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INTRODUCTION
Flooding, one of the world’s leading natural disasters, 
affects millions of lives and properties globally.  Peduzzi 
et al. (2009) report that over 800 million people live in 
flood-prone areas worldwide, and about 70 million people 
are exposed to flooding annually.  This leaves a significant 
population at risk and underscores the widespread 
vulnerability to flood-related hazards, often worsened by 
climate change, causing extreme rainfall events, rapid 
urbanisation, and insufficient infrastructure.  Addressing 
this growing challenge requires global efforts to improve 
flood management strategies, implement resilient 
infrastructure, and mitigate the risks posed to vulnerable 
communities. 

The impacts of natural disasters such as flooding, 

drought, earthquakes, and landslides are generally 

measured by quantifiable means.  Drought, flooding, and 

landslides have devastating impacts in Africa (Lumbroso 

et al., 2016).  However, in the last decade or so, flooding 

has been the most frequently occurring natural hazard in 

Africa (Lumbroso, 2020).  In the last 50 years, Nigerians 

have experienced notable flood incidences in 2012, 2018 

(NIHSA, 2020), and 2022 (Adesola et al., 2024); however, 

this does not mean that flooding in other years was not 

also catastrophic, but rather that its impact was not as 

great.  

The negative impacts of flooding on the people and 
economy of Nigeria are enormous.  Umar and Gray (2022) 
found that between the years 2011-2020, Nigeria recorded 
about 1,187 deaths, comprising 15% of Africa’s deaths 
due to flood incidences in that time period, while the value 
of damage to properties was recorded as $904.5 million, 
21% of flood-related property damage in Africa.  The 
north of Nigeria is especially vulnerable to flooding as the 
rivers Benue and Niger are situated in the northern region, 
while Lagdo Dam in Cameroon releases water into Nigeria 
through the river Benue, which often causes flooding.  
The northern region has more and larger states than the 
south, i.e., 19 states and the Federal Capital Territory 
(FCT), together covering a larger area than the 17 states in 
the southern part of the country.  From the 2016 
population projections by the National Population 
Commission, derived from the 2006 census figures, it was 
reported that 54% of the country's population resides in 
the northern region (NBS, 2017), which is vulnerable to 
the risks of flooding. 
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ABSTRACT 
The river Benue is vulnerable to flood risks, partly due to the release of water from the Lagdo 
Dam in Cameroon into Nigeria, as well as high precipitation, resulting in substantial damage and 
economic losses.  Improved flood event prediction is crucial for decision-makers and the 
population to effectively plan strategies for reducing flood-related losses.  This paper presents a 
comparative study using time series SARIMA and decision tree models applied to monthly water 
level data for 2011-2016 from Ibi, Makurdi, and Umaisha water stations on the river Benue.  
Granger causality and correlation tests indicate that water levels at a station closer to the river 
source are significant in predicting water levels at a station downstream for the decision tree 
models.  Two accuracy metrics, namely mean absolute percentage error (MAPE) and root mean 
square error (RMSE), were used to assess the models.  The prediction results show that the 
SARIMA (4,0,2)(1,0,1) model is the best choice for forecasting the Ibi station water levels, closely 
followed by the decision tree.  For the Makurdi water station, the decision tree model including 
the Ibi station water level among the predictors, is best.  Finally, for predicting the Umaisha 
station water level, two decision tree models are best, including the Ibi water level or the Makurdi 
and Ibi water levels among the predictor variables. 
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Accurate prediction of water levels is a key requirement 
for authorities before any decision-making and planning, 
and the main purpose of water level prediction is to 
establish accurate prediction models and to reveal the 
changing nature of rivers/basins/lakes (Xu et al., 2019).  
This can inform waterborne transportation, water 
resources management, environmental management, 
flood mitigation, and emergency response.  Information 
provided by such water level forecasts has the potential to 
reduce the effects of floods and mitigate and prevent 
disasters through foreknowledge and the timely allocation 
of resources for flood prevention or management. 

In recent years, the autoregressive integrated moving 
average (ARIMA) time series model has been applied to 
forecast water levels for some river water stations.  Yu et 
al. (2017) proposed an ARIMA model for daily water level 
prediction at three Yangtze River stations in China.  The 
performance of the model was measured using root mean 
square error (RMSE), mean absolute percentage error 
(MAPE), percent of bias, and index of agreement.  While 
it was concluded that the proposed model is a good 
candidate for short-term forecasting, its accuracy in 
predicting water levels decreased as the forecasting period 
increased.  Hence, the work suggested incorporating other 
algorithms to overcome this drawback for longer-term 
forecasting.  Arbain and Wibowo (2012) compared the 
performance of ARIMA and Artificial neural network 
(ANN) methods to predict water levels for the Dungun 
River in Terengganu, Malaysia, using mean square error 
(MSE) as a measure of accuracy, and concluded that the 
ANN gives better forecasting results because it can 
identify patterns and nonlinear characteristics of time 
series. 

