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INTRODUCTION
The multitasking capabilities of the evolving operating 
system have made it possible for multiple tasks to run 
concurrently in a system.  Operating systems are 
responsible for choosing tasks available in the ready queue 
(RQ) and allocating them to the CPU; this act is called 
Scheduling (Fiad et al., 2020).  When discussing operating 
systems, the terms multiprocessing and multitasking are 
used.  These terms are utilized interchangeably with one 
another.  In a multiple CPU system, it is called 
multiprocessing; the CPU rapidly alternates between 
programs, creating the illusion for user that all processes 
are concurrently at the same time; this is referred to as 
multitasking.  The two forms of multitasking used are 
non-preemptive and pre-emptive techniques.  When an 
operating system allots some portion of the CPU to the 
available processes to run, it is referred to as preemptive 
multitasking, while for non-preemptive multitasking, 

every process holds the CPU control to execute to finish 
(Sakshi et al., 2022).  The primary aim of the CPU 
scheduling algorithm is to maximize the system's speed, 
fairness, and effectiveness.  CPU utilization, context 
switching, throughput, waiting time, turnaround time, and 
response time are performance metrics (Vayadande et al., 
2023).  The use of scheduling algorithms is crucial in a 
situation where multiple processes are available for 
execution and in deciding which of the processes should 
go first.  Round Robin (RR) algorithm is the most widely 
utilized algorithm that prioritizes processes ready for 
execution (Mostafa & Amamo, 2020).  It executes the 
process using time quantum (TQ) (Richardson & Istiono, 
2022).  If the burst time of any active process exceeds one 
TQ, such process is moved to the tail of the RQ after 
preemption.  If new processes arrive in the queue, they are 
again placed at the tail of the queue.  RR is the most 
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ABSTRACT 
The processing speed and powers of Computer systems is a function of Central Processing Unit 
(CPU) efficiency.  Depending on the algorithm used to implement a particular system, the 
turnaround time, waiting time, response time, and number of context switch are responsible for 
reducing CPU idle time and, overall, slowing down computer system processing power.  There 
are many existing scheduling algorithms; among them is the “Improved Half Life Variable 
Quantum Time with Mean Time Slice Round Robin (ImHLVQTRR) Algorithm,” which has 
been proposed to address the starvation problem – delay in access to the requested resources 
experienced in most of the earlier algorithms.  This paper aims to enhance (the ImHLVQTRR) 
algorithm by modifying the time quantum (TQ), thereby improving system performance.  To 
achieve this, a square root of the product of the processes average burst time and minimum burst 
time was computed to determine the TQ.  The computed TQ is then used to execute RQ 
processes in an iterative manner within a specified period of time until the ready queue is empty.  
Overall, the experimental analysis shows that the proposed (EImHLVQTRR) algorithm 
performed better in terms of AWT of 371ms as against 390ms and 371ms, ATAT of 399ms as 
against 423ms and 399ms, ART of 71ms as against 236ms and 88ms and NCS of 91 as against 46 
and 65; AWT of 326ms as against 350ms and 326ms, ATAT of 351ms as against 378ms and 
351ms, ART of 51ms as against 153ms and 59ms and NCS of 77 as against 45 and 57 in both 
Zero and Non-Zero Arrival Time simulation results for the processes generated as shown in 
Figure 10 & 13 respectively.  The experimental results also show some significant improvement 
as the ATAT of 22.6ms as against 27.2ms and 29.6ms, AWT of 13.4ms as against 18.0ms and 
20.4ms, ART of 4.8ms as against 9.0ms and 11.8ms with equal number of context switch for 
Zero Arrival Time; ATAT of 30.6ms as against 32.2ms and 40.6ms, AWT of 18.6ms as against 
20.2ms and 28.6ms, ART of 18.6ms as against 10.6ms and 11.2ms and NCS of 4 as against 6 and 
7 for Non-Zero Arrival Time experimental summary results shown in Table 3 & 4. 
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frequently used technique for time-sharing systems, that is 
multiusers operating systems (Hayatunnufus et al., 2020).  
It utilizes shared resources effectively and enhances 
response time.  In the RR technique, dynamic time 
quantum is used to enhance its performance.  This paper 
aimed at improving the efficacy of the existing 
ImHLVQTRR algorithm to achieve optimum system 
performance. 

According to Matarneh (2009) & Singh et al. (2010), due 
to the numerous scheduling existing algorithms, some of 
the processes tend to benefit more than others due to the 
size of their burst times.  In order to have an effective 
system, the following criteria are considered: CPU 
Utilization – to enhance CPU efficiency and prevent CPU 
cycle surplus, the CPU is required to be ideally 100% time 
busy.  Its consumption in a real-time system should be 
between 40% and 90%.  Throughput – This measures the 
amount of processes or tasks completed in a specific time 
frame.  It is significant to increase throughput for better 
efficiency and productivity of a system.  Turnaround Time 
(TAT) – The overall time processes required to complete 
execution when it arrives at the ready queue.  Minimizing 
it is crucial as it impacts the overall system efficiency and 
user satisfaction.  Waiting Time (WT) – The time it takes 
processes to wait before getting access CPU for execution.  
It is also important to minimize it because it affects 
scheduling algorithm efficiency and user satisfaction.  
Response Time (RT) – The time required for system to react 
to user’s request.  Short response time signifies that the 
system is executing tasks swiftly and efficiently.  Context 
Switch (CS) – This technique enables processes to switch 
CPU from one state to another state during execution.  
For an efficient and effective system, minimizing context 
switch is very important. 

