BT (for odd number of processes) or
the sum of the two midpoint processes BT divided by 2
(for even number of processes), and then, the process
leading in the RQ is allotted CPU to execute for one TQ.
The system constantly checks if the outstanding burst time
of any active process is not up to or is equal to one TQ;
such process is reassign CPU to complete execution and
then terminates from the system. However, it is placed

behind the list of the processes in the ready queue for
subsequent rounds of execution. This steps are repeated
till the queue is empty. This technique was evaluated
alongside some existing algorithms like standard Round
Robin (RR), Round Robin Remaining Time (RRRT), and
Enriched Round Robin (ERR), and at the end of
comparison parameters such as average turnaround time,
average waiting time, average response time and number
of context switch were calculated for which this proposed
VORR algorithm provided promising results. To
optimize the scheduling algorithm’s performance,
(Abdelkader et al., 2022) proposed an algorithm to
determine effective TQ. Initially, the available processes
are sorted in accordance with the BT values before
determining the TQ as the average-sum of the processes’

BT median and the mean (i.e., TQ =
(Median(BTi) + Mean(BTi))

2
). The mean is calculated as

Mean(BTi) =
∑ 𝐵𝑇𝑖𝑛

𝑖=1

𝑛
 while the median is calculated in

either of the two ways, as Med(BTi) = [BT(
𝑛+1

2
)] (if n is

said to be Odd) or Med(BTi) = [BT (
𝑛

2
)] + [BT (

𝑛

2
+

1)] /2 (if n is said to be Even), n is said to be the size of

the processes, and BT stands for processes’ BT. When
TQ is calculated, the process in the front of the queue is
assigned to the CPU to execute for one TQ. The system
constantly checks if the active process BT left is not up to
or is equal to one TQ; such process is reassigned CPU to
finish executing and terminate; otherwise, it is placed at
the back of the remaining processes in RQ. These steps
are reiterated until the queue is empty, then the average
turnaround time, average waiting time, and average
response time were calculated and displayed. Simon et al.
(2022) proposed a CPU scheduling algorithm was an
improvement over (Ashiru et al., 2014). In this technique,
TQ was determined dynamically under the presumption
that RQ contains all processes awaiting execution. The

algorithm consists of two time quantum such as: TQ1 =

Average(BT) and TQ2 =
P(BT)

2
 when P(BT) > TQ1.

The first TQ1 was used to execute shortest BT processes.
However, when the process’s BT exceed the estimated
TQ1, such a process is executed half way in first round of
execution while its remaining burst time is executed in the
next round. In this technique, processes with BT less than
TQ1 are executed and terminated in the first round. This
technique is used to restrict process’s execution to two
rounds. The experimental analysis indicated this
algorithm performed better than RR and HVQTRR
algorithms. The proposed (Abubakar et al., 2023)
algorithm is a modification of (Abubakar et al., 2016)
aimed at improving system performance. The TQ was
determined as the sum of RQ processes BT and the BT of
the process with the highest response ratio (i.e., the least

burst time) divided by 2 (i.e., TQ =
∑(Mean(BT)+HRRN(BT))

2
). The order of execution of the

processes is in accordance with their arrival to the RQ in
both zero and non-zero arrival time processes. In every
execution cycle, an active process with a remaining BT
lower than or the same as one TQ is reassigned to CPU to

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 308

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

finish execution and terminate; otherwise, place behind
the list of processes in the queue. These steps are repeated
whenever the new TQ is calculated until the queue is
empty. This technique was compared with four other
existing algorithms, and the results were promising.
Zohora et al. (2024) introduced a new enhanced RR
approach for task scheduling in cloud computing systems.
This algorithm computed and kept updating a dynamic
TQ for process execution by considering the burst times
of RQ processes. The TQ was computed as the square
root of the calculated index (i.e., TQ = sqrt[index] and
index = 0.8 * N; as n stand for the size of RQ processes),
making sure the processes in RQ are completely executed
in a single turn. To facilitate the execution process and
increase system performance, the RBT of the running
process is checked, and the scheduler decides if it should
be reassigned to the CPU again to complete base on it

RBT and current TQ. The algorithm look for the process
with less burst time if the running process RBT is more
than one-third of current TQ and assign CPU to the
process which automatically preempt the active or running
process. This algorithm was compared with enhanced
round robin algorithms and it reduced AWT by 15.77%
and context switching by 20.68%.

