
 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 142 – 157 

 142 

 

 https://scientifica.umyu.edu.ng/                      Alabelewe et al., /USci, 4(2): 142 – 157, June 2025  
 

 
 

ORIGINAL RESEARCH ARTICLE 

Enhanced DDoS Attack Detection in IoT Environments Using Voting and 
Stacking Ensemble Learning: Implementation and Performance Analysis 

Abdulrahman Tunde Alabelewe1,3 , Muhammad Aminu Ahmad2* , Mohammed Ibrahim4 , 

Ahmed Abubakar Aliyu2 , Abubakar Muazu Ahmed2 , Saadatu Abdulkadir2   
1Department of Informatics, Kaduna State University, Kaduna, Nigeria 
2Department of Secure Computing, Kaduna State University, Kaduna, Nigeria 
3Department of Cyber Security, Airforce Institute of Technology, Kaduna, Nigeria 
4Department of Cyber Security, Nigerian Defence Academy, Kaduna, Nigeria  

 

 

 

 

 

 
 

 

 
 

INTRODUCTION
The adoption of the Internet of Things has led to 
transformation in various sectors of the economy, such as 
smart healthcare, smart agriculture, smart industries, and 
smart homes. In 2023, it was estimated that about 15.9 
billion IoT devices were connected globally, and it is 
projected to reach 25.4 billion by 2030 (Fischer, 2023). 
This development has also raised new security concerns 
because IoT devices have limited processing power, 
inadequate safety measures, and differing architectures. 
These vulnerabilities have made IoT devices soft targets 
for cybercriminals to launch various types of cyber-attacks 
(Kandasamy et al., 2020) 

Among the various cyber threats that IoT is prone to, 
Distributed Denial of Service (DDoS) attacks pose one of 
the most crucial risks to IoT ecosystems. In 2016, the 
Mirai botnet attack exploited vulnerable IoT devices, 
compromising these devices to serve as botnets and used 
to initiate one of the largest DDoS attacks in history, 
displaying the scale of this threat (Abughazaleh et al., 
2020). Traditional security systems often prove inadequate 
or difficult to implement in IoT environments due to 
resource limitations and the evolving nature of attack 
patterns (Malhotra et al., 2021). 

Previous studies have shown that traditional machine-
learning methods can improve IoT security. These recent 
studies have shown that machine learning algorithms such 
as Decision Trees (DT), Random Forest (RF), K-Nearest 
Neighbors (KNN), and Logistic Regression (LR) are 
among those that are very effective in predicting DDoS 
attacks (Butun et al., 2020). However, implementing these 
machine learning algorithms as stand-alone has challenges 
in keeping up with the ever-evolving attack patterns and 
establishing the balance between detection accuracy and 
computational limitations that are inherent in IoT devices 
(Luo et al., 2021). 

In order to find a potential solution for these issues, 
Ensemble learning techniques have been proposed by 
previous studies (Bin Sarhan & Altwaijry, 2023; Khan et 
al., 2023). Ensemble learning techniques combine several 
machine learning models to improve predictive 
performance. It can overcome the resource limitations 
present in IoT systems while achieving higher detection 
accuracy by utilizing the supplementary characteristics of 
various algorithms combined with the technique (Ahmed 
& Khan, 2023). 
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ABSTRACT 
Due to the increase in the adoption of Internet of Things (IoT) devices, there has been a 
significant increase in Distributed Denial of Service (DDoS) attack. This is because IoT devices 
have introduced significant security vulnerabilities, thereby increasing the attack surface. This 
paper aims to present an enhanced DDoS Attack detection in an IoT environment using an 
ensemble learning approach. This was achieved by implementing the voting and stacking 
classifiers that combine four supervised learning algorithms: Random Forest, Decision Trees, 
Logistic Regression, and K-Nearest Neighbors. Using the comprehensive CIC-IoT2023 dataset, 
the results of the test conducted indicate outstanding performance, with the voting classifier 
achieving 99.39% accuracy (190.9872ms inference time, 32 false positives) and the stacking 
classifier reaching 99.40% accuracy (224.9587ms inference time, 89 false positives), a 5-fold 
stratified cross-validation was conducted which validated the models' robustness as a significant 
improvement on previous study conducted in this area. 
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Ensemble learning has emerged as a robust approach for 
improving Distributed Denial of Service (DDoS) attack 
detection in IoT systems by combining multiple models to 
achieve superior performance while maintaining 
computational efficiency (Elliott & Anderson, 2023). This 
methodology operationalizes the "wisdom of crowds" 
principle through three key mechanisms: bias reduction 
via model aggregation (Yang et al., 2023), variance 
mitigation through prediction averaging (Mishra & 
Paliwal, 2023), and improved operational stability across 
diverse network conditions (Shtayat et al., 2023). The 
approach has proven particularly valuable in IoT security 
applications where traditional single-model solutions 
often struggle with adaptability and resource constraints. 