Lin and Watanabe (2017) proposed and compared some 
machine learning models, including k nearest neighbour 
(kNN), support vector regression (SVR), and linear 
regression, for water level forecasts using two water 
stations from the Ayeyarwady River, Myanmar.  For the 
three prediction performance measures used, i.e., 
correlation coefficients, mean absolute error (MAE), and 
RMSE, the kNN model achieved the best predictions.  
Choi et al. (2019) developed a water level forecast model 
using four machine learning approaches for Upo wetland, 
South Korea, namely an ANN, a decision tree, random 
forests (RF), and a support vector machine (SVM).  Three 
variables, humidity, precipitation, and temperature were 
used in the study to predict water levels.  Comparison 
between the machine learning techniques revealed that the 
RF gave the lowest RMSE, better than the ANN model 
which other authors adopted.  The authors suggested that 
in the absence of real data on water levels, the study's 
results could be used to develop wetland management 
techniques.  

Yan and Ma (2016) combined an ARIMA model and a 
radial basis function network (RBFN) to predict monthly 
groundwater levels using observations from two wells in 
the city of Xi’an, China.  The combined model performed 
better than either of the separate ARIMA and RBFN 
models, using various accuracy measures, and hence was 

recommended for fitting and predicting groundwater 
levels.  Xu et al. (2019) also proposed a new water level 
prediction method by combining an ARIMA model, 
which accounts for the linear component of the data, and 
a Recurrent Neural Network (RNN), which covers 
nonlinear aspects of the data.  The applicability of the 
model was shown using daily water level and 
environmental data for Taihu Lake, China.  Using RMSE, 
the combined ARIMA-RNN model was found to be 
better than the individual ARIMA and RNN models.  In 
a related work, Phan and Nguyen (2020) proposed a 
hybrid model to increase water level prediction accuracy 
by combining machine learning models and ARIMA.  The 
model predicts water level by including the lags of the 
residuals from the ARIMA model among the independent 
variables in the machine learning models.  Datasets from 
Vu Quang, Hanoi, and Hung Yen water stations on the 
Red River, Vietnam, were used to test the proposed 
model.  It was concluded that the hybrid model performed 
better than the single models and also better than a 
different hybrid model of Zhang (2003). 

For Nigeria, while several studies have examined time 
series models for rainfall, Nwobi-Okoye and Igboanugo 
(2013) for the first time predicted water levels at the Kainji 
Dam using ARIMA time series models and artificial 
neural networks.  The ARIMA model gave the lowest 
prediction error and was recommended for future water 
level predictions.  However, the study did not consider 
seasonal patterns in water levels and did not use SARIMA 
models, although these models can incorporate seasonal 
effects and, therefore, could lead to improved predictions. 

With the hypothesis that seasonality in water levels is 
important, this work examines and compares time series 
SARIMA models and decision tree models for water level 
forecasting to inform flood mitigation efforts in Nigeria.  
The performance of these models will be examined using 
water level data for three water stations on the river 
Benue, namely Ibi, Makurdi and Umaisha water stations, 
in the vulnerable northern region of Nigeria. 

METHODOLOGY 

Study region 

The study region, comprising Ibi, Makurdi, and Umaisha 
water stations on the river Benue (Figure 1), is located in 
northern Nigeria, and the river cuts across various states 
in the northeast and northcentral regions, before its 
confluence with the river Niger at Lokoja in Kogi state.  
There are 194 water monitoring stations in Nigeria, 
located along the rivers and dams, used to monitor water 
movements and levels.  Data availability was examined for 
these 194 stations using the Nigeria Hydrological Services 
Agency (NIHSA) records.  Most water stations have no 
records from 1980 onwards and some have very few years 
of records in total.  The data gaps at these water stations 
are mostly caused by vandalised equipment and/or faulty 
recording instruments.  With available data, Ibi, Makurdi, 
and Umaisha water stations were selected as suitable 
stations for this study. 
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(a)                                                              (b) 

Figure 1: (a) Map of Nigeria showing the locations of the 3 studied water stations on the river Benue (marked 
left to right as: Ibi (circle), Makurdi (diamond), and Umaisha (square)); and (b) enlarged version of the map in 
(a) showing the locations of the stations on the river more clearly; Source: Google Maps, modified by the authors 

Water level datasets 

Water level data were obtained from NIHSA for the Ibi, 
Makurdi, and Umaisha stations.  The data considered for 
the analysis is monthly from January 2011 to December 
2016 (Table 1).  The time periods were chosen to give an 
equally long time series for the data for the three water 
stations, for meaningful analysis.  From the study period 
(2011-2016), Makurdi station has 49 missing monthly 
values, a proportion of 68% of observations missing, the 
highest among the three water stations, followed by Ibi 
and Umaisha stations with 39% and 32% of the data 
values missing, respectively (Table 1). 

Due to the high proportions of missing data, missing 
values were imputed before further analysis.  The 
predictive mean matching (PMM) imputation method is 
an attractive and popular imputation method for missing 
values, particularly when dealing with quantitative 
variables (Allison, 2015), and was used here.  Oyerinde et 
al. (2021) used the PMM method to impute missing data 
from 22 water stations in the Niger basin and 
recommended it for imputing data gaps.  Other studies 
where the PMM method outperformed competing 
imputation methods for missing data include Vink et al. 
(2014) and Akman et al. (2019).  