The following are some of the existing CPU 
scheduling algorithms: Priority Scheduling – This 
technique is preemptive.  It allows the operating system to 
interrupt and switch between the highest-priority 
processes to allocate the CPU.  In a situation where 
multiple processes have equal BT, the FCFS (First Come, 
First Serve) technique is used to allot processes to the 
CPU.  Round Robin (RR) – This is a preemptive 
technique.  In this technique, processes are assigned a 
fixed time slice to execute.  Processes are executed in 
rounds; if a process is not completed in the allotted time, 
it is preempted and placed behind the available processes 
in the ready queue.  First-Come, First-Served (FCFS) – 
The FCFS technique is a basic operating system 
scheduling algorithm.  This technique executes processes 
in the FIFO (first in, first out) technique; the process that 
requests the CPU first gets it.  The sequence in which 
processes appear in the queue determines their scheduling.  
Shortest Job First (SJF) – Shortest Job First (SJF) 
technique executes processes in order of the processes BT 
from the smallest to the largest.  The scheduler chooses 
the process with the least burst time in the ready queue for 
execution.  This step is iterated until the RQ becomes 
empty.  This algorithm is considered to be non-
preemptive. 

In the (Ashiru et al., 2014) proposed algorithm, the time 
quantum was considered to be half of each processes’ BT 

(i.e., TQ =
P(BTi)

2
) in the first round of execution and then 

preempted for other processes to be executed, too.  The 
amount of processes’ burst times left are executed in the 
second round to complete and terminate.  This algorithm 
significantly enhances multiprogramming regardless of the 
differences in available processes’ BT.  The starvation 
issue of the Shortest Job First is hereby addressed since 
each process must be executed halfway to pave the way 
for other processes to access the CPU.  The algorithm was 
evaluated with a standard round-robin, and the results are 
promising.  The Mishra & Rashid (2014) proposed 
algorithm employed both qualities of SJF and RR 
algorithms with dynamic TQ.  The SJF technique was used 
in selecting processes for execution and RR technique to 
execute processes.  This algorithm initially arranged 
processes in the RQ according to their burst times.  After 
sorting the processes, the first process BT determines the 
TQ for executing available processes.  For every round of 
execution, the processes are rearranged in ascending order 
of their BT in the RQ for execution, and the first process 
BT is taken to be the next TQ for executing the remaining 
processes.  These steps are reiterated until the RQ is 
empty.  At the end, the average waiting time and 
turnaround time, as well as the context switches, are 
calculated.  The experimental evaluation was done with 
the Standard Round Robin for zero and non-zero arrival 
times and the results indicated better performance than 
the RR algorithm.  Sharma & Kakhani (2015) algorithm 
examined the “Adaptive Round Robin (ARR) Scheduling 
Technique” aimed at enhancing system performance.  The 
TQ was determined to be the sum of the RQ available 

processes’ BT divided by 2n (i.e., 𝑇𝑄 =
𝑆𝑢𝑚(𝐵𝑇𝑖)

2𝑛
) where 

n stands for the size of the processes.  The processes were 
organized in ascending and descending sequences of their 
BT in the two phase's experimental analysis.  In both 
cases, there were improvements compared to the existing 
algorithms like standard Round Robin and Adaptive 
Round Robin algorithms.  

The proposed (Sohrawordi et al., 2019) algorithm used a 
dynamic time quantum of average of processes bust time 

