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INTRODUCTION
Mathematical model is the application of methods to 
analyse complex real-world situations, which may consist 
of some elements abstracted from reality to make 
predictions of what might happen (Hairer et al., 1993).  
Mathematical models are applicable across various fields 
of study, including physics, engineering, economics, 
biology, environmental science, medicine, social sciences, 
computer science, operations research, and finance 
(Aduroja & Adamu, 2025).  These physical problems 
involve a number of separate elements linked together in 
some manner which lead to first order differential 
equations of the form, 

( ) ( ) ( ) 00,, utuutftu == ,   (1) 

where ( )tu  and ( )utf ,  are of the form,  

𝑢′(𝑡) = [

𝑥 ′

𝜉 ′

⋮
𝑧 ′

]  and 𝑓(𝑡, 𝑢) = [

𝑓(𝑡, 𝑥)

𝑓(𝑡, 𝜉)
⋮

𝑓(𝑡, 𝑧)

] , 𝑡0 ∈ 𝐼, 𝑢0

= (𝑥0, 𝜉0, . . . , 𝑧0) ∈ 𝐷 

Numerical methods are essential for simulating 
mathematical models, particularly in complex systems 
with unattainable analytical solutions (Aduroja & Adamu, 
2025).  

Many real-world situations present a challenge in science, 
medicine, and engineering, which mathematical models 
handle to provide a solution via numerical methods to 
make an informed decision (Porgo et al., 2018).  This is 
necessary in order to accurately simulate real-world 
phenomena (Bretti, 2021). 

On the other hand, first-order differential equations are 
solved using numerical methods, leading to two distinct 
types of solutions.  The first type is a series solution of y 
in terms of x, which allows us to determine the value of y 
at a specific value of x through direct substitution in the 
series.  Examples of this approach include the Taylor and 
Picard methods. 

The second type of solution involves obtaining values of 
y at specified values of x.  This category includes methods 
such as Euler, Runge-Kutta, Adam-Bashforth, and Milne, 
often referred to as step-by-step methods.  These methods 
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Decomposition Method solves the problems and yields results very close to the analytical 
solution, but the block method performs better due to its multistep approach.  Simulink offers a 
more robust approach for modelling and simulation with visible and interpretable solutions for 
good understanding.  This study revealed that numerical methods can easily be used to better 
simulate mathematical models that may not have analytical solutions and thus provide 
approximate solutions. 
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work by calculating the values of y in short increments at 
equal intervals h of the independent variable x. 

This study, therefore, focuses on these step-by-step 
methods for effectively simulating mathematical models. 

Mathematical models are commonly simulated using 
ODE45, ODE15S or ODE23t.  The ode45 works best for 
linear and non-stiff problems.  ode15s and ode23t can 
handle nonlinear and stiff problems.  Thus, we explore 
some numerical methods by examining the solutions' 
computational stability, accuracy and consistency.  The 
performance of these methods are tested on different 
types of ordinary differential equations, highlighting the 
strengths and limitations of the methods. 

Early in 1990, George Adomian introduced and 
developed the Adomian Decomposition Method (ADM).  
ADM, like the perturbation approach, it is a power series 
method and researchers in the field of initial and boundary 
value problems have been paying more attention to it 
lately (Rahman, 2007; Mariam, 2014).  ADM is well known 
for its ability to solve nonlinear problems with closed form 
solution (Sunday, 2011). 

Simulink graphically represents the model's simulation, 
which is perfect for broader application because it offers 
an easy-to-use interface for simulating dynamic systems 
(Aduroja et al., 2024).  

Compared to traditional methods, block methods are self-
starting, more accurate, more efficient (Omar & Adeyeye, 
2016; Adamu, 2023; Adamu et al., 2019; Bukar et al., 2022).  
Modifying linear multi-step methods first addressed the 
Dahlquist barrier theorem by adding fractional step points 
in the derivation process to form a hybrid block method 
(Adamu et al., 2019; Adamu et al., 2020).  This increased 
the result's accuracy and maintained good stability 
properties (Adamu et al., 2019; Adamu et al., 2020). 