Four primary ensemble methods have demonstrated 
significant effectiveness in IoT security contexts. Bagging 
techniques, exemplified by Random Forest algorithms, 
reduce variance through bootstrap aggregation of multiple 
decision trees (Bin Sarhan & Altwaijry, 2023). Boosting 
methods like AdaBoost and Gradient Boosting 
sequentially improve model performance by focusing on 
misclassified instances (Golchha et al., 2023). Voting 
classifiers combine predictions through either hard voting 
(majority decision) or soft voting (probability averaging), 
effectively reducing both false positives and negatives in 
security applications (Mushtaq et al., 2022; Taha, 2021). 
More advanced stacking methods employ a meta-learner 
to optimally integrate base model predictions, typically 
achieving higher accuracy than individual models, as 
Jegede (2023) demonstrated, who reported 93.8% 
detection accuracy compared to 89.1% for the best single 
model. 

Recent research has yielded substantial improvements in 
detection capabilities through various ensemble 
approaches.  Abu Al-Haija & Al-Dala’ien (2022) proposed 
specialized solutions named the ELBA-IoT framework, 
designed specifically for resource-constrained 
environments and it achieved 99.2% accuracy with only 
1.7ms inference time on the Bot-IoT dataset, while newer 
frameworks like Deep Squeezed-Boosted Ensemble 
Learning (98.50% accuracy on IOT_Malware) and multi-
algorithm integrations (98.63% accuracy on TON-IoT) 
continue to push performance boundaries (Ahmed & 
Khan, 2023; Alotaibi & Ilyas, 2023). 

Recent advancements in ensemble learning have also 
significantly enhanced DDoS detection capabilities in IoT 
environments. Mante and Kolhe (2024) demonstrated that 
tree-based ensemble models, particularly stacking with 
XGBoost, can achieve high detection accuracy, reaching 
99.30% on the CIC-IoT2023 dataset. Ye et al. (2024) 
proposed a behavioral-feature-based stacking model to 
identify low-rate DDoS attacks, achieving precision, recall, 
and F1-scores of 0.96, with a 99% recognition rate for 
LDDoS traffic. In parallel, Ain et al. (2025) introduced a 
deep-learning hybrid model combining CNNs, LSTMs, 
and Autoencoders, which achieved an accuracy of 96.78% 
on the same dataset. These studies highlight the growing 
effectiveness of ensemble and hybrid models in managing 
the complexity and evolving patterns of DDoS threats in 
modern IoT networks, particularly when applied to 

realistic and diverse traffic scenarios like those in the CIC-
IoT2023 dataset 

Implementation considerations for ensemble IoT security 
methods require carefully balancing several factors. The 
accuracy-complexity tradeoff presents a key challenge, as 
stacking methods provide superior accuracy but demand 
greater computational resources compared to simpler 
voting ensembles (Golchha et al., 2023). This has led to 
the development of hybrid approaches that combine 
elements of multiple techniques to optimize both 
performance and efficiency (Abbas et al., 2022). 
Benchmark evaluations for newer datasets like CIC-
IoT2023 are establishing critical baseline metrics for 
future research (Jony & Arnob, 2024).  

Although previous studies have explored machine 
learning models for DDoS detection, the challenge 
remains in overfitting that prevents effective identification 
of new attack patterns, difficulty balancing precision and 
recall, and excessive computational demands that exceed 
IoT device capabilities. This study introduces ensemble 
learning, specifically voting and stacking classifiers, to 
overcome these challenges by reducing the variance and 
overfitting, integrating complementary algorithms to 
better balance false positives and false negatives, and 
employing dimensionality reduction to minimize resource 
requirements within IoT constraints. 

Therefore, this study uses ensemble learning techniques to 
propose an improved method for detecting DDoS attacks 
in IoT systems. We apply and assess two ensemble 
approaches, namely voting and stacking classifiers, which 
incorporate four supervised learning algorithms: Random 
Forest, Decision Trees, Logistic Regression, and K-
Nearest Neighbors, building on the earlier work by Jony 
& Arnob (2024). For this research, we use the CIC-
IoT2023 dataset, a real-time dataset and benchmark for 
large-scale attacks in IoT Environment (Neto et al., 2023). 