METHODOLOGY

In order to minimize the TT, WT and RT this work
utilized dynamic TQ as the square root of the product of
processes’ average burst times and minimum burst time
which was subjected to update after each execution cycle
based on the remaining processes’ burst times for the
subsequent execution cycles.

Figure 1: Flowchart for the Proposed (EImHVLQTRR) Algorithm

END

OUTPUT: AWT, ATAT, ART, &

NCS

Execute the Processes until RQ is

empty

Calculate:

ATAT, AWT, ART & NCS

Compute:

TQ = ඥ(Avg(BT) ∗ Min(BT))

Move the Process to the Tail of RQ

If the active Process

𝐑𝐁𝐓 ≤ 𝟏𝐓𝐐

Is the

RQ Empty

READY QUEUE (RQ)

BEGIN

SET: BT =0; WT = 0; TAT = 0; RT =0; NCS = 0

Generate Arrival Time and Burst Time for Zero AT and Non-Zero AT

Shift the Processes to the RQ in sequential order.

Assign processes to CPU according to their

Arrival Time for 1TQ

No

Yes

Yes

No

Reallocate the Process to CPU to finish

INPUT:

No. of Processes and Range of BT

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 309

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

To further enhance the system performance and fairness,
processes are executed in order of their arrival to the RQ,
and those processes with shorter burst time as well as
those whose their remaining burst times are less than or
equal to the current TQ are assign and reassign CPU to
finish execution and terminated from the system with aim
of yielding a high throughput in both zero and non-zero
arrival times processes.

Proposed EImHLVQTRR Algorithm

This algorithm mainly focuses on enhancing an existing
ImHLVQTRR CPU scheduling algorithm. It maximizes
CPU utilization, throughput and minimizes AWT, ATAT,
ART, and NCS, and also works more effectively than the
RR and ImHLVQTRR algorithms. In this
EImHLVQTRR algorithm, the square root of the product
of processes average burst time and minimum burst time

was computed to determine TQ (i.e., TQ =

ඥ(Average(BT) ∗ Min(BT))). When the TQ is

determined, it is then used to execute the RQ processes in
sequence of their arrival for one time quantum. Any active
processes with remaining BT not up to or is equal to one

TQ (i.e. P(BT) ≤ TQ) is reassign CPU again to finish
execution and terminate. Otherwise, it is place at the tail
of the available processes in the RQ for the next
round of execution till ready queue becomes empty.

1.2 Experimental Analysis
In this study, we evaluate the performance of baseline
algorithm – ImHLVQRR and RR with the proposed

EImHLVQTRR in terms of zero arrival time and non-
zero arrival time by comparing the AWT, ATAT, ART,
and the NCS for the algorithms. Thus, the metrics were
computed in each case by varying the TQ for each
algorithm. The computations for averages using these
parameters for each of the algorithms are presented under
this sub-section.

3.2.1 Zero Arrival Time Case

In this instance, processes are sorted in random order of
their burst times while the arrival time is presumed to be
zero for a RQ consisting of five processes, P1, P2, P3, P4,
and P5, each with burst time as 2ms, 15ms, 11ms, 1ms, and
17ms respectively as shown in Table 1.

Table 1: Processes with Zero Arrival Time

Process ID Arrival Time (ms) Burst Time (ms)

P1 0 2
P2 0 15
P3 0 11
P4 0 1
P5 0 17

TOTAL: 46

Figure 2 presents Round Robin Gantt chart for Zero

Arrival Time case with a static TQ set at 10ms. In the
first execution cycle, P1 and P4 terminates at 0 burst time,
while P2, P3, and P5 continue to executes for the second
round until their burst time is 0.

