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INTRODUCTION
The variability of climatic elements has been a serious 
environmental issue, especially in arid and semi-arid 
regions. These regions have been undergoing intense and 
severe changes in temperature and rainfall, which affect 
people, the environment, and public health directly. With 
the ongoing challenges of climate change, it would be 
increasingly important to understand how the climate 
relates to malaria risk, for example, since it can help in 
developing effective mitigation and adaptation measures. 
Malaria is still a critical public health burden in different 
parts of the world, including sub-Saharan Africa (SSA), 
where environmental and climatic variability might have 
been strongly mediating the transmission dynamics. It is 
imperative to note that numerous studies (Bose et al., 
2015; Hassan et al., 2017; Recha, 2017; Asfaw et al., 2018; 
Panda and Sahu, 2019; Yamusa and Abdulkadir, 2020; 
Kehinde et al., 2021; Sidi, 2022) on climate variability and 
change were conducted in parts of the world. However, a 
critical review of such studies revealed significant spatial 
and temporal gaps in the literature, as the findings were 
not discussed within the context of livelihoods, 

particularly in relation to disease outbreaks. Over the past 
decade, significant advances have been made in 
understanding the climatic and geographic factors that 
shape malaria transmission. For instance, Garba et al. 
(2023) explored the spatial features of malaria in lowland 
and highland areas of Taraba State, highlighting the role 
of altitude, rainfall, and temperature in influencing 
infection prevalence. The work, however, relied on 
conventional statistical methods without the 
incorporation of predictive machine learning approaches, 
thus limiting the predictive strength of the environmental-
malaria linkage. On a broader scale, Edmund (2023) used 
Entomological Inoculation Rate (EIR) data to explore 
malaria seasonality across SSA, revealing threshold 
conditions for rainfall and temperature that frame the 
transmission season. Although comprehensive, the study 
operated at a continental scale, overlooking the fine-
grained variability needed for localized prediction in 
hyper-endemic zones such as northeastern Nigeria. 
Similarly, Obiora et al. (2023) applied machine learning to 
model malaria and lymphatic filariasis co-distribution 
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ABSTRACT 
The fluctuations of the climatic variables have considerable impacts on the livelihood security of 
Yobe State, Nigeria, particularly as it relates to malaria transmission and public health in general. 
This paper investigated how, between 2014 and 2023, temperature and rainfall patterns changes 
correlate with the prevalence of malaria in the micro-climatic zones of the state, which are SaSZ, 
TZ, and SuSZ. By employing machine learning algorithms on the climatic data obtained from 
NiMet, the study highlighted patterns in climate variability and correlates same with malaria risk. 
It revealed seasonality fluctuations in temperature (20°C to 47.5°C) and rainfall patterns that 
coincided with heightened malaria transmission. Temperature, spiking higher than 30°C, aligned 
with increasing malaria cases, whereas 40°C of the climatic element appears to reduce mosquito 
survival. On the other hand, the rainfall patterns, especially with the oscillations between 0mm 
and 120mm, provided breeding grounds for mosquitoes, amplifying malaria transmission risks. 
Thus, the study concluded that while the transmission could be a function of changing climate, 
the control methods are inadequate in the face of increasing climate unpredictability. This implied 
the need for an integrated approach combining climate monitoring, epidemiological surveillance, 
and adaptive public health policies is necessary to mitigate the effects of climate-driven malaria 
risks. 
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across Nigeria but reported only moderate prediction 
accuracy (R² = 0.59 for malaria), indicating that finer-scale 
analyses tailored to unique regional ecologies could yield 
more precise insights. 

However, machine learning methods have recently 
emerged as powerful tools for uncovering non-linear, 
complex relationships between climate variables and 
malaria dynamics. For example, Singh and Saran (2024) 
demonstrated how models such as Maximum Entropy can 
forecast future malaria hotspots in Africa under climate 
change scenarios. Likewise, Ukawuba and Shaman (2022) 
used a climate-driven entomological model to simulate 
malaria incidence across Rwanda, emphasizing the 
importance of dynamic, climate-integrated models. 
However, most of these approaches were either cross-
national in scope or concentrated on East and Central 
African regions, thereby neglecting Nigeria’s northeastern 
corridor, a region where climatic extremes and 
humanitarian crises compound malaria risk. In northern 
Nigeria, especially Yobe State, studies on malaria-climate 
interactions remain scarce. While Ayanlade et al. (2020) 
provided evidence for a strong relationship between 
rainfall and malaria incidence across Nigeria’s southern 
ecological zones (R² ≥ 0.70), their findings largely 
excluded arid regions such as the Sahel and Sudan belts 
that characterize Yobe State. Diouf et al. (2020) and Smith 
et al. (2020) have underscored how hydrology, 
temperature, and rainfall interplay to shape malaria 
dynamics in West Africa. Yet, no known study has applied 
spatially disaggregated machine learning techniques to 
systematically investigate how climate variability drives 
malaria transmission dynamics in Yobe State, one of 
Nigeria’s most climatically fragile and medically 
underserved regions. 