values (i.e., Tq = Average(BTi)) available in the queue, 
after which processes are assigned CPU to execute for the 
first round.  The executed processes are terminated and 
eliminated from the RQ; otherwise, they are placed behind 
the processes in the RQ.  For the next round of execution, 
the processes left in the queue are orderly sorted again and 
a new TQ is recalculated to execute the processes.  These 
steps are repeated till the queue is empty.  The (Mody & 
Mirkar 2019) proposed algorithm focused on the essential 
part of CPU Scheduling.  Here, the time slice was 
dynamically determined using two components known as 
Delta and Smart Time Quantum (STQ).  The TQ is 
determined to be the sum of STQ and Delta, where STQ 
stands for the disparity between the nearby processes’ 
burst times while the Delta is (STQ)/2.  The available 
processes are originally organized in the RQ in sequence 
of their BT, and each process is executed for one TQ. 
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In every round of execution, a new TQ is calculated.  Any 
active process after a round of execution with RBT not up 
to one Time Quantum (TQ) is reassign CPU to finish and 
then removed from the queue.  In this algorithm, 
processes with shorter BT were given higher priority to 
complete executing and terminate in a single round.  The 
algorithm proposed by (Qazi et al., 2019) is a modified 
version of the RR algorithm aimed at reducing ATAT, 
AWT, and NCS.  The algorithm sorts all incoming 
processes based on their BT and dynamically assigns an 
optimal TQ as the square root of the sum of mean of the 
processes’ burst times and combine time(C.T) where the 
C.T is the sum of the highest burst time and the lowest 
burst to each process using SJF algorithm.  The process 
with the least execution time (ET) is executed first.  When 
a new process arrives at the RQ when the BT is not 0 (i.e., 
the RQ is not empty), a new TQ is again computed for the 
next execution cycle.  The dynamic TQ was in the context 
of Web Server Scheduling where multiple user’s requests 
must be served concurrently.  The algorithm was compare 
with five other existing algorithms like RR, IRR, SARR, 
SJRR, and ARRS scheduling algorithms, and the results 
are promising.  Ali et al. (2020) proposed an algorithm 
mainly focused on improving the Round Robin 
scheduling algorithm to increase CPU utilization and 
throughput and minimize AWT, ATT, ART, and NCS.  In 
this technique, the TQ is dynamically determined as 
approximate sum of the mean BT of available processes 

and the minimum BT (i.e., TQ = ceil(Mean. (BT) +
Min(BT)) named “Enhanced Time Quantum (ETQ).”  
The algorithm operates in two phases; in the first phase, 
when the ETQ is determined process with the shortest BT 
is given more priority and allocated CPU first.  This phase 
is repeated until all the processes are executed for one 
ETQ, and the processes that complete execution are 
terminated and removed from the RQ.  In the second 
phase, the remaining processes in the RQ are sorted in 
sequential order of their BT for another round of 
execution.  In this phase, processes are allocated CPU for 
execution.  When the outstanding burst time of the active 
process is not up to or is same as one ETQ, the process is 
reassigned CPU to further execute to finish and terminate.  
These steps are repeated till the ready queue becomes 
empty.  This algorithm was evaluated with standard round 
robin where the proposed (HYRR) technique 
outperformed the round robin algorithm. 

Abdelhafiz (2021) proposed algorithm mainly focused on 
calculating effective time quantum that optimizes the 
scheduling algorithm performance.  This technique 
assumed the processes are all available in the RQ sorted 
according to their BT.  Then, the TQ is determine to be 
median of the ready queue processes BT multiplied by 2 

(i.e., TQ = 2 ∗ Median(BTi)).  The median is taken to be 
the middle process’ BT (for odd number of processes) or 
the sum of the two midpoint processes BT divided by 2 
(for even number of processes), and then, the process 
leading in the RQ is allotted CPU to execute for one TQ.  
The system constantly checks if the outstanding burst time 
of any active process is not up to or is equal to one TQ; 
such process is reassign CPU to complete execution and 
then terminates from the system.  However, it is placed 

behind the list of the processes in the ready queue for 
subsequent rounds of execution.  This steps are repeated 
till the queue is empty.  This technique was evaluated 
alongside some existing algorithms like standard Round 
Robin (RR), Round Robin Remaining Time (RRRT), and 
Enriched Round Robin (ERR), and at the end of 
comparison parameters such as average turnaround time, 
average waiting time, average response time and number 
of context switch were calculated for which this proposed 
VORR algorithm provided promising results.  To 
optimize the scheduling algorithm’s performance, 
(Abdelkader et al., 2022) proposed an algorithm to 
determine effective TQ.  Initially, the available processes 
are sorted in accordance with the BT values before 
determining the TQ as the average-sum of the processes’ 

BT median and the mean (i.e., TQ =
(Median(BTi) + Mean(BTi))

2
).  The mean is calculated as 

Mean(BTi) =
∑ 𝐵𝑇𝑖𝑛

𝑖=1

𝑛
 while the median is calculated in 

either of the two ways, as Med(BTi) = [BT(
𝑛+1

2
)] (if n is 

said to be Odd) or Med(BTi) = [BT (
𝑛

2
)] + [BT (

𝑛

2
+

1)] /2 (if n is said to be Even), n is said to be the size of 

the processes, and BT stands for processes’ BT.  When 
TQ is calculated, the process in the front of the queue is 
assigned to the CPU to execute for one TQ.  The system 
constantly checks if the active process BT left is not up to 
or is equal to one TQ; such process is reassigned CPU to 
finish executing and terminate; otherwise, it is placed at 
the back of the remaining processes in RQ.  These steps 
are reiterated until the queue is empty, then the average 
turnaround time, average waiting time, and average 
response time were calculated and displayed.  Simon et al. 
(2022) proposed a CPU scheduling algorithm was an 
improvement over (Ashiru et al., 2014).  In this technique, 
TQ was determined dynamically under the presumption 
that RQ contains all processes awaiting execution.  The 

algorithm consists of two time quantum such as: TQ1 =

Average(BT) and TQ2 =
P(BT)

2
  when P(BT) > TQ1. 