RBT 0 5 1 0 7 0 0 0

P1 P2 P3 P4 P5 P2 P3 P5

 0 2 12 22 23 33 38 39 46

Figure 2: RR Algorithm Gantt chart for Zero AT

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑆𝑤𝑖𝑡𝑐ℎ(𝑁𝐶𝑆) = 7

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒
= Process Completion Time
− Arrival Time

P1 = 2 − 0 = 2ms; P2 = 38 − 0 = 38ms; P3 = 39 −
0 = 39ms; P4 = 23 − 0 = 23ms; and P5 = 46 − 0 =
46ms

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 =
2+38+39+23+46

5
=

146

5
= 29.6ms

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = Process Turnaround Time
− Burst Time

P1 = 2 − 2 = 0ms = 0ms; P2 = 38 − 15 =
23ms; P3 = 39 − 11 = 28ms; P4 = 23 − 1 =
22ms; and P5 = 46 − 17 = 29ms

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =
0+23+28+22+29

5
=

102

5
=

20.4ms

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 12 −
0 = 12ms; P4 = 22 − 0 = 22ms; and P5 = 23 − 0 =
23ms

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 =
0+2+12+22+23

5
=

59

5
=

11.8ms

Figure 3 presents the Gantt chart for Zero Arrival Time

case with TQ1 =
46

5
≅ 9ms or TQ2 =

P(BT)

2
 (if P(BT) >

TQ1). In every round of execution, TQ1 is used as
execution time (ET) if their burst time is less than or equal
to the computed TQ1; otherwise the half of the process’s
burst time will be used, which is TQ2. In the first round
all the five processes were executed for which P1 and P4
were terminated from the system because their burst time
is zero while P2, P3 and P5 were terminated after their
second round of execution.

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 310

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

RBT 0 7 5 0 8 0 0 0

P1 P2 P3 P4 P5 P2 P3 P5

 0 2 10 16 17 26 33 38 46

Figure 3: ImHLVQTRR Algorithm Gantt chart for Zero AT

Number of Context Switch(NCS) = 6

Turnaround Time
= Process Completion Time
− Arrival Time

P1 = 2 − 0 = 2ms; P2 = 33 − 0 = 33ms; P3 = 38 −
0 = 38ms; P4 = 17 − 0 = 17ms; and P5 = 46 − 0 =
46ms

Average Turnaround Time =
2+33+38+17+46

5
=

136

5
=

27.2ms

Waiting Time = Process Turnaround Time
− Burst Time

P1 = 2 − 2 = 0ms; P2 = 33 − 15 = 18ms; P3 =
37 − 11 = 27ms; P4 = 17 − 1 = 16ms; and P5 =
46 − 17 = 29ms

Average Waiting Time =
0+18+27+16+29

5
=

90

5
=

18.0ms

Response Time
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 10 −
0 = 10ms; P4 = 16 − 0 = 16ms; and P5 = 17 − 0 =
17ms

Average Response Time =
0+2+10+16+17

5
=

45

5
=

9.0ms
In EImHLVQTRR algorithm time quantum was

determined dynamically as TQ =

ඥ(Average(BT) ∗ Min(BT)). Figure 4 presents the

Gantt chart for Zero Arrival Time case with TQ =

√9.2 ∗ 1 = √9 ≅ 3ms. In the first execution cycle all the
five processes were executed but only P1 and P4 were
terminated from the system because their burst time
became 0 while P2, P3, and P5 terminated in their second
round of execution. When processes are executed, the
active process is reassign CPU to further execution if its

P(RBT) ≤ 1TQ to finish and terminate.

RBT 0 12 8 0 14 0 0 0

P1 P2 P3 P4 P5 P2 P3 P5

 0 2 5 8 9 12 24 32 46

Figure 4: EImHLVQTRR Algorithm Gantt chart for Zero AT

Number of Context Switch(NCS) = 7

Turnaround Time
= Process Completion Time
− Arrival Time

P1 = 2 − 0 = 2ms; P2 = 24 − 0 = 24ms; P3 = 32 −
0 = 32ms; P4 = 9 − 0 = 9ms; and P5 = 46 − 0 =
46ms

Average Turnaround Time =
2+24+32+9+46

5
=

113

5
=

22.6ms

Waiting Time = Process Turnaround Time
− Burst Time

P1 = 2 − 2 = 0ms; P2 = 24 − 15 = 9ms; P3 = 32 −
11 = 21ms; P4 = 9 − 1 = 8ms; and P5 = 46 − 17 =
29ms

Average Waiting Time =
0+9+21+8+29

5
=

67

5
=

13.4ms

Response Time
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 5 −
0 = 5ms; P4 = 8 − 0 = 8ms; and P5 = 9 − 0 = 9ms