The R software was used for data analysis (R Core Team, 
2022).  We imputed all of the missing values using the R 
package “mice” (van Buuren and Groothuis-Oudshoorn, 
2011).  Using the PMM method, we generated five 
multiple imputed values for each missing value, using 1000 
iterations (repeatedly updating the imputed values for 

missing data in a dataset until convergence is reached), 
having observed in experimentation that there was no 
difference in the results using 1000 iterations of the 
imputed values or more than 1000.  The iterative 
imputation process refines estimates of missing values 
using available data and the current model.  Increasing the 
number of iterations can enhance the algorithm's 
convergence and lead to improved imputation outcomes.  
The average of each of these sets of five values generated 
for a given missing value was chosen to represent this 
missing value in the same way for each station.  The 
completed datasets for the Ibi, Makurdi, and Umaisha 
water levels are presented in Figure 2. 

Figure 2 shows clear peaks and troughs in the water levels 
for the Ibi water station and a repeating pattern for each 
year.  As well as this seasonal pattern, there is some slight 
evidence of a decreasing trend over time.  Makurdi station 
has a similar repeating pattern, with high peaks in 2012, 
2014, and 2016, but without an obvious trend.  Similarly, 
for the Umaisha water station, a clear seasonal pattern is 
seen, with a more obvious decreasing trend.  The water 
levels in each dataset take a similar range of values.  These 
data series are seasonal, with a decreasing trend seen in at 
least the Umaisha dataset, so they are not stationary. 

As a result of this clear seasonality, the SARIMA model, 
defined below, is expected to be more suitable for 
modelling these series than the more standard ARIMA 
time series model.  The performance of SARIMA models 
and decision tree models is compared using the metrics 
below. 

Table 1: Numbers and proportions of missing values in the provided data for the selected water stations. 

Station Records 
available  

Study period in 
years 

No. of months available within 
study period  

No. of months missing within 
study period (%) 

Ibi 1980-2016 2011-2016 44 28 (38.89) 
Makurdi 2010-2019 2011-2016 23 49 (68.06) 
Umaisha 2011-2019 2011-2016 49 23 (31.94) 

Source of data: NIHSA, 2020. 
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Figure 2: Time plots of monthly water levels at Ibi, Makurdi, and Umaisha water stations on the river Benue for 
the years 2011 to 2016, including imputed data values

Accuracy metrics 

Mean absolute percentage error (MAPE) and root mean 
square error (RMSE) are both used to evaluate the 
performance of the fitted models, as using multiple 
accuracy metrics can help to draw more robust 
conclusions concerning performance of the studied 
models.  These metrics are given as: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥𝑖−�̂�𝑖

𝑥𝑖
|𝑛

𝑖=1 × 100, and  (1) 

𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (𝑥𝑖 − �̂�𝑖)

𝑛
𝑖=1

2
,    (2) 

where 𝑥𝑖 and �̂�𝑖 are the actual or observed value and 

predicted value, respectively, for the 𝑖𝑡ℎ observation, and 

n is the sample size.  Lower values of these metrics (closer 

to 0) correspond to greater prediction accuracy. 

THEORETICAL BACKGROUND 

Time series models 

This section will briefly describe time series models, 

which are parametric statistical methods, leading to the 

SARIMA model (Brockwell and Davis, 2016) that will be 

used in the analysis. 

Autoregressive models 

A time series {𝑥𝑡} is said to be an autoregressive (AR) 

series of order 𝑝 or an AR(𝑝) process if it can be written 

as 

𝑥𝑡 = 𝜙0 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝑒𝑡, 
                                              (3) 

where 𝑝 is a nonnegative integer,  𝜙0, 𝜙1, 𝜙2, ⋯ , 𝜙𝑝 are 

real numbers, and 𝑒𝑡 is a white noise with mean zero and 

variance 𝜎𝑒
2.  Equation (3) is similar to a multiple linear 

regression model, with lagged values serving as the 
independent variables (Tsay, 2010). 

Moving Average models 

A stationary time series {𝑥𝑡} is a moving average of order 

𝑞 or MA(𝑞) if 

𝑥𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 , (4) 

where 𝑞 is a nonnegative integer,  𝜃1, 𝜃2, ⋯ , 𝜃𝑞 are 

constants, 𝑒𝑡 is an error term and 𝑒𝑡~𝑁(0, 𝜎𝑒
2).  If {𝑥𝑡} 

has a non-zero mean, it is advisable to subtract the mean 
from the data before fitting the model.  This adjustment 
is akin to including a constant/intercept term in equation 
(4) (Shumway and Stoffer, 2017). 

Autoregressive Moving Average models 

A stationary series {𝑥𝑡}  is an autoregressive moving 

average of order 𝑝 and 𝑞 or ARMA (𝑝, 𝑞) if it can be 
written as 

𝑥𝑡 − 𝜙1𝑥𝑡−1 − 𝜙2𝑥𝑡−2 − ⋯ − 𝜙𝑝𝑥𝑡−𝑝 = 𝑒𝑡 +

𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 ,    (5) 

where 𝑝 and 𝑞 are nonnegative integers,  𝜙𝑖 and  𝜃𝑖 are 

the AR and MA coefficients, respectively, for the 𝑖th 

observation, and 𝑒𝑡 is an error term. 