James et al. (2013) developed an order-6 half-step block 
approach of power series approximation.  The method is 
used for SIR, growth, and mixing real-world situations.  
Using the Laguerre polynomial, Sunday et al. (2016) 
developed and used a quarter-step L-stable hybrid block 
approach of order 5 to handle a few real-world problems 
involving mixture, decay, growth, and SIR model 
difficulties.  An implicit two-step obrechkoff type block 
approach of order 6 is constructed by Omar & Adeyeye 
(2016) and use the method to simulate SIR models and 
mixtures models. 

Ashgi et al. (2021) simulate epidemiological models using 
Runge-Kutta and Euler methods and compare the 
behaviour of the results using the two methods.  When 
comparing the two approaches' performance in solving 
the model, the results show that the Euler method 
produces a larger error, the classical Runge-Kutta method 
is more accurate but both of the methods are accurate. 

Many scholars like (James et al., 2013; Omar & Adeyeye, 
2016; Sunday, Yusuf & Andest, 2016; Adamu et al., 2019) 
have developed numerical methods for numerical 
approximations but there is still lack of adequate studies 

that compare the performance of these methods in 
simulating mathematical models across different types of 
problems in ordinary differential equations.  Thus, many 
researchers lack the guidance in selecting numerical 
methods to tackle problems in ordinary differential 
equations.  Therefore, this study provides a clear picture 
of the strength and limitations of some numerical methods 
so that researchers will avoid trial and error when selecting 
methods for a specific problem or over relying on one 
method. 

METHODS 

Five different methods are considered in this study for the 
numerical simulation of some mathematical models.  The 
algorithm of these methods is as follows: 

Adomian Decomposition Method Algorithm 

)(i  Consider the following nonlinear equation,  

)()(  NLf ++=     (2) 

where f  is Lipschitz continuity,   is a function of x , 

L  and N  are linear and nonlinear operators 

respectively. 

)(ii   Decompose the unknown function )(x  into an 

infinite series to give, 

)()(
0

xx n

n

 


=

= ,    (3) 

or equivalently, 

...210 +++=  ,    (4) 

where the components )(xn  will be determined 

recursively. 

)(iii  Decompose the nonlinear term )(N  into an 

infinite series of polynomials to give, 

( )nn

n

AN  


=

=
0

)( ,    (5) 

where nA  are the Adomian polynomials defined as 

),...,,( 10 nnA  , given by, 

𝐴𝑛(𝜉0, 𝜉1, . . . , 𝜉𝑛) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑∞

𝑘=0 𝜉𝑘𝜆
𝑘)]𝜆=0,     

 𝑛 = 0,1,2,3, . ..     (6) 

)(iv  Substitute (3) - (5) into (2) to give, 

∑∞
𝑛=0 𝜉𝑛 = 𝑓 + ∑∞

𝑛=0 𝐿(𝜉𝑛) +
∑∞
𝑛=0 𝑁𝐴𝑛(𝜉0, 𝜉1, . . . , 𝜉𝑛).   (7) 

)(v  Let 
1−L  be an inverse operator and apply to (2.6), 

to give,  

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 007 – 015. 

 9 

 

 https://scientifica.umyu.edu.ng/                      Samuel et al., /USci, 4(2): 007 – 015, June 2025  
 

𝐿−1(∑∞
𝑛=0 𝜉𝑛) = 𝑓 + ∑∞

𝑛=0 𝜉𝑛 +
𝐿−1(∑∞

𝑛=0 𝑁𝐴𝑛(𝜉0, 𝜉1, . . . , 𝜉𝑛)), 

∑∞
𝑛=0 𝜉𝑛+1 = 𝑓 − 𝐿

−1(∑∞
𝑛=0 𝜉𝑛) +

𝐿−1(∑∞
𝑛=0 𝑁𝐴𝑛(𝜉0, 𝜉1, . . . , 𝜉𝑛)),   (8) 

or equivalently, 

𝜉1 + 𝜉2+. . . = 𝜉0 − 𝐿
−1(𝜉0 + 𝜉1 + 𝜉2+. . . ) −

𝐿−1𝑁(𝐴0 + 𝐴1 + 𝐴2+. . . ),   (9) 

where .0 f=   

)(vi  Recursively, the relationship in (8) is given as, 

𝜉0 = 𝑓                                

𝜉1 = −𝐿
−1(𝜉0) − 𝐿

−1(𝐴0(𝜉0)) 

    𝜉2 = −𝐿
−1(𝜉1) − 𝐿

−1(𝐴1(𝜉0, 𝜉1))

              ⋮          ⋮                                      
           𝜉𝑛+1 = −𝐿

−1(𝜉𝑛) − 𝐿
−1(𝐴𝑛(𝜉0, 𝜉1, . . , 𝜉𝑛))}

 
 

 
 

.(10) 

If ( ))(lim 1 xn
x

+
→
  is convergent, then the solution follows.  