Average Response Time =
0+2+5+8+9

5
=

24

5
= 4.8ms

Table 2: Summary of Algorithms for Zero Arrival Time case

Algorithms TQ ATAT AWT ART NCS

RR 10ms 29.6ms 20.4ms 11.8ms 7
ImHLVQTRR 9ms or BT/2 (if P(BT) > TQ) 27.2ms 18.0ms 9.0ms 7

EImHLVQTRR 3ms and 9ms 22.6ms 13.4ms 4.8ms 7

The results in Table 2 indicated that the proposed
(EImHLVQTRR) algorithm performed better in terms of
ATAT of 22.6ms as against 27.2ms and 29.6ms for

ImHLVQTRR and RR algorithms, AWT of 13.4ms as
against 18.0ms and 20.4ms for ImHLVQTRR and RR
algorithms and ART of 4.8ms as against 9.0ms and 11.8ms

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 311

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

for ImHLVQTRR and RR algorithms with equal Number
of Context Switches of 7 for Zero Arrival Time case.

3.2.2 Non-Zero Arrival Time Case

In this instance, while the processes’ CPU BT were
randomly arranged and the arrival time values were
presumed to be non-zero for a RQ consisting of five
processes, P1, P2, P3, P4, and P5 each with burst time as
0ms, 4ms, 8ms, 12ms, and 16ms and the burst time as
11ms, 17ms, 16ms, 6ms, and 10ms respectively as shown
in Table 1 as shown in Table 3.

Figure 5 presents the Round Robin Gantt Zero Arrival

Time case chart with TQ set to 10ms. The TQ is used to

execute the processes in the RQ. In the first round of
execution, only P4 and P5 got terminated from the system
as their burst time equal to 0, while P1, P2 and P3 got
terminated in their second round of execution.

Table 3: Processes with Non-Zero Arrival Time

Process ID Arrival Time (ms) Burst Time (ms)

P1 0 11
P2 4 17
P3 8 16
P4 12 6
P5 16 10

TOTAL: 60

RBT 1 6 0 0 0 0 0

P1 P2 P3 P4 P5 P1 P2 P3

 0 10 20 30 36 46 47 54 60

Figure 5: RR Algorithm Gantt chart for Non-Zero AT

Number of Context Switch(NCS) = 7

Turnaround Time
= Process Completion Time
− Arrival Time

P1 = 47 − 0 = 47ms; P2 = 54 − 4 = 50ms; P3 =
60 − 8 = 52ms; P4 = 36 − 12 = 24ms; and P5 =
46 − 16 = 30ms

Average Turnaround Time =
47+50+52+24+30

5
=

203

5
= 40.6ms

Waiting Time = Process Turnaround Time
− Burst Time

P1 = 47 − 11 = 36ms; P2 = 50 − 17 = 33ms; P3 =
52 − 16 = 36ms; P4 = 24 − 6 = 18ms; and P5 =
30 − 10 = 20ms

Average Waiting Time =
36+33+36+18+20

5
=

143

5
=

28.6ms

Response Time
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 10 − 4 = 6ms; P3 = 20 −
8 = 12ms; P4 = 30 − 12 = 18ms; P5 = 36 − 16 =
20ms

Average Response Time =
0+6+12+18+20

5
=

56

5
=

11.2ms

Figure 6 presents the ImHLVQTRR algorithm Gantt

chart for the Zero Arrival Time case with TQ1 =
60

5
≅

12ms or TQ2 =
P(BT)

2
 (if P(BT)>TQ1). After the first

round of execution, P1, P4, and P5 were terminated from
the system as their burst times were set to 0, while P2 and
P3, with remaining burst times of 8ms, each got terminated
after their second round of execution.

RBT 0 8 8 0 0 0 0

P1 P2 P3 P4 P5 P2 P3

 0 11 20 28 34 44 52 60

Figure 6: ImHLVQTRR Algorithm Gantt chart for Non-Zero AT

Number of Context Switch(NCS) = 6

Turnaround Time
= Process Completion Time
− Arrival Time

P1 = 11 − 0 = 11ms; P2 = 52 − 4 = 48ms; P3 =
60 − 8 = 52ms; P4 = 34 − 12 = 22ms; and P5 =
44 − 16 = 28ms