The first TQ1 was used to execute shortest BT processes.  
However, when the process’s BT exceed the estimated 
TQ1, such a process is executed half way in first round of 
execution while its remaining burst time is executed in the 
next round.  In this technique, processes with BT less than 
TQ1 are executed and terminated in the first round.  This 
technique is used to restrict process’s execution to two 
rounds.  The experimental analysis indicated this 
algorithm performed better than RR and HVQTRR 
algorithms.  The proposed (Abubakar et al., 2023) 
algorithm is a modification of (Abubakar et al., 2016) 
aimed at improving system performance.  The TQ was 
determined as the sum of RQ processes BT and the BT of 
the process with the highest response ratio (i.e., the least 

burst time) divided by 2 (i.e., TQ =
∑(Mean(BT)+HRRN(BT))

2
).  The order of execution of the 

processes is in accordance with their arrival to the RQ in 
both zero and non-zero arrival time processes.  In every 
execution cycle, an active process with a remaining BT 
lower than or the same as one TQ is reassigned to CPU to 
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finish execution and terminate; otherwise, place behind 
the list of processes in the queue.  These steps are repeated 
whenever the new TQ is calculated until the queue is 
empty.  This technique was compared with four other 
existing algorithms, and the results were promising.  
Zohora et al. (2024) introduced a new enhanced RR 
approach for task scheduling in cloud computing systems.  
This algorithm computed and kept updating a dynamic 
TQ for process execution by considering the burst times 
of RQ processes.  The TQ was computed as the square 
root of the calculated index (i.e., TQ = sqrt[index] and 
index = 0.8 * N; as n stand for the size of RQ processes), 
making sure the processes in RQ are completely executed 
in a single turn.  To facilitate the execution process and 
increase system performance, the RBT of the running 
process is checked, and the scheduler decides if it should 
be reassigned to the CPU again to complete base on it 

RBT and current TQ.  The algorithm look for the process 
with less burst time if the running process RBT is more 
than one-third of current TQ and assign CPU to the 
process which automatically preempt the active or running 
process.  This algorithm was compared with enhanced 
round robin algorithms and it reduced AWT by 15.77% 
and context switching by 20.68%. 

METHODOLOGY 

In order to minimize the TT, WT and RT this work 
utilized dynamic TQ as the square root of the product of 
processes’ average burst times and minimum burst time 
which was subjected to update after each execution cycle 
based on the remaining processes’ burst times for the 
subsequent execution cycles.   

 

Figure 1: Flowchart for the Proposed (EImHVLQTRR) Algorithm 

END 

OUTPUT: AWT, ATAT, ART, & 

NCS 

Execute the Processes until RQ is 

empty 

Calculate: 

ATAT, AWT, ART & NCS 

Compute: 

TQ = ඥ(Avg(BT) ∗ Min(BT)) 

Move the Process to the Tail of RQ 

If the active Process 

𝐑𝐁𝐓 ≤ 𝟏𝐓𝐐 

Is the 

RQ Empty 

READY QUEUE (RQ) 

BEGIN 

SET: BT =0; WT = 0; TAT = 0; RT =0; NCS = 0 

Generate Arrival Time and Burst Time for Zero AT and Non-Zero AT 

Shift the Processes to the RQ in sequential order. 

Assign processes to CPU according to their 

Arrival Time for 1TQ 

No  

Yes 

Yes  

No 
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INPUT:  
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To further enhance the system performance and fairness, 
processes are executed in order of their arrival to the RQ, 
and those processes with shorter burst time as well as 
those whose their remaining burst times are less than or 
equal to the current TQ are assign and reassign CPU to 
finish execution and terminated from the system with aim 
of yielding a high throughput in both zero and non-zero 
arrival times processes. 

Proposed EImHLVQTRR Algorithm 

This algorithm mainly focuses on enhancing an existing 
ImHLVQTRR CPU scheduling algorithm.  It maximizes 
CPU utilization, throughput and minimizes AWT, ATAT, 
ART, and NCS, and also works more effectively than the 
RR and ImHLVQTRR algorithms.  In this 
EImHLVQTRR algorithm, the square root of the product 
of processes average burst time and minimum burst time 

was computed to determine TQ (i.e., TQ =

ඥ(Average(BT) ∗ Min(BT))).  When the TQ is 

determined, it is then used to execute the RQ processes in 
sequence of their arrival for one time quantum.  Any active 
processes with remaining BT not up to or is equal to one 

TQ (i.e. P(BT) ≤ TQ) is reassign CPU again to finish 
execution and terminate.  Otherwise, it is place at the tail 
of the available processes in the RQ for the next  
round of execution till ready queue becomes empty. 