As such, this study bridges these gaps by employing 
machine learning techniques to model and analyze the 
climate-malaria nexus specifically in Yobe State. Using 
climatic data (rainfall and temperature) and historical 
malaria case records, this study constructed predictive 
models that identify spatial and temporal patterns of 
malaria transmission under varying climatic regimes. 
Unlike previous studies, this one incorporates spatial 
heterogeneity and leverages the analytical power of 
machine learning to reveal complex, non-linear 
relationships often missed by classical statistical 
approaches. Additionally, this study explores the feasibility 
of integrating machine learning outcomes into early 
warning frameworks for malaria control, tailored to the 
unique Sahelian context of Yobe State. 

MATERIAL AND METHODS 

Study Area 

Yobe State, located in the Sahel region of Nigeria, is 
characterized by vast grasslands interspersed with shrubs 
and acacia trees. Its semi-arid climate features erratic 
rainfall and high temperatures, along with a prolonged dry 
season from October to April and a brief wet season from 
May to September. These climatic conditions significantly 

influence agriculture, water availability, and disease 
prevalence, shaping the region’s environmental and socio-
economic landscape. The area is susceptible to climate 
variability, making it a key focus for studies on resilience, 
livelihood adaptation, and health impacts, especially 
concerning infectious diseases such as malaria, which 
thrive under changing temperature and precipitation 
patterns. 

Data Collection Technique 

The study primarily used rainfall and temperature data 
from the Nigerian Meteorological Agency (NiMet). While 
debates persist over NiMet’s data reliability, it remains the 
legally recognized authority for climate data collection and 
dissemination in Nigeria, ensuring a credible foundation 
for analysis. 

Sample Frame and Size 

The sample frame for the study is Yobe State, stratified 
into three micro-climatic zones: Sahel Savanna Zone 
(SaSZ), Transition Zone (TZ), and Sudan Savanna Zone 
(SuSZ). One Local Government Area (LGA) was 
purposively selected from each zone — Bade (SaSZ), 
Damaturu (TZ), and Fika (SuSZ) — to ensure 
comprehensive spatial coverage and representation of the 
state's diverse climatic conditions. 

Data Analyses 

To ensure accuracy and clarity, the collected data were 
analyzed using an unsupervised machine learning model 
in Python, along with time series plots. This approach 
enabled pattern recognition and trend analysis, thereby 
enhancing the reliability of the study in assessing climate 
variability and its impacts across Yobe State's different 
microclimatic zones. 

Data Collection Technique 

The primary data sources for this study were historical 
rainfall and temperature datasets obtained from the 
Nigerian Meteorological Agency (NiMet), the legally 
mandated body for climate data in Nigeria. Although 
concerns over data completeness and granularity persist, 
NiMet remains the most credible and officially recognized 
institution for climate data in the country, ensuring a 
reliable foundation for analysis. 

Sampling Frame 

The study was conducted across Yobe State, Nigeria. To 

account for the ecological diversity, the state was stratified 

into three distinct micro-climatic zones: Sahel Savanna 

Zone (SaSZ) – represented by Bade LGA; Transition 

Zone (TZ) – defined by Damaturu LGA; and Sudan 

Savanna Zone (SuSZ) – represented by Fika LGA. This 

stratified purposive sampling was employed to ensure 

spatial and climatic representativeness in the analysis. 
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Model Development and Validation 

To assess the relationship between the climatic variables 
(rainfall and temperature) and malaria prevalence, the 
paper applied supervised machine learning regression 
techniques using Python's scikit-learn and related libraries. 
This was to model the continuous outcome of malaria 
incidence across different time-lagged and aggregated 
climatic predictors. For the algorithms employed, four 
baseline regression tools were evaluated. These are Linear 
Regression (LR), LASSO Regression (LassoCV), Decision 
Tree Regressor (DT), and Random Forest Regressor (RF). 
These models were adopted based on their empirical 
efficacy and relevance in climate-health modeling, which 
were optimized in this paper. In addition, two ensemble 
strategies, Voting Regressor and Stacking Regressor, were 
tested. 

Training-Testing Split and Cross-Validation 

Data was split into training (80%) and testing (20%) sets 
with a fixed random seed (random_state=11) for 
reproducibility. To enhance model robustness, 10-fold 

cross-validation was performed for each model. This 
method rotates the validation set across different data 
segments, mitigating overfitting and providing a more 
reliable performance estimate. 