Average Turnaround Time =
11+48+52+22+28

5
=

161

5
= 32.2ms

Waiting Time = Process Turnaround Time
− Burst Time

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 312

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

P1 = 11 − 11 = 0ms; P2 = 48 − 17 = 31ms; P3 =
52 − 16 = 36ms; P4 = 22 − 6 = 16ms; and P5 =
28 − 10 = 18ms

Average Waiting Time =
0+31+36+16+18

5
=

101

5
=

20.2ms

Response Time
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 11 − 4 = 7ms; P3 = 20 −
8 = 12ms; P4 = 28 − 12 = 16ms; and P5 = 34 −
16 = 18ms

Average Response Time =
0+7+12+16+18

5
=

53

5
=

10.6ms

Figure 7 presents the EImHLVQTRR algorithm Gantt

chart for the Zero Arrival Time case with TQ =

√12 ∗ 6 = √72 ≅ 9ms. In each execution cycle, the

active process with RBT P(RBT) ≤ 1TQ is reassign CPU
to finish and terminate). All the processes were executed
in one execution cycle.

RBT 0 0 0 0 0

P1 P2 P3 P4 P5

0 11 28 44 50 60

Figure 7: EImHLVQTRR Algorithm Gantt chart for Non-Zero AT

Number of Context Switch(NCS) = 4

Turnaround Time
= Process Completion Time
− Arrival Time

P1 = 11 − 0 = 11ms; P2 = 28 − 4 = 24ms; P3 =
44 − 8 = 36ms; P4 = 50 − 12 = 38ms; and P5 =
60 − 16 = 44ms

Average Turnaround Time =
11+24+36+38+44

5
=

153

5
= 30.6ms

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = Process Turnaround Time
− Burst Time

P1 = 11 − 11 = 0ms = 0ms; P2 = 24 − 17 =
7ms; P3 = 36 − 16 = 20ms; P4 = 38 − 6 =
32ms; andP5 = 44 − 10 = 34ms

Average Waiting Time =
0+7+20+32+34

5
=

93

5
=

18.6ms

Response Time
= Time process first have access to CPU
− Process Arrival Time

P1 = 0 − 0 = 0ms; P2 = 11 − 4 = 7ms; P3 = 28 −
8 = 20ms; P4 = 44 − 12 = 32ms; and P5 = 50 −
16 = 34ms

Average Response Time =
0+7+20+32+34

5
=

93

5
=

18.6ms

Table 4: Summary of Algorithms for Non-Zero Arrival Time case

Algorithms TQ ATAT AWT ART NCS

RR 10ms 40.6ms 28.6ms 11.2ms 7

ImHLVQTRR
12ms or BT/2

(if P(BT) > TQ)
32.2ms 20.2ms 10.6ms 6

EImHLVQTRR 9ms 30.6ms 18.6ms 18.6ms 4

The results in Table 4 indicate that the proposed
(EImHLVQTRR) algorithm performed better in terms of
ATAT of 30.6ms as against 32.2ms and 40.6ms for
ImHLVQTRR and RR algorithms, AWT of 18.6ms as
against 20.2ms and 28.6ms for ImHLVQTRR and RR
algorithms and ART of 18.6ms as against 10.6ms and
11.2ms for ImHLVQTRR and RR algorithms with
Number of Context Switches of 4 as against 6and 7 for
ImHLVQTRR and RR Non-Zero Arrival Time case.

DISCUSSION OF RESULTS

To implement the proposed (EImHLVQTRR) algorithm,
a process generator interface was constructed for
generating set of processes. The processes generated are
denoted by tuples: < (Process_ID, Arrival_Time,

Burst_Time) > as shown in Figures 9 and 12. The process
arrival times were expressed in Zero and Non-Zero
Arrival Times. Uniform distribution was used to generate
the processes’ burst times for both Zero and Non-Zero
Arrival Time cases, while Poisson distribution was used
for Non-Zero Arrival Time. The system Hardware and
Software requirements used for designing the interface
are: Hardware – HP Elite-Book 6930p, Intel(R)
Corel(TM)2 Duo CPU P8600 @ 2.40GHz, RAM 4.00
GB(3.86 GB usable) and 500 GB Hard disk while Software
– Microsoft Windows 10 Enterprise © 2018, Microsoft
Corporation, 64-bit operating system, x-64-based
processor. In Figure 8, process size, burst time interval,
and 10ms TQ for RR algorithm are taken as input from
the user. The compute button helps in generating process