As for the MA model, Shumway and Stoffer (2017) 

indicate that when the mean of {𝑥𝑡} is non-zero, the mean 
of the data should be subtracted first, and this is 
equivalent to not subtracting the mean but including a 
constant/intercept in the ARMA model. 
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If 𝑝 = 0, the ARMA series becomes MA (𝑞), and if 𝑞 =
0, the series is an AR (𝑝) model as described earlier.  One 
limitation of ARMA series is satisfying the stationarity 
condition, and if the series is nonstationary, it is 
recommended to difference the series to make it 
stationary (Zhang, 2018). 

Autoregressive Integrated Moving Average models 

A time series {𝑥𝑡} is an autoregressive integrated moving 

average (ARIMA) process or ARIMA (𝑝, 𝑑, 𝑞) series if it 

becomes an ARMA (𝑝, 𝑞) after differencing the original 

series 𝑑 times (Brockwell and Davis, 2016). It is written in 

terms of the polynomials from the backshift operator 𝐵 
as follows: 

𝑥𝑡~ ARIMA (𝑝, 𝑑, 𝑞) ⇔ 𝜙(𝐵)(I − B )𝑑𝑥𝑡 = 𝜃(𝐵)𝑒𝑡,
                                              (6) 

where 𝑑 is the order of differencing and other parameters 
are defined as before (Carmona, 2014). 

Seasonal Autoregressive Integrated Moving Average models  

A time series {𝑥𝑡} is said to be a SARIMA (𝑝, 𝑑, 𝑞) ×
 (𝑃, 𝐷, 𝑄) process with period 𝑠 if the differenced series 

𝑦𝑡 = (I − B )𝑑(I − B𝑠 )𝐷𝑥𝑡 is an ARMA process.  The 
SARIMA model is an extension of the ARIMA model, 
while the ARIMA model is a special case of the SARIMA 
model with no seasonal effect (Brockwell and Davis, 
2016).  The SARIMA model is given as 

𝜙(𝐵)Φ(𝐵𝑠)𝑦𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝑒𝑡,   (7) 

where 𝜙(B) and 𝜃(𝐵) are the 𝑝th and 𝑞th degree 

polynomials of the non-seasonal components, Φ(𝐵𝑠) and 

Θ(𝐵𝑠) are the 𝑃th and 𝑄th degree polynomials of the 

seasonal components, and 𝑑 and 𝐷 are the non-seasonal 
and seasonal orders of differencing respectively.  If no 

differencing is used, then the model becomes a 

SARMA(𝑝, 𝑞) ×  (𝑃, 𝑄) model. 

SARIMA models are used to analyse and forecast time 
series data exhibiting seasonal patterns, where the values 
tend to repeat in a regular cycle.  The seasonal component 
represents the repeating pattern over fixed intervals, such 
as days, months, or quarters.  In many real-world time 
series datasets, the seasonal patterns are not perfectly 
identical from one cycle to the next, due to various factors 
such as changes in consumer behaviour, weather 
conditions, or economic fluctuations.  These models 
capture randomness and fluctuations in the seasonal 
pattern from one cycle to another by incorporating 
seasonal differencing and seasonal autoregressive and 
moving average terms.  Using these seasonal terms, the 
model can account for variability in the seasonal patterns 
over time, making the forecasts more accurate and 
reflective of the actual data behaviour.  Overall, SARIMA 
models are useful for understanding and predicting time 
series data with recurrent patterns, allowing for flexibility 
in modelling variations in the seasonal component 
(Brockwell and Davis, 2016).  

Decision trees 

A decision tree (DT) is a popular non-parametric 

(distribution-free) machine learning algorithm that can be 

used for both classification and regression modelling 

(James et al., 2013; Maimon and Rokach, 2014), depending 

on the application.  It has a tree-like branching structure, 

with three components, namely a root node, decision 

nodes and leaf or terminal nodes (Figure 3).  A DT 

algorithm divides a training dataset into parts (branches), 

which further sequentially segregate into other branches.  

This sequential division continues until a leaf node is 

produced, which cannot be divided further. 

 
Figure 3: An example decision tree with its three different types of nodes 
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The topmost decision node in the tree is the root node, 
where the algorithm assesses a specific feature to partition 
the dataset into two subsets.  Each subset corresponds to 
distinct values or ranges of values of the chosen feature.  
Branching out from the root node, smaller nodes 
represent subsets based on the initial decision and 
function as decision nodes each testing values of a feature 
variable.  The tree continues to grow until it reaches a fixed 
value of a stopping criterion such as information gain or 
Gini impurity, a predefined tree depth or a minimum 
number of samples in a leaf node (Hastie et al., 2009).  
Each leaf node contains a subset of training examples that 
have similar feature values, and to predict the target value 
for a new observation, the leaf node is found that the 
observation falls into, based on its values of the feature 
variables.  When using a regression DT for the prediction 
of a continuous value, the mean of the target values of the 
training examples in the leaf node is used as the prediction 
(James et al., 2013).  

DTs are intuitive to understand and interpret and can 
capture complex, nonlinear relationships in data.  
However, they can also be prone to overfitting, especially 
if the tree becomes too deep or the data are noisy, limiting 
the generalisability of the tree beyond the training data 
used to grow the tree.  To mitigate this, techniques such 
as pruning, which removes parts of the tree that do not 
provide significant predictive power or generalisation to 
new, unseen data (Hastie et al., 2009), can be used.  A 
pruned tree with fewer splits may lead to lower variance 
and better interpretation, with lower bias. 