The selection of Random Forest (RF), Decision Tree 
(DT), Logistic Regression (LR), and K-Nearest Neighbors 
(KNN) as base learners in the ensemble framework is 
guided by their complementary learning mechanisms, 
computational efficiency and interpretability in the 
context of IoT-driven DDoS detection. RF and DT, as 
tree-based algorithms, offer robustness in handling high-
dimensional and nonlinear data, with RF providing strong 
generalization through bootstrap aggregation and DT 
ensuring fast decision-making suitable for constrained 
environments (Amro et al., 2021; Brophy & Lowd, 2021). 
LR, a probabilistic linear classifier, brings computational 
simplicity and is particularly effective in binary 
classification tasks like DDoS detection (Okoye & 
Hosseini, 2024). KNN adds instance-based reasoning, 
enabling the ensemble to capture local decision 
boundaries and improve multi-class differentiation 
(Halder et al., 2024). Collectively, these models provide a 
diverse hypothesis space that enhances the ensemble’s 
ability to balance detection accuracy, inference speed, and 
adaptability in resource-constrained IoT scenarios. 
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Support Vector Machines (SVM) and Gradient Boosting 
techniques such as XGBoost or LightGBM, while 
powerful, were excluded due to their higher 
computational complexity and memory requirements, 
which are often unsuitable for real-time inference in IoT 
environments (Yilmaz et al., 2021). SVM, in particular, has 
scalability issues with large datasets and requires kernel 
tuning, which increases training time and limits 
deployment feasibility (Hosseinzadeh et al., 2021). 
Though effective at reducing bias, Gradient Boosting 
algorithms rely on sequential model training, which 
introduces latency and demands more processing power, 
making them less ideal for lightweight, real-time DDoS 
detection systems (Bentéjac et al., 2021). In contrast, the 
chosen base models support parallelization, lower 
memory footprints, and faster inference, aligning better 
with the practical constraints and deployment 
requirements of IoT-based security architectures. 

METHODOLOGY 

This section describes our approach to use ensemble 
learning techniques to improve DDoS attack detection in 
IoT contexts. We describe the dataset, preprocessing 
methods, and voting and stacking classifier 
implementation in detail. 

Dataset Description 

We utilized the CIC-IoT2023 dataset (Neto et al., 2023), 
developed through a collaborative effort between the 
Canadian Institute for Cybersecurity (CIC) and the 
Information Technology University of Copenhagen 
(ITU). This dataset was generated in a smart home 
environment incorporating 20 distinct IoT devices 
including cameras, thermostats, smart TVs, and smart 
watches, as illustrated in Figure 1. 

 
Figure 1. CIC-IoT2023 dataset topology showing the network setup and attack vectors. 

The dataset comprises approximately 80 million packets 
collected over ten days (five days each of normal and 
attack traffic), with 64 million classified as malicious and 
16 million as normal traffic. Each packet is characterized 
by 115 features, including protocol information, payload 
size, timestamp, and source and destination IP addresses. 

What distinguishes the CIC-IoT2023 dataset from other 
datasets is its use of actual IoT devices as both attackers 
and victims, moving beyond simulation approaches to 
capture authentic device behaviors. The dataset 
incorporates ten distinct types of DDoS attacks: TCP 
SYN Flood, UDP Flood, HTTP Flood, HTTP Slow Post, 
Slowloris, MQTT Flood, CoAP Flood, WS-DDoS 
(WebSocket), Web Service Flood (SOAP), and Web 
Service Flood (RESTful). 

Data Preprocessing 

Our preprocessing workflow comprised four essential 
steps: 

1. Data Cleaning: We removed irrelevant columns 
such as 'Unnamed: 0' that were artifacts of the 
data collection process. Missing or inconsistent 
values were handled using median imputation, 
chosen over mean imputation due to its 
robustness against outliers. 

2. Label Encoding: Categorical features were 
transformed into numerical representations using 
Label Encoding. Normal traffic was labeled as 0, 
while attack traffic was labeled as 1, as shown in 
Fig. 2. 
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Figure 2. Data encoding process shows the transformation of categorical variables into numerical format. 

3. Data Standardization and Normalization: 
Features were standardized to have a mean of 
zero and a standard deviation of one, ensuring all 

features contributed equally to the model's 
decision-making process. Fig. 3 illustrates this 
process. 

 
Figure 3: The data normalization process shows the transformation of features to a standard scale. 