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 313

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

ID, their arrival time, and burst times, as well in executing
the processes for zero and non-zero arrival times, while
the clear button help in resetting the inputted data. The
generated processes are moved to RQ, waiting to be assign
CPU for execution. The TQ is determined with the burst
times of the processes in the RQ. The processes are
executed for a round, after which the active process
remaining burst time and current TQ are always check to
either allow the process to be reassign to CPU for
execution and terminated from the system or place behind
the processes in the RQ for next execution cycle. In each

execution cycle new TQ is determine for subsequent
execution cycle until the RQ is empty. The parameters
such as ATT, AWT, ART and NCS are calculated and
displayed as shown in Figures 10 and 13.

4.1 For Zero Arrival Time Processes

Figure 9 present the processes generated for Zero Arrival
Time for the inputted 20 processes with lower and upper
limits burst times of 1ms and 60ms.

Figure 8: Processes Generation Interface

Figure 9: Processes Generated for Zero AT Case

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 314

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

Figure 10: Results of Zero AT Processes

Figure 11: Zero AT Results Chart

Figure 12: Processes Generated for Non-Zero AT Case

0

50

100

150

200

250

300

350

400

450

AWT ATAT ART NCS

371
399

88
65

390
423

236

46

371
399

71
91

S
ca

le
s

Parameters

Zero Arrival Time Graph

RR ImHVQTRR EImHVQTRR

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 315

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

Figure 13: Results of Non-Zero AT Processes

Figure 14: Non-Zero AT Results Chart

Figures 10 and 11 represent the outputs and graphical
representations of the parameters obtained after executing
the 20 processes. As indicated in Figure 10, the proposed
algorithm (EImHVQTRR) performed better than the
existing algorithms compared with in terms of average
waiting time of 371ms as against 390ms and 371ms for
ImHVQTRR and RR algorithms, average turnaround
time of 399ms as against 423ms and 399ms for
ImHVQTRR and RR algorithms, while the average
response time of 71ms as against 236ms and 88ms for
ImHVQTRR and RR algorithms with number of context
switch of 91 as against 46 and 65 for ImHVQTRR and RR
algorithms.

4.2 For Non-Zero Arrival Time Processes

Figure 12 presents the processes generated for Non-Zero
Arrival Time for the inputted 20 processes with lower and
upper limits burst times of 1ms and 60ms.

Figures 13 and 14 represent the outputs and graphical
representations of the parameters obtained after executing
the 20 processes. As indicated in Figure 13, the proposed
algorithm (EImHVQTRR) performed better than the
existing algorithms compared with in terms of average
waiting time of 326ms as against 350ms and 326ms for
ImHVQTRR and RR algorithms, average turnaround
time of 351ms as against 378ms and 351ms for
ImHVQTRR and RR algorithms, while average response
time of 51ms as against 153ms and 59ms for ImHVQTRR
and RR algorithms with high number of context switch of

77 as against 45 and 57 for ImHVQTRR and RR
algorithms.

CONCLUSION

The most crucial part of computer is the Processor. CPU
scheduling is an intelligent analysis of ready queue
processes in determining the best way to respond to
requests. Allot of CPU scheduling techniques were
recommended, each with their advantages and
disadvantages. In the light of the shortcomings
experienced in the existing techniques, this algorithm
employed dynamic TQ to mitigate starvation issue
processes experienced in existing algorithms.

The findings of the simulation and experimental results
indicated that EImHLVQTRR algorithm yielded better
results than the existing algorithms (i.e., base-line and RR
algorithms) in terms of AWT of 371ms as against 390ms
and 371ms, ATAT of 399ms as against 423ms and 399ms,
ART of 71ms as against 236ms and 88ms and NCS of 91
as against 46 and 65; AWT of 326ms as against 350ms and
326ms, ATAT of 351ms as against 378ms and 351ms,
ART of 51ms as against 153ms and 59ms and NCS of 77
as against 45 and 57 in both Zero and Non-Zero Arrival
Time simulation results for the processes generated as
shown in Figure 10 & 13 respectively. The experimental
results also show some significant improvement as the
ATAT of 22.6ms as against 27.2ms and 29.6ms, AWT of
13.4ms as against 18.0ms and 20.4ms, ART of 4.8ms as
against 9.0ms and 11.8ms with equal number of context

0

100

200

300

400

AWT ATAT ART NCS

326 351

59 57

350
378

153

45

326 351

51
77S

ca
le

s

Parameters

Non-Zero Arrival Time Graph

RR ImHVQTRR EImHVQTRR

https://scientifica.umyu.edu.ng/

UMYU Scientifica, Vol. 4 NO. 1, March 2025, Pp 305 – 316.