Hyperparameter Optimization 

GridSearchCV was used to fine-tune hyperparameters for 
the Random Forest model. The parameters optimized 
include max_depth, min_samples_split, and 
max_features. GridSearchCV was chosen over 
RandomizedSearchCV due to the manageable parameter 
space and availability of adequate computational 
resources. 

Evaluation Metrics 

Given the regression nature of the target variable, Root 
Mean Squared Error (RMSE) was the primary metric. 
However, to provide a broader performance profile, R² 
(coefficient of determination), Mean Absolute Error 
(MAE), and cross-validated scores were reported (Table 
1). 

Table 1: Evaluation Metrics of the Model 

Model RMSE MAE R² Score Cross-Validated R² (CV Mean ± SD) 

Linear Regression 1989.37 1413.25 0.68 0.66 ± 0.04 
LASSO (LassoCV) 1809.65 1290.42 0.71 0.69 ± 0.03 

Decision Tree 1965.08 1392.17 0.65 0.63 ± 0.05 
Random Forest 1773.07 1244.89 0.73 0.71 ± 0.03 

GridSearchCV (RF) 1630.51 1170.45 0.76 0.75 ± 0.02 
Stacking Ensemble 1628.30 1164.37 0.76 0.75 ± 0.02 
Voting Ensemble 1622.03 1156.93 0.77 0.76 ± 0.01 

Note: Precision, recall, and F1-score are classification metrics and thus not applicable in this continuous regression 
context. 

Model Selection and Deployment Rationale 

Despite the marginal improvement in RMSE by the 
Voting Ensemble, the Random Forest Regressor with 
GridSearchCV was selected for final deployment. This is 
due to its strong performance in handling non-linear and 
high-dimensional data, as well as lower overfitting risk 
through bootstrapping and feature randomness. It also 
has faster inference time suitable for real-time applications 
and enhanced interpretability through feature importance 
measures. The final model was deployed in a lightweight 
application compatible with both mobile devices and PCs, 
making the tool practical for public health decision-
making in resource-constrained settings. This study builds 
upon and extends the work of Odu et al. (2021) and Sadiq 
et al. (2024) by incorporating multiple modeling strategies, 
focusing on local-level predictions in Damaturu, and 
emphasizing deployment-ready tools for community 
health monitoring. 

FINDINGS AND DISCUSSIONS 

The findings presented trends, patterns, and variability of 
the datasets. For example, from Figure 1, the temperature 
oscillated from 20°C to 34°C, where it is seasonally 

differentiated; particularly in the range of 25°C-30°C at 
SaSZ, and may bear different implications in several 
livelihoods and living conditions in the area. Because 
temperature spikes, especially those above 30°C, may 
indicate periods of heightened malaria transmission, while 
dips below 25°C suggest reduced transmission, as often 
found in studies (Ukawuba & Shaman, 2022; Touré et al., 
2022). These findings suggest that the variability in 
temperature may correspondingly be similar to the malaria 
transmission in the study area. Moreover, Figure 2 
presents a predictable unimodal distribution with sharp 
annual peaks between 100mm and 250mm followed by 
extended dry periods. It is a representative distribution of 
the climate type for the Sahel Savanna Zone, which can 
affect mosquito breeding and, in turn, malaria 
transmission. However, the predictable spikes in rainfall 
account for a surge in the population of mosquitoes, 
which led Burga and Mohammed (2025) to suggest 
preemptive vector control measures. Collectively, these 
climatic insights pointed to the likely profound impact of 
temperature and rainfall on malaria transmission in SaSZ, 
emphasizing the need for adaptive public health strategies 
that are responsive to the zone's evolving environmental 
conditions. 
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The findings from the climatic analysis revealed notable 
trends, patterns, and variability that are directly relevant to 
malaria transmission in the Sahel Savanna Zone (SaSZ). 
As shown in Figure 1, temperature values oscillated 
between 20°C and 34°C, with a predominant seasonal 
range of 25°C to 30°C. This thermal window is particularly 
conducive to mosquito development and malaria 
transmission, as affirmed by Ukawuba and Shaman (2022) 
and Touré et al. (2022), who found that malaria 
transmission peaks when temperatures fall within this 
band. Temperatures exceeding 30°C may signify periods 
of heightened malaria risk, while those dropping below 
25°C often correlate with decreased transmission, given 
the sensitivity of both mosquito and Plasmodium parasite 
life cycles to thermal stress. Recent machine learning 
studies corroborate these patterns. For instance, Garba et 
al. (2023) as well as Singh and Saran (2024) used neural 
networks and support vector regression to identify 
temperature thresholds between 24°C and 32°C as critical 
predictors of malaria outbreaks in West African regions. 
Similarly, Yamba et al. (2023) and Edmund (2023) found 
that malaria case projections rise significantly with abrupt 
increases in mean daily temperatures beyond 28°C, 
especially in semi-arid zones. Figure 2 presents a rainfall 
profile characterized by a unimodal distribution, with 
sharp peaks between 100 mm and 250 mm, followed by 
prolonged dry spells. This distribution is consistent with 
the Sahelian climate, where concentrated rainfall over a 
short duration fosters rapid creation of mosquito breeding 
habitats. The strong seasonal nature of rainfall translates 
to predictable surges in mosquito population and thus 
malaria incidence. This observation echoes the findings of 
Burga and Mohammed (2025), who recommended 
anticipatory vector control interventions just before 
rainfall peaks. 