1.2 Experimental Analysis 
In this study, we evaluate the performance of baseline 
algorithm – ImHLVQRR and RR with the proposed 

EImHLVQTRR in terms of zero arrival time and non-
zero arrival time by comparing the AWT, ATAT, ART, 
and the NCS for the algorithms.  Thus, the metrics were 
computed in each case by varying the TQ for each 
algorithm.  The computations for averages using these 
parameters for each of the algorithms are presented under 
this sub-section. 

3.2.1 Zero Arrival Time Case 

In this instance, processes are sorted in random order of 
their burst times while the arrival time is presumed to be 
zero for a RQ consisting of five processes, P1, P2, P3, P4, 
and P5, each with burst time as 2ms, 15ms, 11ms, 1ms, and 
17ms respectively as shown in Table 1. 

Table 1: Processes with Zero Arrival Time 

Process ID Arrival Time (ms) Burst Time (ms) 

P1 0 2 
P2 0 15 
P3 0 11 
P4 0 1 
P5 0 17 

TOTAL: 46 

Figure 2 presents Round Robin Gantt chart for Zero 

Arrival Time case with a static TQ set at 10ms.  In the 
first execution cycle, P1 and P4 terminates at 0 burst time, 
while P2, P3, and P5 continue to executes for the second 
round until their burst time is 0.  

RBT   0  5        1            0           7           0           0 0 

P1 P2 P3 P4 P5 P2 P3 P5   

  0 2  12    22 23   33   38 39        46 

Figure 2: RR Algorithm Gantt chart for Zero AT 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑆𝑤𝑖𝑡𝑐ℎ(𝑁𝐶𝑆) = 7 

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒
= Process Completion Time
− Arrival Time 

P1 = 2 − 0 = 2ms; P2 = 38 − 0 = 38ms; P3 = 39 −
0 = 39ms; P4 = 23 − 0 = 23ms; and P5 = 46 − 0 =
46ms  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 =
2+38+39+23+46

5
=

146

5
= 29.6ms  

 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = Process Turnaround Time
− Burst Time 

P1 = 2 − 2 = 0ms = 0ms; P2 = 38 − 15 =
23ms; P3 = 39 − 11 = 28ms; P4 = 23 − 1 =
22ms; and P5 = 46 − 17 = 29ms  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =
0+23+28+22+29

5
=

102

5
=

20.4ms  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 12 −
0 = 12ms; P4 = 22 − 0 = 22ms; and P5 = 23 − 0 =
23ms    

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 =
0+2+12+22+23

5
=

59

5
=

11.8ms  
 
Figure 3 presents the Gantt chart for Zero Arrival Time 

case with TQ1 =
46

5
≅ 9ms or TQ2 =

P(BT)

2
 (if P(BT) >

TQ1).  In every round of execution, TQ1 is used as 
execution time (ET) if their burst time is less than or equal 
to the computed TQ1; otherwise the half of the process’s 
burst time will be used, which is TQ2.  In the first round 
all the five processes were executed for which P1 and P4 
were terminated from the system because their burst time 
is zero while P2, P3 and P5 were terminated after their 
second round of execution. 
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RBT   0     7         5           0          8           0            0            0 

P1 P2 P3 P4 P5 P2 P3 P5  

  0   2    10        16         17        26         33         38           46 

Figure 3: ImHLVQTRR Algorithm Gantt chart for Zero AT 

Number of Context Switch(NCS) = 6 

Turnaround Time
= Process Completion Time
− Arrival Time 

P1 = 2 − 0 = 2ms; P2 = 33 − 0 = 33ms; P3 = 38 −
0 = 38ms; P4 = 17 − 0 = 17ms; and P5 = 46 − 0 =
46ms  

Average Turnaround Time =
2+33+38+17+46

5
=

136

5
=

27.2ms  

Waiting Time = Process Turnaround Time
− Burst Time 

P1 = 2 − 2 = 0ms; P2 = 33 − 15 = 18ms; P3 =
37 − 11 = 27ms; P4 = 17 − 1 = 16ms; and P5 =
46 − 17 = 29ms  

Average Waiting Time =
0+18+27+16+29

5
=

90

5
=

18.0ms  

Response Time
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 10 −
0 = 10ms; P4 = 16 − 0 = 16ms; and P5 = 17 − 0 =
17ms   

Average Response Time =
0+2+10+16+17

5
=

45

5
=

9.0ms  
In EImHLVQTRR algorithm time quantum was 

determined dynamically as TQ =

ඥ(Average(BT) ∗ Min(BT)).  Figure 4 presents the 

Gantt chart for Zero Arrival Time case with TQ =

√9.2 ∗ 1 = √9 ≅ 3ms. In the first execution cycle all the 
five processes were executed but only P1 and P4 were 
terminated from the system because their burst time 
became 0 while P2, P3, and P5 terminated in their second 
round of execution.  When processes are executed, the 
active process is reassign CPU to further execution if its 

P(RBT) ≤ 1TQ to finish and terminate. 