 316

 https://scientifica.umyu.edu.ng/ Abubakar & Isa, /USci, 4(1): 305 – 316, March 2025

switch for Zero Arrival Time; ATAT of 30.6ms as against
32.2ms and 40.6ms, AWT of 18.6ms as against 20.2ms and
28.6ms, ART of 18.6ms as against 10.6ms and 11.2ms and
NCS of 4 as against 6 and 7 for Non-Zero Arrival Time
experimental summary results shown in Table 3 & 4. The
above results revealed that our proposed algorithm
performance outweighs the two existing algorithms, and
it’s suitable in a real-time system for fair distribution of
resources to multiple processes.

ACKNOWLEDGMENT

The researcher acknowledged the support of the Tertiary
Education Trust Fund (TETFUND) for the success of the
research grant. The researcher also acknowledged the
support of the College TETFUND and Research
Committees for making this possible. Thank you all.

REFERENCES

Abdelhafiz, A. A. (2021). VORR: A New Round Robin
Scheduling Algorithm. Al-Azhar Bulletin of
Science: Section B, 32(2), 1st of December, 2021,
45-54. [Crossref]

AbdelKader, A., Ghazy, N., Zaki, M. S. & ElDahshan, K. A.
(2022). A Modified Mean-Median Round Robin
Algorithm for Task Scheduling. International Journals
of Intelligent Engineering and Systems, 15(6).
[Crossref].

Abubakar, M. B. (2016). Improved Round Robin with
Highest Response Ratio Next (IRRHRRN) CPU
Scheduling Algorithm [Unpublished master's
thesis]. Mathematic Department, Faculty of
Physical Science, Ahmadu Bello University, Zaria,
Kaduna State.

Abubakar, S. E., Yusuf, S. A., Obiniyi, A. A., & Abdullahi,
M. (2023). Modified Round Robin with Highest
Response Ratio Next CPU Scheduling Algorithm
using Dynamic Time Quantum. Sule Lamido
University Journal of Science and Technology (SLUJST).
6(1&2), March, 2023, 87-99. [Crossref].

Ali, K. F., Marikal, A. & PhD Kumar, K. A. (2020). A Hybrid
Round Robin Scheduling Mechanism for Process
Management. International Journal of Computer
Application, 177(36), February, 2020. [Crossref]

Ashiru, S., Abdullahi, S., & Junaidu, S. (2014). Half Life
Variable Quantum Time Round Robin
(HLVQTRR). International Journal of Computer Science
and Information Technologies (IJCSIT), 5(6), 2014,
7210-7217. semanticscholar.org.

Fiad, A., Maaza, Z. & Bendoukha, H. (2020). Improved
version of Round Robin Scheduling Algorithm
based on Analytic Model. International Journal of
Networked and Distributed Computing, 8(4), 195-
202, 2020. [Crossref]

Hayatunnufus, Riasetiawan, M. & Ashari, A. (2020).
Performance Analysis of FIFO and Round Robin
Scheduling Process Algorithm in Internet of Things
Operating System for Collecting Landslide Data.
In: Proc. of International Conference on Data Science,
Artificial Intelligence, and Business Analytics
(DATABIA), 63-68. scribd.com .

Matarneh, R. J. (2009). Self-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time

of the Now Running Processes. American Journal of
Applied Sciences 6(10), 1831-1837, 2009. [Crossref].