Once the components ,n  0n   are determined, the 

solution   in a series form follows immediately in a 

closed-form. 

Euler's Method 

The Euler's method approximates the solution by using a 
linear function based on the derivative at the current 
point, and it's given by, 

( ),,1 nnnn thf  +=+     (11) 

where h  is the step size and ( )nntf ,  is the derivative. 

Classical Runge-Kutta Methods 

Classical Runge-Kutta Method (CRKM) is a one-step 
method with multi-stage evaluations of the derivative per 
step given as, 

( )1 1 2 3 42 2
6

n n

h
k k k k + = + + + + ,  (12) 

( )1 ,n nk f t = , 

2 ,
2 2

n n

h h
k f t 

 
= + + 

 
, 

2
3 ,

2 2
n n

kh
k f t 

 
= + + 

 
, 

( )4 3,n nk f t h k= + + , 

Block Method Algorithm 

)(i  Consider the approximate solution, 

( ) n

n

k

n

xx  
=

=
0

,    (13) 

where ],[ bax , Rna  are the unknown parameters 

to be determined. 

)(ii  Evaluate the first and second derivative of equation 

(13) at jnxx += , ,,...,0 kj =  gives  

UXA = ,     (14) 

where 

  .1   , ...,  ,, , 3210 −+== srkaaaaaA k  

  , ..., ,  , ...,  , ,1

T

snnrnnnU 

+



++=   

)(iii  Impose the following conditions  

( )
( ) sjfx

rjx

jnjn

jnjn

,..,1,0    ,

,...1,0    ,

==

==

++

++




, 

on equation (13), gives, 



























=

−

++

−

+++

1

1

2

2

...210

210

1

1

k

snsn

k

nn

k

rnrnrn

k

nnn

kxx

kxx

xxx

xxx

X











. 

)(iv  Solve (14) for the unknown parameters and 

substitute the results into (13) to give, 

jnj

s

j

jnj

r

j

tn ftht +

=

+

=

+  += )()(
00

 ,  (15) 

where )(tj  and )(tj  are polynomial of degree 

1−+ sr  and 
h

xx
t n−
= . 

)(v  Evaluate (15) at some selected grid and off-grid 

points to give, 

1

)1()0()0(

1

)1(

++ ++= mmmm FhBFhBYAYA , (16) 

where

    , ...   , ...   21211

T

nnnm

T

rnnnm YY  −−++++ ==

    , ...   , ...   21211

T

nnnm

T

snnnm fffFfffF −−++++ ==  

,)1(A  ,)0(A  
)1(B  and 

)0(B  are rr   matrices.  See 

(James et al., 2013; Omar & Adeyeye, 2016; Sunday, Yusuf 
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& Andest, 2016) for details of the block methods 
considered. 

MATLAB Simulink 

Simulink of ordinary differential equations are carryout by 

the following steps: 

)(i  The highest state derivatives are identified. 

)(ii  These states are integrated once or more to obtain all 

states. 

)(iii  The highest states are computed with a simulation. 

)(iv  The signals entering the summation are computed 

by means of gains multiplying known signals and 

inputs. 

To demonstrate how the Simulink block simulate is 

constructed for first order differential equation 

,1++= t  the Simulink block is given as: 

 
Figure 1: MATLAB Simulink Block 

See (Aduroja, Adamu & Ajileye, 2024) for more details 

about Simulink. 

Areas of Comparison 

The effectiveness and accuracy of the numerical methods 

will be compared based on the following: 

(i) The type of equation to be solved. 

(ii) The numerical results i.e absolute error, 

consistence, convergence. 

(iii)  The graphical representation of the 

numerical solutions. 

RESULTS 

In this subsection, well known Growth, Decay, Mixture 

and SIR models are simulated using the methods 

considered to illustrate the performance and accuracy of 

the methods.  The numerical results are computed using 

MATLAB 2018a and compared.  Let )(txn  and )(tx  be 

the approximate and numerical solutions, then the 

absolute error is given by )()( txtxN − .  The numerical 

results are presented in figure and tabular form. 