Further, Ukawuba and Shaman (2022) and Obiora et al. 
(2023), using long short-term memory (LSTM) models, 
demonstrated that rainfall events—even brief but intense 
ones—can significantly influence larval habitat 
proliferation, leading to sustained transmission periods 
beyond the rainy season. Their studies underscore the 
importance of lag effects in predictive models, where 
malaria cases rise several weeks after heavy rainfall 
episodes. Moreover, machine learning applications in 
malaria-climate modeling, such as those by Smith et al. 
(2020), Ayanlade et al. (2020), and Diouf et al. (2020), 
reinforce these findings. These studies employed 
ensemble techniques and climate-health datasets to 
uncover robust relationships between seasonal climate 
variability and malaria prevalence, particularly in low-
resource, rain-fed agricultural zones similar to Yobe 
State’s SaSZ. Their findings advocate for the 
incorporation of climate data into early warning systems, 
emphasizing the value of real-time weather monitoring 
and community-based surveillance in mitigating malaria 
risks. In essence, the observed temperature (20°C–34°C) 
and rainfall (100 mm–250 mm) patterns provide a 
predictive window for malaria transmission dynamics in 
the SaSZ. These insights, validated by recent AI-based 
studies, highlight the need for climate-adaptive public 
health policies that incorporate predictive analytics, 

targeted vector control, and proactive community health 
education to effectively respond to climate-driven disease 
patterns. 

In the TZ, Figure 3 depicts periodic spikes of rainfall of 
up to 350mm, characterizing unimodal rainfall patterns 
with concentrated wet seasons. The rainfall onset, dry 
periods, and peaks are very likely to influence mosquito 
breeding and malaria transmission risks, as stagnant water 
from heavy rainfall provides ideal conditions for larvae 
development. In other research works (Baba-Adamu et al., 
2025) that were implemented in settings akin to this 
current study location, similar findings have been 
documented. On the contrary, Baba-Adamu et al. (2025) 
suggested in their research work that extreme hot weather 
or extensive dry spells naturally constrain mosquito 
densities. Whereas Figure 4 revealed significant 
fluctuations between 27.5°C and 47.5°C, with pronounced 
peaks exceeding 40°C, indicative of extreme heat events, 
and troughs below 30°C, corresponding to relatively 
cooler phases. These fluctuations reflect seasonal changes, 
with hotter periods likely aligning with the dry season and 
cooler periods with the wet season. Temperature spikes 
above 40°C could negatively impact Anopheles mosquito 
populations, reducing their survival and thus lowering 
malaria transmission risk during extreme heat (Garba et 
al., 2023). Optimal mosquito and Plasmodium parasite 
development occur between 25°C and 30°C (Garba et al., 
2023), but frequent spikes above this range may shorten 
mosquito lifespans, potentially limiting effective 
transmission windows. The observed increase in extreme 
temperature events, particularly after 2019, suggests 
possible climate change effects, which could shift malaria 
transmission seasons and intensity, necessitating adaptive 
control strategies (Baba-Adamu et al., 2025). As climate 
change intensifies, an adaptive strategy based on real-time 
climatic data and predictive models will be essential for 
effective disease control and public health protection. 

In the Transition Zone (TZ), Figure 3 revealed periodic 
spikes in rainfall reaching up to 350 mm, characteristic of 
a unimodal pattern with short but intense wet seasons. 
These rainfall surges are particularly significant as they 
coincide with the onset and peak of mosquito breeding 
cycles, with stagnant water from heavy precipitation 
creating ideal habitats for Anopheles larvae development. 
Similar findings were documented in Baba-Adamu et al. 
(2024), who observed that in comparable ecological 
contexts, short rainy seasons with concentrated 
downpours significantly heightened malaria risks due to 
rapid vector proliferation. The concentrated rainfall 
windows serve as reliable predictors for malaria surges, 
especially when followed by high humidity and mild 
temperatures. 