Mishra, M. K., & Rashid, F. (2014). An Improved Round
Robin CPU Scheduling Algorithm with Varying
Time Quantum. International Journal of Computer
Science, Engineering and Applications (IJCSEA), 4(4),
2014, 1-8. [Crossref]

Mody, S. & Mirkar, S. (2019). Smart Round Robin CPU
Scheduling Algorithm for Operating Systems. 4th
International Conference on Electrical, Electronics,
Communication, Computer Technologies and Optimization
Techniques (ICEECCOT). 1st December, 2019.
[Crossref]

Mostafa, S. & Amano, H. (2020). Dynamic Round Robin
CPU Scheduling Algorithm based on K-Means
Clustering Technique. Applied Sciences (Switzerland),
10(15), 5134, July, 2020. [Crossref]

Qazi, F., Agha, D., Naseem, M., Badar, S. & Hanif, F. (2023).
Improved Round Robin Scheduling with Dynamic
Time Quantum (IRRDQ). Journal of Applied
Engineering and Technology, 7(2), 70-82. [Crossref]

Richardson, B. & Istiono, W. (2022). Comparison Analysis
of Round Robin Algorithm with Highest Response
Ratio Next Algorithm for Job Scheduling
Problems. International Journal of Open Information
Technologies, 10(2), 21-26, 2022. cyberleninka.ru

Sakshi, C., Sharma, S., Kautish, S., Alsallami, E., & Khalil, A.
M., (2022). A New Median-Average Round Robin
Scheduling Algorithm: An Optimal approach for
Reducing Turnaround and Waiting Time.
Alexandria Engineering Journal, 61(12), 10527-10538,
2022. [Crossref]

Sharma, A. & Kakhani, G. (2015). Analysis of Adaptive
Round Robin Algorithm and Proposed Round
Robin Remaining Time Algorithm. International
Journal of Computer Science and Mobile Computing, 4(12),
139-147. ijcsmc.com

Simon, A., Dams, G. L., & Danjuma, S. (2022). An Improved
Half Life Variable Quantum Time with Mean Time
Slice Round Robin CPU Scheduling
(ImHLVQTRR). Science World Journal. 17(2), 2022.
researchgate.net.

Singh, A., Goyal, P., & Batra, S. (2010). An Optimized
Round Robin Scheduling Algorithm for CPU
Scheduling”. International Journal on Computer Science
and Engineering (IJCSE) 2(7), 2383-2385.

Sohrawordi, M., Ali, E., Uddin, P. & Hossain, M. (2019). A
Modified Round Robin CPU Scheduling Algorithm
with Dynamic Time Quantum. International Journal
of Advanced Research, 7, 422-429. [Crossref].

Vayadande, K., Patil, S., Chauhan, S., Thakur, R., Baware, T.,
& Naik, S. (1st to 3rd, December, 2023). A Survey
Paper on CPU Process Scheduling. International
Conference on Recent and Future Trends in Smarts
Electronic System and Manufacturing, pp. 40-47,
2023. riverpublishers.com

Zohora M.F, Farhin F, & Kaiser MS (2024). An enhanced
round robin using dynamic time quantum for real-
time asymmetric burst length processes in cloud
computing environment. PLoS ONE 19(8):
e0304517. [Crossref]

https://scientifica.umyu.edu.ng/
http://doi.10.21608/absb.2021.99340.1141
https://doi.org/10.22266/ijies2022.1231.53
https://doi.org/10.56471/slujst.v6i.363
https://doi.org/10.5120/ijca2020919851
https://www.semanticscholar.org/paper/Half-Life-Variable-Quantum-Time-Round-Robin-(-)-Ashiru-Abdullahi/2b4a7c48f7b7ebf802b13767037627b217de1352
https://doi.org/10.2991/ijndc.k200804.001
https://www.scribd.com/document/407124931/
https://doi.org/10.3844/AJASSP.2009.1831.1837
https://doi.org/10.5121/ijcsea.2014.4401
https://doi.org/10.1109/ICEECCOT46775.2019.9114602
https://doi.org/10.3390/app10155134
http://doi.org/10.55447/jaet.07.02.115
https://cyberleninka.ru/article/n/comparison-analysis-of-round-robin-algorithm-with-highest-response-ratio-next-algorithm-for-job-scheduling-problems/pdf
https://doi.org/10.1016/j.aej.2022.04.006
https://ijcsmc.com/docs/papers/December2015/V4I12201542.pdf
https://www.researchgate.net/profile/Ashiru-Simon/publication/361987181
https://doi.org/10.21474/IJAR01/8506
https://www.riverpublishers.com/pdf/ebook/chapter/RP_P978870229852C4.pdf
https://doi.org/10.1371/journal.pone.0304517