RBT     0          12           8            0          14           0            0           0  

P1 P2 P3 P4 P5 P2 P3 P5    

   0           2           5            8            9           12         24          32          46  

Figure 4: EImHLVQTRR Algorithm Gantt chart for Zero AT 

Number of Context Switch(NCS) = 7 

Turnaround Time
= Process Completion Time
− Arrival Time 

P1 = 2 − 0 = 2ms; P2 = 24 − 0 = 24ms; P3 = 32 −
0 = 32ms; P4 = 9 − 0 = 9ms; and P5 = 46 − 0 =
46ms  

Average Turnaround Time =
2+24+32+9+46

5
=

113

5
=

22.6ms  

Waiting Time = Process Turnaround Time
− Burst Time 

P1 = 2 − 2 = 0ms; P2 = 24 − 15 = 9ms; P3 = 32 −
11 = 21ms; P4 = 9 − 1 = 8ms; and P5 = 46 − 17 =
29ms  

Average Waiting Time =
0+9+21+8+29

5
=

67

5
=

13.4ms  

Response Time
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 2 − 0 = 2ms; P3 = 5 −
0 = 5ms; P4 = 8 − 0 = 8ms; and P5 = 9 − 0 = 9ms  

Average Response Time =
0+2+5+8+9

5
=

24

5
= 4.8ms  

Table 2: Summary of Algorithms for Zero Arrival Time case 

Algorithms TQ ATAT AWT ART NCS 

RR 10ms 29.6ms 20.4ms 11.8ms 7 
ImHLVQTRR 9ms or BT/2 (if P(BT) > TQ) 27.2ms 18.0ms 9.0ms 7 

EImHLVQTRR 3ms and 9ms 22.6ms 13.4ms 4.8ms 7 

The results in Table 2 indicated that the proposed 
(EImHLVQTRR) algorithm performed better in terms of 
ATAT of 22.6ms as against 27.2ms and 29.6ms for 

ImHLVQTRR and RR algorithms, AWT of 13.4ms as 
against 18.0ms and 20.4ms for ImHLVQTRR and RR 
algorithms and ART of 4.8ms as against 9.0ms and 11.8ms 
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for ImHLVQTRR and RR algorithms with equal Number 
of Context Switches of 7 for Zero Arrival Time case. 

3.2.2 Non-Zero Arrival Time Case 

In this instance, while the processes’ CPU BT were 
randomly arranged and the arrival time values were 
presumed to be non-zero for a RQ consisting of five 
processes, P1, P2, P3, P4, and P5 each with burst time as 
0ms, 4ms, 8ms, 12ms, and 16ms and the burst time as 
11ms, 17ms, 16ms, 6ms, and 10ms respectively as shown 
in Table 1 as shown in Table 3. 

Figure 5 presents the Round Robin Gantt Zero Arrival 

Time case chart with TQ set to 10ms.  The TQ is used to 

execute the processes in the RQ.  In the first round of 
execution, only P4 and P5 got terminated from the system 
as their burst time equal to 0, while P1, P2 and P3 got 
terminated in their second round of execution. 

Table 3: Processes with Non-Zero Arrival Time 

Process ID Arrival Time (ms) Burst Time (ms) 

P1 0 11 
P2 4 17 
P3 8 16 
P4 12 6 
P5 16 10 

TOTAL: 60 

RBT  1                   6            0            0           0            0            0 

P1 P2 P3 P4 P5 P1 P2 P3   

   0         10      20      30           36         46          47         54          60 

Figure 5: RR Algorithm Gantt chart for Non-Zero AT 

Number of Context Switch(NCS) = 7 

Turnaround Time
= Process Completion Time
− Arrival Time 

P1 = 47 − 0 = 47ms; P2 = 54 − 4 = 50ms; P3 =
60 − 8 = 52ms; P4 = 36 − 12 = 24ms; and P5 =
46 − 16 = 30ms  

Average Turnaround Time =
47+50+52+24+30

5
=

203

5
= 40.6ms  

Waiting Time = Process Turnaround Time
− Burst Time 

P1 = 47 − 11 = 36ms; P2 = 50 − 17 = 33ms; P3 =
52 − 16 = 36ms; P4 = 24 − 6 = 18ms; and P5 =
30 − 10 = 20ms  

Average Waiting Time =
36+33+36+18+20

5
=

143

5
=

28.6ms  

Response Time
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 10 − 4 = 6ms; P3 = 20 −
8 = 12ms; P4 = 30 − 12 = 18ms; P5 = 36 − 16 =
20ms  

Average Response Time =
0+6+12+18+20

5
=

56

5
=

11.2ms  
 
Figure 6 presents the ImHLVQTRR algorithm Gantt 

chart for the Zero Arrival Time case with TQ1 =
60

5
≅

12ms or TQ2 =
P(BT)

2
 (if P(BT)>TQ1). After the first 

round of execution, P1, P4, and P5 were terminated from 
the system as their burst times were set to 0, while P2 and 
P3, with remaining burst times of 8ms, each got terminated 
after their second round of execution. 