The R software's tree package (Ripley, 2023) was used here 
to fit the DTs, with and without pruning.  The deviance 
criterion was used to grow the tree.  The integer parameter 
“best” in the R tree function sets the number of 
leaf/terminal nodes of a specific subtree in the cost-
complexity sequence to be returned.  If there is no tree in 
the sequence of the requested size, the next largest is 
returned (Hastie et al., 2009). 

Granger causality test 

Time series models use past time series values to forecast 
future values.  Machine learning models typically use many 
variables to predict future values of a target variable of 
interest, in this case, water level.  Before choosing 
predictor variables for the DT, we consider relationships 
among the water levels at the three water stations. 

The Granger causality test is a statistical hypothesis test 
mostly used in econometrics to determine whether one 
time series can be used to predict another in the sense that 
one time series variable (the potential cause or predictor) 
can be considered as a leading indicator of another series 
variable (the potential effect or outcome).  The test is 
commonly used to analyse cause-and-effect relationships 
in time series data (White and Pettenuzzo, 2014).  

Here we consider the Pearson correlation between the 
water level time series, but also use the Granger causality 
test to determine the presence and direction of causation 
between the water levels.  In general, the direction of 
causality could be two-way (sometimes referred to as 

“feedback”), one-way, or there could be no causation 

(Granger, 1969).  The null hypothesis (𝐻0) in a Granger 
causality test states that the predictor variable does not 
Granger-cause the response variable, while the alternative 

(𝐻1) is that the predictor variable Granger-causes the 
response variable. 

Granger (1969) examines a bivariate series of a vector 
autoregressive (VAR) model.  Granger causality 
corresponds to nonzero entries in the autoregressive 
coefficients.  The bivariate model consists of two 

stationary time series 𝑥𝑡1 and 𝑥𝑡2, 

𝑥𝑡1 = ∑ 𝑎𝑘𝑥𝑡1−𝑘 +𝑑
𝑘=1 ∑ 𝑏𝑘𝑥𝑡2−𝑘 + 𝑒𝑥𝑡1

𝑑
𝑘=1 , 

𝑥𝑡2 = ∑ 𝑙𝑘𝑥𝑡1−𝑘 +𝑑
𝑘=1 ∑ 𝑚𝑘𝑥𝑡2−𝑘 + 𝑒𝑥𝑡2

𝑑
𝑘=1 ,  (8) 

where 𝑒𝑥𝑡1
 and 𝑒𝑥𝑡2

 are taken to be two independent white 

noise series, and 𝑑 is presumed to be finite and smaller 

than the length of the given data.  If any 𝑏𝑘 ≠ 0, the series 

𝑥𝑡2 is considered to Granger-cause the series 𝑥𝑡1.  

Similarly, if any 𝑙𝑘 ≠ 0, then 𝑥𝑡1 Granger-causes 𝑥𝑡2.  
When both conditions are met, it indicates a feedback 

relationship between 𝑥𝑡1 and 𝑥𝑡2.  We test whether all of 
these coefficients are zero against the alternative 
hypothesis that at least one coefficient is non-zero by 
testing one nested linear model within another using an F-
test implemented in the grangertest function from the R 
lmtest package, and specifying order 4 as the maximum 
number of lags to consider.  While the water level datasets 
used here show evidence of non-stationarity, the 
correlation analysis gives a check on the results of the 
Granger test analysis. 

RESULTS 

Examining the data for fitting SARIMA models 

The most suitable orders of time series models for each of 
the Ibi, Makurdi, and Umaisha water level datasets were 
determined using partial autocorrelation function (PACF) 
and autocorrelation function (ACF) plots (shown in 
Figure A.1 in the Appendix) for each dataset, using the 
complete datasets.  The PACF plots suggest the order p of 
an AR model, while the ACF plots suggest the order q of 
a MA model.  The ACF plots also show clear evidence of 
seasonality in all three datasets.  On the basis of these 
plots, the following models were selected for fitting to the 
data: SARIMA(4,0,2)(1,0,1) and SARIMA (4,0,8)(1,0,1) 
for Ibi station, SARIMA(2,0,2)(1,0,1) and 
SARIMA(2,0,8)(1,0,1) for Makurdi station, and 
SARIMA(1,0,2)(1,0,1) and SARIMA(4,0,7)(1,0,1) for 
Umaisha station.  In fact these are all SARMA models.  

The identified SARIMA models and DT models will be 
fitted to the data from these water stations to identify the 
best fitting and best predicting models in each case.  

Examining the data for fitting decision trees 

Prior to fitting the DT model, the complete, whole 
datasets were used to calculate Pearson correlations and 
also carry out Granger causality tests from the R software 
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lmtest package (Zeileis and Hothorn, 2002) on the water 
levels from the Ibi, Makurdi and Umaisha water stations.  