Notation Meaning 

t Point of evaluation for time 

Exact Exact Solution 

SJ11 Sunday (2011) 

OA16 Omar & Adeyeye (2016) 

JE13 James et al., (2013) 

SYA16 Sunday, Yusuf & Andest (2016) 

Example 1: Growth Model (Sunday, Yusuf & Andest, 

2016) 

The growth rate of the bacterial culture growth model is 

proportionate to the current state.  About 1000 strands 

of the bacteria are found in the culture after an hour, and 

3000 strands are found four hours later.  We considered 

)(t  the number of bacterial strands in the culture at time  

to compute the total number of strands of the bacteria 

accessible in the culture at time 10:  tt .  The 

equation is modelled as: 

( ) ]1,0[ ,1.0 ,6940 ,366.0 === th
dt

d



 

with analytical solution 

( ) tet 366.0694= . 

Using MATLAB 2024 the numerical results for example 1 

are presented on Table 1 and 2, figure 2 and 3 

https://scientifica.umyu.edu.ng/
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Table 1: Computed results for example 1 

t  Exact  Block (SYA16) Euler  CRKM  ADM  Simulink  

0.1  719.87095  719.87095  719.40040  719.87095  719.87095  719.87089 
0.2  746.70631 746.70631 745.73045 746.70631 746.70631 746.70621 
0.3 774.54205  774.54205  773.02418  774.54205  774.54205  774.54188 
0.4 803.41545  803.41545  801.31687  803.41545  803.41545  803.41522 
0.5  833.36519  833.36519  830.64507  833.36519  833.36519  833.36489 
0.6  864.43140  864.43140  861.04668  864.43140  864.43140  864.43103 
0.7 896.65570     896.65570        892.56099      896.65570       896.65570      896.65525  
0.8 930.08126 930.08126 925.22872 930.08125 930.08126 930.08072 
0.9 964.75285 964.75285  959.09209 964.75285  964.75285 964.75222 
1.0 1000.7169 1000.71693  994.19486 1000.71693  1000.7169 1000.71621 

Table 2: Error for example 1 

t  Block (SYA16) Euler  CRKM  ADM  Simulink  

0.1  0.00000e+00  4.7055e - 1 3. 8215e - 7  2.0000e - 14 5.2271e – 5 
0.2  0.00000e+00  9.7586e - 1  7.9280e - 7 2.5000e - 13  1.0844e – 4 
0.3 0.00000e+00  1.5179e + 0  1.2335e - 6  3.4000e - 13  1.6872e - 4 
0.4 0.00000e+00  2.0986e +0 1.7060e - 6 7.0000e - 14  2.3335e - 4 
0.5  0.00000e+00  2.7201e + 0  2.2120e - 6 5.6000e - 13  3.0256e - 4 
0.6  2.27374e-13  3.3847e + 0  2.7534e - 6 1.0800e - 12  3.7661e - 4 
0.7 2.27374e-13  4.0947e + 0  3.3320e - 6 5.9100e - 12  4.5575e - 4 
0.8 3.41061e-13  4.8525e + 0  3.9500e - 6 2.4840e - 11  5.4028e - 4 
0.9 2.27374e-13  5.6608e + 0  4.6094e - 6 8.9120e - 11  6.3047e - 4 
1.0 3.41061e-13  6.5221e + 0  5.3125e - 6 2.8320e - 10  7.2663e - 4 

 
Figure 2: Computed result for problem 1 

 
Figure 3: Error for example 1 

Example 2: Decay Model (Sunday, 2011; Omar & 
Adeyeye, 2016) 

The rate of decay of a particular radioactive material is 

related to its concentration, and there is a g100  block of 

this material visible.  After 40  days, its bulk has reduced 

to g90 .  Use the method to solve this problem for   

1,0t  and find an equation for the mass of the 

substance at any time.  For the problem mentioned above, 

the differential equation is: 

( ) ]1,0[ ,1.0 ,1000 , ==−= th
dt

d



 

where the mass of the substance at any given time is 

represented by  .  The variables specify the decay rate of 

this specific chemical t  and  .  Thus, the theoretical 

outcome is  

( ) ( ) gftgf 9040 days, 40 ,1000 ===  

( ) ( )  ,0 teftf =  

,10090 40e=  

0026.0
40

109
−=

−
=

InIn
  

Hence the theoretical solution is  

tet 0026.0100)( −= . 