RBT    0            8            8           0            0              0 0 

P1 P2 P3 P4 P5 P2 P3   

   0          11          20          28         34          44             52 60 

Figure 6: ImHLVQTRR Algorithm Gantt chart for Non-Zero AT 

Number of Context Switch(NCS) = 6 

Turnaround Time
= Process Completion Time
− Arrival Time 

P1 = 11 − 0 = 11ms; P2 = 52 − 4 = 48ms; P3 =
60 − 8 = 52ms; P4 = 34 − 12 = 22ms; and P5 =
44 − 16 = 28ms  

Average Turnaround Time =
11+48+52+22+28

5
=

161

5
= 32.2ms  

Waiting Time = Process Turnaround Time
− Burst Time 
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P1 = 11 − 11 = 0ms; P2 = 48 − 17 = 31ms; P3 =
52 − 16 = 36ms; P4 = 22 − 6 = 16ms; and P5 =
28 − 10 = 18ms  

Average Waiting Time =
0+31+36+16+18

5
=

101

5
=

20.2ms  

Response Time
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 11 − 4 = 7ms; P3 = 20 −
8 = 12ms; P4 = 28 − 12 = 16ms; and P5 = 34 −
16 = 18ms    

Average Response Time =
0+7+12+16+18

5
=

53

5
=

10.6ms  
 
Figure 7 presents the EImHLVQTRR algorithm Gantt 

chart for the Zero Arrival Time case with TQ =

√12 ∗ 6 = √72  ≅ 9ms. In each execution cycle, the 

active process with RBT P(RBT) ≤ 1TQ is reassign CPU 
to finish and terminate).  All the processes were executed 
in one execution cycle. 

RBT   0                0               0    0              0 

P1 P2 P3 P4 P5  

0             11               28            44   50            60 

Figure 7: EImHLVQTRR Algorithm Gantt chart for Non-Zero AT 

Number of Context Switch(NCS) = 4 

Turnaround Time
= Process Completion Time
− Arrival Time 

P1 = 11 − 0 = 11ms; P2 = 28 − 4 = 24ms; P3 =
44 − 8 = 36ms; P4 = 50 − 12 = 38ms; and P5 =
60 − 16 = 44ms  

Average Turnaround Time =
11+24+36+38+44

5
=

153

5
= 30.6ms  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = Process Turnaround Time
− Burst Time 

P1 = 11 − 11 = 0ms = 0ms; P2 = 24 − 17 =
7ms; P3 = 36 − 16 = 20ms; P4 = 38 − 6 =
32ms; andP5 = 44 − 10 = 34ms  

Average Waiting Time =
0+7+20+32+34

5
=

93

5
=

18.6ms  

Response Time
= Time process first have access to CPU
− Process Arrival Time 

P1 = 0 − 0 = 0ms; P2 = 11 − 4 = 7ms; P3 = 28 −
8 = 20ms; P4 = 44 − 12 = 32ms; and P5 = 50 −
16 = 34ms    

Average Response Time =
0+7+20+32+34

5
=

93

5
=

18.6ms  

Table 4: Summary of Algorithms for Non-Zero Arrival Time case 

Algorithms TQ ATAT AWT ART NCS 

RR 10ms 40.6ms 28.6ms 11.2ms 7 

ImHLVQTRR 
12ms or BT/2  

(if P(BT) > TQ) 
32.2ms 20.2ms 10.6ms 6 

EImHLVQTRR 9ms 30.6ms 18.6ms 18.6ms 4 

The results in Table 4 indicate that the proposed 
(EImHLVQTRR) algorithm performed better in terms of 
ATAT of 30.6ms as against 32.2ms and 40.6ms for 
ImHLVQTRR and RR algorithms, AWT of 18.6ms as 
against 20.2ms and 28.6ms for ImHLVQTRR and RR 
algorithms and ART of 18.6ms as against 10.6ms and 
11.2ms for ImHLVQTRR and RR algorithms with 
Number of Context Switches of 4 as against 6and 7 for 
ImHLVQTRR and RR Non-Zero Arrival Time case. 

DISCUSSION OF RESULTS 

To implement the proposed (EImHLVQTRR) algorithm, 
a process generator interface was constructed for 
generating set of processes.  The processes generated are 
denoted by tuples: < (Process_ID, Arrival_Time, 