From the correlation results (Table 2), there are strong 
positive linear associations between the water levels from 
all three stations, meaning that as the water level for one 
station increases, so that of the other stations linearly 
increases, which makes sense in this context.  The 
correlation between Ibi and Makurdi water levels is the 
highest (0.9713), and Makurdi station lies beyond Ibi 
station on the river Benue, while the correlation between 
Makurdi and Umaisha water levels is the lowest (0.7386), 
although Umaisha station follows Makurdi station on the 
map.  Surprisingly, the correlation between Ibi and 

Umaisha water levels is higher (0.8370) despite these water 
stations being further apart than Makurdi and Umaisha 
stations.  The very low p-values (all less than 0.0001) of 
the correlations indicate that all the correlations are highly 
statistically significant (at a level of 5% or lower).  
Therefore, the water level at one water station nearer to 
the source of the river could be important for predicting 
the water level at another station further along the river, 
and so these are considered as potential predictor 
variables. 

Table 3 shows the results of pairwise Granger causality 
tests. 

Table 2: Pairwise Pearson correlations between the Ibi, Makurdi, and Umaisha water level datasets.  In all cases 
the p-values are <0.0001.  

Station Ibi Makurdi Umaisha 

Ibi 1.0000  0.9713  0.8370  

Makurdi 0.9713  1.0000  0.7386  

Umaisha 0.8370  0.7386  1.0000  

Table 3: Granger causality test null hypothesis, F test statistic values and p-values for Ibi, Makurdi and Umaisha 
water level datasets.  A p-value of 0.05 or less is taken as significant. 

Null hypothesis (H0) F-values p-values 

Ibi does not Granger-cause Makurdi 3.4831 0.0128 

Makurdi does not Granger-cause Ibi 1.4126 0.2410 

Ibi does not Granger-cause Umaisha 1.5232 0.2071 
Umaisha does not Granger-cause Ibi 0.9323 0.4515 
Makurdi does not Granger-cause Umaisha 0.9849 0.4229 
Umaisha does not Granger-cause Makurdi 1.6793 0.1669 

Table 4: Accuracy measures of SARIMA and Decision tree (DT) models fitted using training data and evaluated 
on the training and test data, for the water stations on the river Benue; the bold text indicates the best model in 
each case.  The order s=12 was used for the SARIMA models as the data is monthly. 

 
Station 

 
Model 

Training dataset Test dataset 

MAPE RMSE MAPE RMSE 

Ibi SARIMA (4,0,2)(1,0,1) 
SARIMA (4,0,8)(1,0,1) 
DT (unpruned) 
DT (pruned) 

 15.84 
 13.70 
 13.73 
     - 

  95.52 
  79.81 
  92.14 
      - 

 16.40 
 14.15 
 19.90 
 17.63 

  98.05 
  78.83 
132.12 
123.71 

Makurdi SARIMA (2,0,2)(1,0,1) 
SARIMA (2,0,8)(1,0,1) 
DT without Ibi 
DT with Ibi (unpruned) 
DT with Ibi (pruned) 

 13.39 
 12.82 
 11.87 
   6.32 
      - 

107.88 
101.23 
107.80 
  51.12 
      - 

 14.61 
 12.99 
 12.59 
   5.22 
   5.76 

117.17 
123.94 
117.48 
  48.25 
  49.79 

Umaisha SARIMA (1,0,2)(1,0,1) 
SARIMA (4,0,7)(1,0,1) 
DT without Ibi and Makurdi 
DT with Makurdi 
DT with Ibi 
DT with both (unpruned) 
DT with both (pruned) 

 38.02 
 31.52 
 22.94 
 26.45 
 21.70 
 21.70 
     - 

147.79 
132.86 
114.38 
114.07 
  98.72 
  98.72 
      - 

  93.82 
153.51 
  46.86 
  42.70 
  39.91 
  39.91 
  43.89 

276.55 
342.88 
160.34 
189.34 
198.49 
198.49 
193.69 

 

From Table 3, the only significant p-value is p=0.0128, 
meaning that the corresponding H0 is rejected and the Ibi 
water level Granger-causes the Makurdi water level, 
however the Makurdi water level does not Granger-cause 
the Ibi water level (p=0.2410).  This means that the 
causality between these two variables is one-directional, 
which is expected as the Ibi station is nearer the river 
source than the Makurdi station (Figure 1).  Table 3 also 

shows that the Umaisha water level has no Granger-causal 
relationship with any of the water levels before it on the 
river (from Ibi and Makurdi stations), however the Ibi and 
Makurdi water levels also do not Granger-cause the 
Umaisha water level, which is a less expected result since 
the Umaisha station is further away from the source of the 
river than the Ibi and Makurdi stations. 
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Machine learning models such as DTs generally use many 
predictor variables to predict the value of a different 
dependent variable.  Here we use time series data of a 
single variable, which is water level.  For the DT, variables 
used here to predict the water level at a given station at a 
given time are Month, Quarter, Year, and the lagged water 
level for lags 1-4 for each water level to be predicted.  The 
maximum lag 4 was selected because it is the highest order 
of p from the SARIMA models fitted for all the water 
levels.  Hence, for all the water stations, lag 1 up to and 
including lag 4 of the water levels will be included among 
the independent variables (Phan and Nguyen, 2020).  
Using more lags is recommended; however, using more 
lags reduces the available sample size.  In some trees, the 
water level(s) from earlier water stations are also included 
as potential predictors based on the results from the 
Pearson correlations and the Granger causality tests 
(Tables 2 and 3). 