the expression for the mass of the substance at any time 
t  
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Table 3: Computed results for problem 2 

t  Exact  ADM (SJ11) Block (JE13) Euler CRKM Simulink  

0.1  99.97400337  99.97400340  99.97400337  99.97400000 99.97400337 99.97400337 
0.2  99.94801351  99.94801353  99.94801351  99.94800676  99.94801351  99.94801351 
0.3 99.92203041  99.92203041  99.92203041  99.92202027  99.92203041  99.92203041 
0.4 99.89605406  99.89960541  99.89605406  99.89604055  99.89605406  99.89605406 
0.5  99.87008446  99.87008449  99.87008446  99.87006758  99.87008446  99.87008446 
0.6  99.84412161  99.84412162  99.84412161  99.84410136  99.84412161  99.84412161 
0.7 99.81816551  99.81816555  99.81816551  99.81814189  99.81816551  99.81816551 
0.8 99.79221617  99.79221618  99.79221617  99.79218918  99.79221617  99.79221617 
0.9 99.76627356  99.76627357  99.76627356  99.76624321  99.76627356  99.76627356 
1.0 99.74033770  99.74033771  99.74033770  99.74030398  99.74033770  99.74033770 

Table 4: Error for problem 2 

t  ADM (SJ11) Block (JE13) Euler CRKM Simulink  

0.1  2.0000e-8 0.000000e+00 3.3797e - 6 1.5e - 14 1.5000e - 14 
0.2  1.0000e-8 1.421085e-14 6.7577e - 6 4.7000e - 14 4.7000e - 14 
0.3 0.0000e+0 0.000000e+00 1.0134e - 5 4.0000e - 14 4.0000e - 14 
0.4 0.0000e+0 0.000000e+00 1.3508e - 5 4.6e - 14 4.6000e - 14 
0.5  3.0000e-8 1.421085e-14 1.6881e - 5 3.0000e - 14 1.3000e - 13 
0.6  0.0000e+0 1.421085e-14 2.0252e - 5 3.3e - 14 6.7000e - 14 
0.7 3.0000e-8 1.421085e-14 2.3621e - 5 6.1e - 14 1.6100e - 13 
0.8 1.0000e-8 0.000000e+00 2.6988e - 5 3.0000e - 15 1.9700e - 13 
0.9 0.0000e-0 0.000000e+00 3.0354e - 5 7.3e - 14 1.7300e - 13 
1.0 0.0000e-0 0.000000e+00 3.3718e - 5 3.0e - 14 1.7000e - 13 

 
Figure 4: Computed result for problem 2 

 
Figure 5: Error for example 2 

Table 5: Computed results for problem 3 

t  Exact  ADM (SJ11) Block (JE13) Euler CRKM Simulink  

0.1  020.201340  1020.201340  1020.201340  1020.000000  1020.201340  1020.201333 
0.2  1040.810774  1040.801774  1040.810774  1040.400000  1040.810774  1040.810760 
0.3 1061.836546  1061.836571  1061.836546  1061.208000  1061.836546  1061.836525 
0.4 1083.287067 1083.287068  1083.287067  1082.432160  1083.287067  1083.287039 
0.5  1105.170918 1105.170930  1105.170918  1104.080803  1105.170917  1105.170881 
0.6  1105.170918 1127.496852 1127.496851  1126.162419  1127.496851  1127.496807 
0.7 1150.273798 1150.273799 1150.273798  1148.685667  1150.273798  1150.273746 
0.8 1173.510870 1173.510895 1173.510870  1171.659381  1173.510870  1173.510809 
0.9 1197.217363 1197.217363 1197.217363  1195.092568  1197.217362  1197.217292 
1.0 1221.402758 1221.402758 1221.402758  1218.994419  1221.402757  1221.402678 

Example 3: Growth Model (Sunday, 2011; Omar & 
Adeyeye, 2016) 

Let the differential equation be used to depict the growth 
of a particular microorganism. 

( ) ]1,0[ ,1.0 ,10000 , === th
dt

d



 

We make the assumption that the model expands 
unhindered and constantly.  If a single organism produces 
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0.2 offspring on average per hour, how many of those 
microorganisms are there? 