Burst_Time) > as shown in Figures 9 and 12.  The process 
arrival times were expressed in Zero and Non-Zero 
Arrival Times.  Uniform distribution was used to generate 
the processes’ burst times for both Zero and Non-Zero 
Arrival Time cases, while Poisson distribution was used 
for Non-Zero Arrival Time.  The system Hardware and 
Software requirements used for designing the interface 
are: Hardware – HP Elite-Book 6930p, Intel(R) 
Corel(TM)2 Duo CPU P8600 @ 2.40GHz, RAM 4.00 
GB(3.86 GB usable) and 500 GB Hard disk while Software 
– Microsoft Windows 10 Enterprise © 2018, Microsoft 
Corporation, 64-bit operating system, x-64-based 
processor.  In Figure 8, process size, burst time interval, 
and 10ms TQ for RR algorithm are taken as input from 
the user.  The compute button helps in generating process 
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ID, their arrival time, and burst times, as well in executing 
the processes for zero and non-zero arrival times, while 
the clear button help in resetting the inputted data.  The 
generated processes are moved to RQ, waiting to be assign 
CPU for execution.  The TQ is determined with the burst 
times of the processes in the RQ.  The processes are 
executed for a round, after which the active process 
remaining burst time and current TQ are always  check to 
either allow the process to be reassign to CPU for 
execution and terminated from the system or place behind 
the processes in the RQ for next execution cycle.  In each 

execution cycle new TQ is determine for subsequent 
execution cycle until the RQ is empty.  The parameters 
such as ATT, AWT, ART and NCS are calculated and 
displayed as shown in Figures 10 and 13. 

4.1 For Zero Arrival Time Processes 

Figure 9 present the processes generated for Zero Arrival 
Time for the inputted 20 processes with lower and upper 
limits burst times of 1ms and 60ms. 

 
Figure 8: Processes Generation Interface 

 
Figure 9: Processes Generated for Zero AT Case 
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Figure 10: Results of Zero AT Processes 

 
Figure 11: Zero AT Results Chart 

  
Figure 12: Processes Generated for Non-Zero AT Case 
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Figure 13: Results of Non-Zero AT Processes 

 
Figure 14: Non-Zero AT Results Chart 

Figures 10 and 11 represent the outputs and graphical 
representations of the parameters obtained after executing 
the 20 processes.  As indicated in Figure 10, the proposed 
algorithm (EImHVQTRR) performed better than the 
existing algorithms compared with in terms of average 
waiting time of 371ms as against 390ms and 371ms for 
ImHVQTRR and RR algorithms, average turnaround 
time of 399ms as against 423ms and 399ms for 
ImHVQTRR and RR algorithms, while the average 
response time of 71ms as against 236ms and 88ms for 
ImHVQTRR and RR algorithms with number of context 
switch of 91 as against 46 and 65 for ImHVQTRR and RR 
algorithms. 

4.2 For Non-Zero Arrival Time Processes 

Figure 12 presents the processes generated for Non-Zero 
Arrival Time for the inputted 20 processes with lower and 
upper limits burst times of 1ms and 60ms. 

Figures 13 and 14 represent the outputs and graphical 
representations of the parameters obtained after executing 
the 20 processes.  As indicated in Figure 13, the proposed 
algorithm (EImHVQTRR) performed better than the 
existing algorithms compared with in terms of average 
waiting time of 326ms as against 350ms and 326ms for 
ImHVQTRR and RR algorithms, average turnaround 
time of 351ms as against 378ms and 351ms for 
ImHVQTRR and RR algorithms, while average response 
time of 51ms as against 153ms and 59ms for ImHVQTRR 
and RR algorithms with high number of context switch of 

77 as against 45 and 57 for ImHVQTRR and RR 
algorithms. 

CONCLUSION 

The most crucial part of computer is the Processor.  CPU 
scheduling is an intelligent analysis of ready queue 
processes in determining the best way to respond to 
requests.  Allot of CPU scheduling techniques were 
recommended, each with their advantages and 
disadvantages.  In the light of the shortcomings 
experienced in the existing techniques, this algorithm 
employed dynamic TQ to mitigate starvation issue 
processes experienced in existing algorithms. 

The findings of the simulation and experimental results 
indicated that EImHLVQTRR algorithm yielded better 
results than the existing algorithms (i.e., base-line and RR 
algorithms) in terms of AWT of 371ms as against 390ms 
and 371ms, ATAT of 399ms as against 423ms and 399ms, 
ART of 71ms as against 236ms and 88ms and NCS of 91 
as against 46 and 65; AWT of 326ms as against 350ms and 
326ms, ATAT of 351ms as against 378ms and 351ms, 
ART of 51ms as against 153ms and 59ms and NCS of 77 
as against 45 and 57 in both Zero and Non-Zero Arrival 
Time simulation results for the processes generated as 
shown in Figure 10 & 13 respectively.  The experimental 
results also show some significant improvement as the 
ATAT of 22.6ms as against 27.2ms and 29.6ms, AWT of 
13.4ms as against 18.0ms and 20.4ms, ART of 4.8ms as 
against 9.0ms and 11.8ms with equal number of context 
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switch for Zero Arrival Time; ATAT of 30.6ms as against 
32.2ms and 40.6ms, AWT of 18.6ms as against 20.2ms and 
28.6ms, ART of 18.6ms as against 10.6ms and 11.2ms and 
NCS of 4 as against 6 and 7 for Non-Zero Arrival Time 
experimental summary results shown in Table 3 & 4.  The 
above results revealed that our proposed algorithm 
performance outweighs the two existing algorithms, and 
it’s suitable in a real-time system for fair distribution of 
resources to multiple processes.  
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