Ibi water station is nearer to the river source than Makurdi 
and Umaisha water stations (Figure 1), so Ibi has no water 
level from a previous station included among its 
predictors.  Makurdi station has the Ibi water level 
included among its predictors, and for Umaisha station, 
the water levels from both Ibi and Makurdi stations are 
included among the predictors.  Ibi water station has only 
one model to be fitted.  Makurdi station has two models 
to be fitted, one with and the other without the water level 
from Ibi station among the predictors.  Finally, Umaisha 
has four models to be fitted, i.e., including none of the 
water levels from previous water stations among the 
predictors, including either of the Ibi and Makurdi water 
levels on its own, and including the water levels from both 
these stations as predictors. 

Before model fitting and forecasting the water levels for 
each water station, we split the datasets into training and 
testing sets for the two rivers.  We now use the four years 
of data from January 2011-December 2014 as training 
data, to develop suitable models for each water station, 
and use the two years of data from January 2015-
December 2016 for testing.  However, as a result of using 
the 4 lagged water level variables for each station, the 
datasets become imbalanced, so to have a balanced dataset 
for water level prediction, January-April 2011 (four rows) 
were lost across all variables for analysis.  These results 
used May 2011-December 2015 as training data and 
January 2016-December 2016 as test data.  For better 
comparison of the models, these same reduced datasets 
were also used for the time series models.  

Table 4 gives the results comparing the time series models 

and the various DT models for all three water stations, 

using the training and test data. 

For Ibi station, from Table 4, for the training data, the 
SARIMA (4,0,8)(1,0,1) model has the lowest values for 
both accuracy measures, i.e. 13.70 and 79.81 for MAPE 
and RMSE respectively, followed by the DT model with 
13.73 and 92.14 for MAPE and RMSE respectively, and 
SARIMA (4,0,2)(1,0,1) is poorer for both accuracy 
metrics.  For the test data, again the SARIMA 
(4,0,8)(1,0,1) model is best in terms of MAPE (14.15) and 

RMSE (78.83), better than the SARIMA (4,0,2)(1,0,1) 
model, with MAPE=16.40 and RMSE=98.05, and the DT 
model is poorer.  Pruning improves the performance of 
the DT model, but the pruned tree is still poorer than the 
SARIMA models.  The SARIMA (4,0,8)(1,0,1) model 
performs best overall, for forecasting the Ibi station test 
data, and is by far the best model for prediction of both 
the training data and test data.  However, as models with 
higher lag length suggest an increase in mean-square 
forecasting errors and model overfitting (Lütkepohl, 
1993), in practice the SARIMA (4,0,2)(1,0,1) may be the 
better choice for forecasting the Ibi water level data.  We 
now examine the fitted DT for the Ibi water level (Figure 
4(a)), to identify the most important variables used in the 
construction of the tree. 

The primary split is month <6.5, which indicates that 
month is the most important factor for predicting the Ibi 
water level, and months in the first half of the year give a 
lower water level than months in the second half, which 
may be attributed to the pattern of the raining season.  
Among months in the first half of the year, lag1 does 
affect the water level, where lag1>=311.85 leads to a 
higher predicted water level.  For months in the second 
half of the year, lag4 <458.13 and lag1<523.41 give higher 
predicted water levels than for the earlier months, while 
lag1>=523.41 leads to a higher predicted water level, 
especially for lag3<458.13 (which is the highest level for 
this tree). For lag4>=458.13, years up to 2012 tend to give 
a higher water level than later years.  The lag2 variable was 
not used in the tree.  The Ibi unpruned tree (Figure 4(a)) 
has 7 leaf nodes, and it was pruned (Figure 4(b)) to have 5 
leaf nodes (using parameter best =5). 

Figure 4(b) shows the pruned tree for the Ibi station, 
which has similar features to the unpruned tree, with 
month <6.5 as the primary split.  The major difference is 
that lag3, which was used for the unpruned tree (Figure 
4(a)), is not used for the pruned tree.  

For Makurdi station (Table 4), for the training and test 
data, the DT model, including the Ibi water level among 
the predictors, has much the lowest MAPE and RMSE 
(6.32, 51.12, respectively for the training data and 5.22 and 
48.25, respectively for the test data).  For the training data, 
the DT model without Ibi is second best for MAPE 
(11.87), although the SARIMA (2,0,8)(1,0,1) model is 
second best for RMSE (101.23).  For the test data, the 
results are similar to these.  It is clear that adding the Ibi 
water level among the variables to predict the Makurdi 
water level considerably improves the DT model 
performance for both metrics, reflecting the Granger-
causal relationship (Table 3) and correlation (Table 2) 
above.  Hence, the DT with Ibi is the best choice to model 
the Makurdi water levels.  The unpruned tree for Makurdi 
with Ibi among the predictors (Figure 5(a)) has 5 leaf 
nodes, and it was pruned to have 4 leaf nodes (Figure 
5(b)).  For Makurdi, the pruned tree does slightly worse 
than the unpruned one, but the difference is small, and the 
tree is still the best prediction approach. 

We now consider the unpruned fitted tree for the Makurdi 
water level with the Ibi water level among the predictors, 
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the better model in this case, and the pruned tree in 
Figures 5(a) and 5(b), respectively.  The Ibi water level in 
fact is the only variable used in both trees for predicting 

the Makurdi water level, and the higher the water level at 
the Ibi station, the higher the predicted Makurdi water 
level, which makes sense.  