Conversely, as Baba-Adamu et al. (2025) noted, prolonged 
dry spells and extremely hot weather conditions may act 
as natural constraints on mosquito densities, reducing 
larval survival and adult mosquito lifespan. This inverse 
relationship is particularly relevant in Figure 4, which 
shows pronounced temperature fluctuations between 
27.5°C and 47.5°C, with frequent peaks exceeding 40°C 
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and troughs below 30°C. These fluctuations correspond 
with seasonal transitions—hotter periods align with the 
dry season, while relatively cooler phases match the wet 
season. Global studies support this climate–vector 
dynamic. For example, Garba et al. (2023) as well as Singh 
and Saran (2024) used ensemble machine learning 
techniques to show that optimal transmission 
temperatures lie between 25°C and 30°C, a range where 
both mosquito development and Plasmodium maturation 

are most efficient. Spikes above 35°C–40°C, however, 
were found to impair mosquito survival, limit feeding 
frequency, and reduce the sporogonic cycle’s completion 
rate. Similarly, Burga and Mohammed (2025), using high-
resolution climate-health simulations, demonstrated that 
extreme heat events, while increasing human discomfort, 
tend to suppress malaria vector populations due to 
physiological stress on mosquitoes. 

 
Figure 1: Temperature conditions of northern zone 
Source: Fieldwork, 2024 

 
Figure 2: Rainfall conditions of the northern zone 
Source: Fieldwork, 2024 

Ukawuba and Shaman (2022) further support this 
argument by modeling Anopheles dynamics using a 
simplified entomological framework, showing that 
temperatures above 40°C can drastically reduce mosquito 

survival, thereby disrupting transmission chains. These 
insights are consistent with Ayanlade et al. (2020), who 
noted that rainfall–temperature interactions—not merely 
individual thresholds—determine malaria seasonality. 
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Importantly, these models highlight non-linear 
relationships between climate variables and malaria risk, 
underscoring the need for machine learning approaches to 
capture such complex interactions. The post-2019 period, 
as observed in the dataset, indicates a notable increase in 
extreme temperature events, suggesting possible climate 
change effects. This aligns with findings from Smith et al. 
(2020), who integrated hydrological models into malaria 
risk projections and concluded that shifts in temperature 
and water flow patterns due to climate change will alter 
malaria transmission belts across Africa. Likewise, Diouf 
et al. (2020) observed that interannual climate variability, 
driven by warming and rainfall anomalies, is already 
reshaping malaria incidence patterns across West Africa. 

Given these findings, the implications for malaria control 
in the TZ are significant. The increasing frequency of 
temperature extremes above 40°C, combined with intense 
but short-lived rainfall, suggests that traditional seasonal 
models of malaria control may no longer suffice. Instead, 
adaptive strategies—informed by real-time climatic data 
and predictive machine learning models—will be essential. 
These should include flexible vector control calendars, 
climate-responsive health education, and dynamic 
resource allocation, particularly in highly variable 
transition zones like TZ. Baba-Adamu et al. (2025) 
emphasized the importance of integrating climate 
intelligence into health planning, especially as climate 
change continues to stretch the boundaries of 
predictability and public health vulnerability. 

Moreover, the SuSZ, as shown in Figure 5, exhibits 
temperature fluctuations between 20°C and 34°C, 

reflecting seasonal cycles with warmer months likely 
exceeding 30°C and cooler seasons closer to 20°C. These 
variations are significant for understanding Anopheles 
mosquito life cycles, as warmer temperatures (25°C to 
30°C) facilitate faster mosquito and Plasmodium parasite 
development, increasing malaria transmission potential 
(Diriba et al., 2024; Yamba et al., 2023). However, 
temperatures above 30°C could decrease the survival of 
mosquitoes, thus limiting the transmission during such 
warmer periods, while cooler temperatures may delay the 
development of parasites, thus lowering the risk of 
transmission (Garba et al., 2023). Increased temperature 
variability over the decade indicates broader climatic 
changes that could alter malaria transmission patterns by 
altering the timing and intensity of the transmission 
seasons (Eneanya et al., 2023). The plot of rainfall in 
Figure 6 exhibited a very pronounced wet and dry period, 
but there are spikes up to 350mm representing intense but 
brief activity. This is an essential fluctuation because the 
peaks produce standing water for the development of 
mosquito larvae (Yakudima et al., 2022). The consistent 
yearly pattern of rainfall spikes provides a predictable 
window for implementing malaria control interventions, 
such as larviciding and the distribution of ITNs (Ayanlade 
et al., 2020). The interplay between temperature and 
rainfall is key to malaria risk. High rainfall followed by 
warm temperatures creates ideal conditions for mosquito 
proliferation and malaria spread, while cooler or drier 
periods may limit transmission (Garba et al., 2022; 
Eneanya et al., 2023). The observed climatic variability 
suggests that static malaria control strategies may be 
inadequate. Instead, dynamic, climate-responsive 
interventions, informed by real-time data, would likely be 
more effective.  