The above problem can be solved analytically to give: 

( ) .1000 2.0 tet =  

 
Figure 6: Computed result for problem 3 

 
Figure 7: Error for example 3 

Example 4: SIR Model (Omar & Adeyeye, 2016) 

This model calculates the total number of individuals in a 
population who have a communicable infection over a 
given time period t .  It deals with epidemic diseases.  The 

development of susceptible-infected-recovered model is 
based on the fact that they include coupled equations 

regarding the number of individuals within the host )(tS  

whose susceptible disease level is appropriately high, the 

number of individuals whose parasite )(tI  level is high, 

and the total number of individuals who have recovered 

)(tR .  The model is connected as follows: 

SSI
dt

dS
 −−=  

IISI
dt

dI
 −−=  

RI
dt

dR
 −=  

for ,  and   are positive parameters.   is given as 

RIS ++=  

Combining (3.1), (3.2) and (3.3)  

( ) −=++= 1
dt

dR

dt

dI

dt

dS
 

Therefore, the differential equation is 

( ) ( ) pI =−=  ,  

Taking 
2
1=  and attaching an initial condition 

( )
2
10 −= , then 

( ) ( ) ]1,0[ ,1.0 ,
2

1
0 ,1

2

1
==−= th

dt

d



 

with analytical solution 

( ) .
2

1
1 tet −−=  

DISCUSSION  

Problem 1 is a growth model, and studying the results in 
Table 1 and errors in Table 2, show that all the methods 
considered give accurate results, but the Euler method has 
the largest error.  The block method by Sunday, Yusuf & 
Andest (2016), and ADM perform very well with the least 
error, followed by CRKM and then Simulink.  The block 
method, Euler method, CRKM, and Simulink are more 
consistent when compared with ADM, but the block 
method converges faster than all the other methods 
considered.  All the problems in this study are solved with 
a consistent range. 

The growth rate of the bacteria is shown in Figure 2, 
where the results obtained using various approaches 
closely resemble the analytical solution.  Figure 3 displays 
the errors by the methods that are getting closer to zero 
while the Euler method advances slowly. 

Table 6: Error for problem 3 

t  ADM (SJ11) Block (JE13) Euler CRKM Simulink  

0.1  0.0000e+0 0.000000e+00 2.0134e - 1 2.675e - 8 6.6934e - 6 
0.2  0.0000e+0 0.000000e+00 4.1077e - 1 5.4593e - 8 1.3657e - 5 
0.3  2.4000e - 5 0.000000e+00 6.2855e - 1 8.3543e - 8 2.0900e - 5 
0.4 0.0000e+0 2.273737e - 13 8.5491e - 1 1.1364e - 7 2.8429e - 5 
0.5  1.2000e - 5 2.273737e - 13 1.0901e+0 1.4492e - 7 3.6254e - 5 
0.6  0.0000e+0 2.273737e - 13 20.992e+0 22.326e+0 22.326e+0 
0.7 0.0000e+0 2.273737e - 13 1.5881e+0 2.1117e - 7 5.2828e - 5 
0.8 2.4000e - 5 0.000000e+00 1.8515e+0 2.4621e - 7 6.1594e - 5 
0.9 0.0000e+0 0.000000e+00 2.1248e+0 2.8258e - 7 7.0693e - 5 
1.0 0.0000e+0 0.000000e+00 2.4083e+0 3.2032e - 7 8..0135e - 5 
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Table 7: Computed results for problem 4 

t  Exact  Block (OA16) Euler  CRKM  ADM  Simulink  

0.1  0.52438528  0.52438528  0.52500000  0.52438528  0.52563554 0.52438541 
0.2  0.54758129 0.54758129  0.54875000  0.54758128  0.55258545 0.54758153 
0.3 0.56964601 0.56964601  0.57131250  0.56964600  0.58091712 0.56964636 
0.4 0.59063462 0.59063462  0.59274687  0.59063461  0.61070137 0.59063506 
0.5  0.61059960 0.61059960  0.61310953  0.61059960  0.64201270 0.61060013 
0.6  0.62959088 0.62959088  0.63245405  0.62959088  0.67492940 0.62959149 
0.7 0.64765595 0.64765595 0.65083135 0.64765594 0.70953377 0.64765662 
0.8 0.66483997 0.66483997  0.66828978  0.66483996  0.745912348 0.66484070 
0.9 0.68118592 0.68118592  0.68487529  0.68118591  0.78415609 0.68118670 
1.0 0.69673467 0.69673467  0.70063153  0.69673466  0.82436063 0.69673549 