 
Figure 4(a): unpruned fitted regression tree for predicting the Ibi water level, using month, quarter, year, and 
lag 1-4 water levels as potential predictor variables. 

 
Figure 4(b): pruned fitted regression tree for predicting the Ibi water level, using month, quarter, year, and lag 
1-4 water levels as potential predictor variables. 

Finally, for the Umaisha station (Table 4), for both the 
training and test data, the MAPE and RMSE from the four 
DT models are notably better than those from the 
SARIMA models.  Among these DT models, the models 
including Ibi or both Ibi and Makurdi water levels have 
the same lowest MAPE (21.70) and RMSE (98.72) for the 
training data.  For the test data, the DT models including 
Ibi only and with both Makurdi and Ibi also have the same 
MAPE (39.91) and RMSE (198.49), which is the best in 
terms of MAPE, but the DT with Makurdi and not Ibi is 
slightly better in terms of RMSE and the DT without 
either is best for RMSE (160.34).  Overall, including Ibi or 
both Ibi and Makurdi water levels among the independent 
variables is slightly better than including only the Makurdi 

water level or neither, however for the test data this 
depends on whether RMSE or MAPE is considered.  
Among the time series models, the SARIMA (4,0,7)(1,0,1) 
model has the better MAPE (31.52) and RMSE (132.86) 
values for the training data, but the simpler SARIMA 
(1,0,2)(1,0,1) is clearly better for the test data, with  a 
MAPE value of 93.82 and RMSE of 276.55.  Neither time 
series model competes with the trees.  The DT with Ibi or 
both Ibi and Makurdi included among the predictors is 
recommended for modelling the Umaisha water level data. 

Next we consider the fitted tree for the Umaisha water 
level with Ibi and Makurdi water levels among the 
potential predictors, as adding the Ibi water level, 
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especially, to the predictor variables improves the 
performance. 

Figure 6(a) shows that Ibi (water level) is the most 
important variable for predicting the Umaisha water level.  
For Ibi<368.045 and years up to 2013, the predicted water 
level tends to be higher than for later years.  For 
368.045<=Ibi<489.675, lag3 does affect the Umaisha 
water level, and lag3>=457.838 gives a higher predicted 
water level.  For Ibi>=489.675, where lag2>=425.67, and 
lag4<502.01, the predicted water level is higher and much 
the highest for the tree.  The model with only the Ibi water 

level added to the predictor variables and omitting the 
Makurdi water level gives the same tree as in Figure 6(a); 
therefore, the Makurdi level is not used. For Umaisha, the 
DT with Ibi and Makurdi among the predictor variables 
(Figure 6(a)) is considered for pruning.  The tree has 7 leaf 
nodes and is pruned to have 5 leaf nodes, as shown in 
Figure 6(b).  The year and lag3 variables are not used in 
the pruned tree.  In this case, pruning the tree with both 
Ibi and Makurdi included slightly improves the RMSE 
accuracy (193.69) compared to the unpruned tree (198.49), 
but gives a slightly poorer MAPE (43.89 compared to 
39.91), so overall, it makes little difference.  

 
Figure 5(a): unpruned fitted regression tree for predicting the Makurdi water level, using month, quarter, year, 
Ibi water level, and lag 1-4 water levels as potential predictor variables. 

 
Figure 5(b): Pruned fitted regression tree for predicting the Makurdi water level, using month, quarter, year, Ibi 
water level, and lag 1-4 water levels as potential predictor variables. 

CONCLUSIONS 

In this work, we examined the water level forecasting 
performance of SARIMA time series models and decision 
tree models, using water level datasets from Ibi, Makurdi 

and Umaisha water stations on the river Benue in Nigeria.  
Results from the fitted prediction models show that the 
SARIMA model is best for forecasting for Ibi water 
station, closely followed by the decision tree.  Decision 
trees are by far the best for Makurdi and Umaisha water 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 122 – 134. 

 132 

 

 https://scientifica.umyu.edu.ng/                      Umar & Gray, /USci, 4(2): 122 – 134, June 2025  
 

stations.  The results confirm that including the Ibi water 
level among the predictors for the Makurdi water level 
decision tree model is important. For predicting the 
Umaisha water level on unseen data, including the Ibi or 
Makurdi water levels or both among the predictors only 
improved prediction in terms of one accuracy measure 
considered (MAPE).  As it makes sense to consider water 
levels nearer to the river source when predicting water 

levels further from the source, this finding would be worth 
exploring further with other training and test sets and 
other accuracy measures.  In view of the superior results 
overall for decision trees, it would also be useful to 
investigate further machine learning models to compare 
their predictive performance with that of the decision tree 
approach used here. 

 
Figure 6(a): Unpruned fitted regression tree for predicting the Umaisha water level, using month, quarter, year, 
Ibi water level, Makurdi water level, and lag 1-4 water levels as potential predictor variables. 

 
Figure 6(b): Pruned fitted regression tree for predicting the Umaisha water level, using month, quarter, year, 
Ibi water level, Makurdi water level, and lag 1-4 water levels as potential predictor variables.  
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APPENDIX 

 

 
Figure A.1: PACF and ACF plots of the water level datasets from the Ibi, Makurdi and Umaisha water stations 
on the river Benue.
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