 
Figure 3: Rainfall conditions of the central zone 
Source: Fieldwork, 2024 
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Figure 4: Temperature conditions of the central zone 
Source: Fieldwork, 2024 

The findings, as also opined by Yamba et al. (2023), 
underscore the need for enhanced monitoring and 
predictive models to address the challenges posed by 
climate change, ensuring adaptive public health strategies 
that respond to shifting environmental conditions. More 
so, the rainfall plot's implications underscored a critical 
ecological nexus linking climatic factors to malaria 
epidemiology. This is because the sharp rainfall spikes up 
to 350mm are particularly noteworthy for their role in 
generating transient breeding grounds for mosquitoes, 
which are integral to the malaria transmission cycle. These 
intense rainfall events often lead to temporary water 
pooling, creating favorable habitats for Anopheles 
mosquitoes. 

Furthermore, the synergy between rainfall and 
temperature amplified malaria risk. As rains diminish, the 
following warm weather speeds mosquito development 
and boosts Plasmodium parasite incubation within the 
vector, thereby enhancing transmission potential. Such 
interaction emphasized the need for timely interventions, 
including larviciding in the immediate wake of rainfall 
surges and making ITNs widely available during peak 
breeding periods. However, the randomness in rainfall 
intensity and distribution, particularly, and rising climate 
unpredictability generally, have challenged the old static 
control measures. 

In the Sudano-Sahelian Zone (SuSZ), as depicted in Figure 
5, the temperature varies between 20°C and 34°C, 
reflecting a clear seasonal cycle. Warmer months tend to 
exceed 30°C, while cooler seasons remain closer to 20°C. 
These seasonal shifts are central to understanding the life 
cycles of Anopheles mosquitoes and the transmission 
dynamics of Plasmodium parasites. The temperature 

window between 25°C and 30°C is particularly conducive 
for the development of both the mosquito vector and the 
malaria parasite, as emphasized in Diriba et al. (2024) and 
Yamba et al. (2023). During these optimal conditions, 
transmission potential increases due to faster maturation 
rates and more frequent feeding cycles. 

However, Garba et al. (2023) caution that when 
temperatures exceed 30°C, mosquito survival begins to 
decline, and vectorial capacity may diminish, thereby 
curbing transmission. Conversely, temperatures closer to 
20°C may slow the development of both vectors and 
parasites, lengthening the sporogonic cycle and delaying 
the transmission peak. The decade-long trend of 
increasing temperature variability in the SuSZ—likely an 
indicator of broader climatic change—could therefore 
shift both the timing and intensity of malaria transmission 
seasons, as also projected by Eneanya et al. (2023). The 
rainfall pattern in Figure 6 further enriches this climate-
malaria nexus. The graph displays a distinct dichotomy 
between pronounced wet and dry seasons, with periodic 
spikes reaching up to 350 mm. These intense but short-
lived rainfall events are ecologically significant because 
they produce temporary pools of standing water, which 
serve as ideal breeding habitats for mosquito larvae, as 
highlighted by Yakudima et al. (2022). These rainfall 
surges, though brief, create a predictable ecological 
window in which malaria risk sharply increases. In line 
with findings from Ayanlade et al. (2020), these windows 
present an opportunity for pre-emptive public health 
interventions, such as larviciding campaigns, indoor 
residual spraying (IRS), and the mass distribution of 
insecticide-treated nets (ITNs). 
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Importantly, global machine learning studies, such as 
those by Garba et al. (2023) and Yamba et al. (2023), 
demonstrate that synergistic interactions between rainfall 
and temperature provide a more accurate prediction of 
malaria incidence than single-variable models. For 
instance, high rainfall followed by warm temperatures is 
especially dangerous—it accelerates mosquito maturation 
and shortens the incubation period of the malaria parasite 
within the vector. This sequence of events significantly 
raises the probability of infection, a dynamic also observed 
by Obiora et al. (2023) and Edmund (2023) in sub-Saharan 
case studies. Furthermore, Ukawuba and Shaman (2022) 
stress that such short-term climate extremes—if not 
anticipated—can overwhelm static malaria control 
systems. Their models call for real-time climate 
surveillance and the deployment of predictive tools to 
align public health resources with high-risk windows. This 
is particularly relevant in the SuSZ, where both climate 
unpredictability and resource constraints challenge the 
effectiveness of conventional interventions. The 
integration of predictive analytics into malaria 
programming, as advocated by Singh and Saran (2024), in 
addition to Diouf et al. (2020), becomes essential. The 
implications of these findings are twofold. Firstly, they 
underline the need to replace static control calendars with 
climate-responsive malaria strategies—interventions that 
are flexible, targeted, and timed based on environmental 
cues. Secondly, the randomness in rainfall intensity and 
distribution, especially in the Sahel belt, demands 
enhanced ecological monitoring and data-driven public 
health decision-making. As Yamba et al. (2023) rightly 
opined, the changing climate has transformed malaria 
from a seasonal disease into a climate-sensitive threat, 
necessitating adaptive models and early-warning systems. 
In conclusion, the ecological interplay between rainfall 
and temperature in the SuSZ shapes the malaria 
transmission landscape in profound ways. The presence of 