Table 8: Error for problem 4 

t  Block (OA16) Euler  CRKM  ADM  Simulink  

0.1  3.826740e-14 6.1471e - 4 1.2913e - 9  1.2503e - 3  1.2892e - 7 
0.2  7.484830e-14 1.1687e - 3 2.4567e - 9  5.0042e - 3  2.4526e - 7 
0.3 1.058240e-13 1.6665e - 3 3.5053e - 9 1.1271e - 2 3.4995e - 7 
0.4 1.354510e-13 2.1123e - 3 4.4458e - 9 2.0067e - 2  4.4384e - 7 
0.5  1.601760e-13 2.5099e - 3 5.2862e - 9 3.1413e - 2  5.2774e - 7 
0.6  1.838420e-13 2.8632e - 3 6.0340e - 9 4.5339e - 2  6.024e - 7 
0.7 2.032250e-13 3.1754e - 3 6.6964e - 9 6.1878e - 2  6.6853e - 7 
0.8 2.217960e-13 3.4498e - 3 7.2798e - 9 8.1072e - 2  7.2677e - 7 
0.9 2.366300e-13 3.6894e - 3 7.7903e - 9 1.0297e - 1  7.7774e - 7 
1.0 2.508620e-13 3.8969e - 3 8.2338e - 9 1.2763e - 1  8.2201e - 7 

 

 
Figure 8: Computed result for problem 4 

 
Figure 9: Error for example 4 

Problem 2 is a Decay model, and as depicted in Table 3 
and Table 4, the results clearly show that, the block 

method, CRKM, and the Simulink perform better with the 
smallest error, while the Euler method has the largest 
error.  ADM and block method by Sunday (2011) and 
James et al, (2013), respectively, give close-form solutions 
in some cases, but the results are not consistent.  The 
Euler method, CRKM, and Simulink are more consistent. 

Figure 4 presents the material's decay rate, where the 
results produced by the methods match the analytical 
solution.  The errors in Figure 5 are getting closer to zero, 
but the Euler method is doing so slowly. 

Problem 3 is a growth model.  Observing the results in 
Table 5 and Table 6, it can be seen that ADM and block 
methods by Sunday (2011) and James et al. (2013) 
converge to the exact solution in some cases but are 
inconsistent.  CRKM, Simulink, and Euler methods are 
more consistent, but CRKM and Simulink have better 
accuracy than the Euler method. 

Figure 6 shows the microorganism's growth rate, and the 
results produced by the methods match the analytical 
solution.  Figure 7 shows the errors which are approaching 
zero by most of the methods. 

Problem 4 is a SIR model, and the results show that all the 
methods are consistent, but ADM and block method by 
Omar & Adeyeye (2016) are more accurate with the least 
error, while the Euler method has the largest error 
merging. 

Figure 8 shows the SIR model's behavior, in which the 
results produced by the methods match the analytical 
solution.  While Figure 9 shows the errors which is 
approach zero by most of the methods.  But ADM 
exhibits an unusual behaviour with the SIR model, 
converging very slowly. 
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In all the problems considered, the Euler method shows 
consistency but generally gives the poorest result.  ADAM 
and block methods are more consistent and accurate for 
all the problems.  Simulink presents a reliable result, but 
the method cannot be improved on, block methods can 
be improved on. 

CONCLUSION 

This study comparatively presents some numerical 
methods for simulating mathematical models in ordinary 
differential equations.  The Euler method presented is one 
of the simplest methods for simulating mathematical 
models but has weak accuracy and is unstable for stiff 
problems.  Classical Runge-Kutta method and Adomian 
decomposition methods, powerfully simulate the models 
of the problems under consideration with higher accuracy 
and stability.  But ADM perform weakly when simulating 
the SIR problem.  Both CRKM and ADM are powerful 
methods for simulating mathematical models but a good 
understanding of the methods is required. 

Simulink present a graphical interface for simulating 
dynamic systems, which make it easier to simulate 
mathematical models.  It demonstrates greater accuracy 
and consistency.  Block method simulates the equations' 
systems simultaneously over time with high accuracy.  It 
performs better than all the methods under consideration 
in terms of accuracy and convergence. 
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