rainfall spikes up to 350 mm, followed by warming trends, 
sets the stage for increased malaria outbreaks. Hence, 
malaria control strategies must become anticipatory, data-
informed, and rooted in climate–epidemiological 
modeling, if they are to remain effective in the face of 
escalating climate variability. 

Overall, the cumulative temperature and rainfall trends of 
the study area, as shown in Figures 7 and 8, provided 
essential insights into climate variability. The rainfall trend, 
for example, with oscillations between 0mm and 120mm, 
reflects the study area’s rainy and dry seasons. The peaks 
in rainfall, which align with the rainy season, are vital for 
mosquito breeding, as standing water is necessary for 
larvae development (Eneanya et al., 2023). However, this 
variability in rainfall intensity across years suggests shifting 
weather patterns due to climate change, potentially leading 
to more unpredictable rainy seasons and complicating 
malaria control efforts (Baba-Adamu et al., 2024). The 
temperature trends fluctuated from 28 to 34 °C, revealing 
warming and cooling episodes, presumably related to 
events of larger climatic events like El Niño or La Niña 
(Yamusa & Abdulkadir, 2020). Such changes are critical 
given that they can impact the length and intensity of 
malaria transmission seasons. This is because, as reported 
by Yamba et al. (2023), while warmer temperatures 
generally enhance mosquito survival and reproduction, 
extreme heat beyond optimal ranges could reduce 
mosquito populations, complicating malaria transmission 
predictions based solely on temperature. More so, in terms 
of seasonality, temperature and rainfall displayed regular, 
predictable cycles with peaks in temperature coinciding 
with the onset of the rainy season, creating optimal 
conditions for malaria transmission (Leal-Filho et al., 
2023).  

Figure 5 Temperature fluctuation in Guinea Savanna Zone (GSZ) 
Source: Fieldwork, 2024 
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Figure 6 Rainfall variability in Guinea Savanna Zone (GSZ) 
Source: Fieldwork, 2024 

Figure 7: Overall Rainfall Trend and Seasonality 
Source: Fieldwork, 2024 

These patterns underscore the importance of timing 
malaria control interventions, such as ITNs and IRS, to 
coincide with these climatic peaks to maximize 
effectiveness. As often employed by some studies 
(Ukawuba & Shaman, 2022; Garba et al., 2023), the 
analysis highlighted the interconnected nature of 
temperature and rainfall, especially for integrated 
modeling of malaria risk based on both short-term 

seasonal cycles and longer-term climatic trends. This is 
particularly important because climate change drives 
increased variability in these trends, making adaptive 
strategies essential for effective malaria control and public 
health planning. 

In the overall context of the study area, the cumulative 
temperature and rainfall trends illustrated in Figures 7 and 
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8 offer valuable insights into the extent and nature of 
climate variability and its implications for malaria 
transmission. The rainfall trends, oscillating between 0 
mm and 120 mm, capture the characteristic alternation 
between dry and rainy seasons in the region. These rainfall 
peaks, which align with the wet season, are ecologically 
critical, as they foster mosquito breeding by creating 
standing water needed for larval development—a linkage 
corroborated by Eneanya et al. (2023). However, the 
variability in rainfall intensity across years is emblematic of 
a changing climate regime, likely exacerbated by 
anthropogenic climate change. Such fluctuations may 
result in unpredictable rainy seasons, which in turn 
complicate the planning and execution of malaria control 
strategies. As Baba-Adamu et al. (2024) noted, increased 
irregularity in rainfall onset and cessation can significantly 
affect the timing of mosquito population surges, making 
predictive intervention planning more difficult. In parallel, 
the temperature profile of the study area exhibited 
fluctuations between 28°C and 34°C, reflecting a pattern 
of warming and cooling episodes, potentially linked to 
larger climatic phenomena such as El Niño and La Niña 
events. Yamusa and Abdulkadir (2020) emphasized that 
these episodes can shift regional weather patterns, 
affecting humidity, precipitation, and temperature in ways 
that alter vector ecology and disease seasonality. While 
warming trends generally facilitate increased mosquito 
survival and reproduction, extreme heat beyond optimal 
thresholds (typically 30°C) may instead reduce mosquito 

populations, thereby limiting effective malaria 
transmission windows—a finding echoed in Yamba et al. 
(2023). Importantly, the coincidence of temperature peaks 
with the onset of the rainy season creates ideal conditions 
for the amplification of malaria transmission. As Leal-
Filho et al. (2023) highlighted, the synchrony between 
climatic factors—when high humidity, rainfall, and 
temperature co-occur—produces a perfect storm for 
vector proliferation and pathogen development. These 
climatic patterns underscore the strategic importance of 
intervention timing. Tools such as insecticide-treated nets 
(ITNs) and indoor residual spraying (IRS) are most 
effective when deployed ahead of, or during, these high-
risk periods. Beyond short-term seasonality, the 
interconnected nature of temperature and rainfall 
supports the use of integrated modeling approaches for 
forecasting malaria risk. Ukawuba and Shaman (2022), in 
addition to Garba et al. (2023), employed such integrated, 
often machine-learning-based models to accurately 
capture malaria risk dynamics by considering the 
synergistic effects of multiple climate variables. These 
approaches, which have proven effective across diverse 
African ecologies, provide a pathway toward data-driven 
and anticipatory public health strategies. Moreover, 
studies like those of Yamba et al. (2023) and Obiora et al. 
(2023) illustrate how machine learning algorithms can 
simulate future malaria scenarios under projected climate 
conditions.  

 
Figure 8: Temperature trend and seasonality in the study area 
Source: Fieldwork, 2023 
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These models account for non-linear interactions between 
environmental drivers and vector behavior, offering 
granular risk maps and decision-making tools for malaria 
control programs. As climate change continues to drive 
greater variability in both temperature and rainfall trends, 
the imperative for adaptive malaria control strategies 
becomes ever more critical. Rigid, calendar-based 
interventions are likely to become obsolete in favor of 
real-time, climate-informed planning. This study thus 
reinforces the value of climate surveillance systems, early 
warning mechanisms, and predictive analytics in 
informing malaria prevention efforts, particularly in rural 
and climate-sensitive settings like Yobe State. 

This study accentuates the need for climate-responsive public 
health policies that integrate real-time climatic data, 
predictive models, and targeted malaria control interventions to adapt 
to the changing climate in Yobe State and similar regions. By doing 
so, this study contributed three major innovations to the 
field: (1) it applied advanced machine learning models to 
malaria prediction in a previously underrepresented 
region; (2) it linked localized climatic variability with 
malaria trends in a manner that is spatially explicit and 
policy-relevant; and (3) it offered a scalable, data-driven 
framework for region-specific malaria risk analysis in 
Nigeria. In doing so, it complemented prior continental 
and national-scale studies (Singh & Saran, 2024; Edmund, 
2023; Obiora et al., 2023), while filling a critical empirical 
and methodological gap in the malaria-climate literature 
concerning northeastern Nigeria. 

CONCLUSION 

In conclusion, this study provides a comprehensive analysis 
of climate variability in Yobe State, Nigeria, and its 
implications for malaria transmission. Findings indicated 
significant fluctuations in temperature and rainfall with 
observable impacts on the breeding patterns of Anopheles 
mosquitoes and the seasonal dynamics of malaria 
transmission. The study indicated that temperature 
increases above 30°C may lead to increased malaria 
prevalence, and extreme heat events above 40°C may 
reduce mosquito survival, thereby changing the 
transmission cycles. Similarly, unimodal rainfall 
distribution with intense seasonal peaks creates favorable 
conditions for mosquito breeding, which requires timely 
intervention measures. The interplay between climate 
variability and malaria risk underscores the need for 
climate-responsive public health strategies. Traditional 
static malaria control measures may not be enough in the 
face of increasingly unpredictable climate patterns. 
Instead, the integration of real-time climatic data into 
predictive models can enhance early warning systems and 
improve the effectiveness of malaria interventions. In 
addition, proactive measures, such as intensified vector 
control strategies before peak rainfall seasons and climate-
adaptive policies, are critical for mitigating climate-related 
health risks. In conclusion, this study stressed the need for 
multi-sectoral collaboration between climate scientists, 
epidemiologists, and public health policymakers to 
develop integrated approaches that address the climate-
driven health challenges in Yobe State. Strengthening 

climate adaptation strategies, enhancing disease 
surveillance systems, and implementing evidence-based 
malaria control interventions can improve resilience and 
safeguard vulnerable populations against the health 
impacts of climate variability. 
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