4. Principal Component Analysis (PCA): To 
improve computational efficiency and mitigate 
the risk of overfitting while maintaining most of 
the informative structure of the dataset, Principal 
Component Analysis (PCA) was employed as a 
dimensionality reduction technique. PCA 
transforms the original high-dimensional data 
into a lower-dimensional space by projecting it 
onto a set of orthogonal axes (principal 
components) that capture the maximum variance 
present in the data. 

Figure 4 illustrates the cumulative explained 
variance as a function of the number of principal 
components. This plot helps determine how 
many components are needed to retain a desired 
proportion of the dataset’s total variance. 
Initially, the curve rises steeply, indicating that 
the first few components capture a large share of 
the variance. However, as more components are 
added, the marginal gain in explained variance 
decreases, leading to a "flattening" of the curve—
a phenomenon often referred to as the "elbow 
point." 

In this analysis, the elbow point occurs around 
the 35th principal component. Selecting 35 
components allows the model to preserve nearly 
100% of the original variance (as indicated by the 
plateau in the curve), while reducing the 
dimensionality from the original feature space. 
This balance ensures that the reduced dataset 
retains most of its discriminative power, thereby 
enabling efficient learning and inference, 
especially important in high-dimensional IoT 
traffic data. 

While PCA effectively reduced the feature space to 35 
components, this transformation compromises 
interpretability and the ability to assess individual feature 
importance. PCA obscures the specific contributions of 
input features by converting original variables into 
orthogonal principal components, making it difficult to 
identify which network characteristics drive detection 
outcomes. This limits the transparency of the model, 
particularly in security-critical IoT contexts where 
understanding the influence of individual features is 
essential for informed decision-making. Although 
beneficial for computational efficiency and redundancy 
reduction, the reduced clarity in feature relevance remains 
a significant trade-off. By using 35 components, we 
significantly reduced dimensionality without substantial 
loss of information, which is crucial for accelerating 
training time and minimizing memory usage in real-time 
or resource-constrained IoT environments. 

The processed dataset was divided into training (70%) and 
testing (30%) subsets for model development and 
evaluation, as illustrated in Fig. 5. 

5. Hyperparameter Optimization:  
A comprehensive hyperparameter tuning process 
was conducted for each base classifier to ensure 
optimal performance and model generalization 
using a combination of empirical 
experimentation and Grid Search with cross-
validation. The goal was to balance classification 
accuracy with computational efficiency, 
particularly important in the context of IoT 
environments where real-time detection and 
limited resources are key constraints. Figure 6 
below shows the optimization code.  
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Figure 4. Cumulative explained variance plot for PCA, showing the relationship between the number of 
components and the preserved information. 

 
Figure 5. The data splitting process allocates 70% of the dataset for training and 30% for testing. 

   
Figure 6. Code for Hyperparameter Optimization 
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• Random Forest (RF): 
The Random Forest classifier was 
configured with 300 estimators 
(n_estimators=300) and a maximum depth 
of 20 (max_depth=20) to allow for deep, 
expressive trees without overfitting. A 
minimum of five samples per internal node 
(min_samples_split=5) and two per leaf 
(min_samples_leaf=2) was used to 
regularize the tree structure. The 
max_features='sqrt' parameter helps 
introduce diversity among the trees by 
limiting the number of features considered at 
each split, and bootstrap=True ensures 
randomness via sampling with replacement. 
This configuration strikes a balance between 
model accuracy and inference speed. 

• Gradient Boosting (GB): 
For the Gradient Boosting classifier, 200 
trees were used (n_estimators=200) with a 
conservative learning rate of 0.05 to allow 
gradual learning (learning_rate=0.05). The 
tree depth was limited to 5 (max_depth=5) 
to prevent overfitting, while a higher 
minimum split threshold 
(min_samples_split=10) and a subsample 
ratio of 0.8 (subsample=0.8) introduced 
additional regularization. These settings 
promote model robustness and 
generalization, especially in scenarios with 
noisy traffic data. 

• Extra Trees (ET): 
The Extra Trees classifier was tuned to use 
300 trees (n_estimators=300) and a 
maximum depth of 20 (max_depth=20) to 
exploit full tree growth while maintaining 
generalization with min_samples_split=5. 
Unlike Random Forest, bootstrap=False 
was used, relying on the entire dataset per 
tree. max_features='log2' encourages more 
aggressive feature reduction at each split, 
enhancing tree speed and decorrelation. 

• K-Nearest Neighbors (KNN): 
The KNN model used 7 neighbors 
(n_neighbors=7) to increase decision 
stability. weights='distance' gives greater 
importance to closer neighbors, improving 
classification accuracy in unevenly 
distributed data. The use of p=2 applies the 
Euclidean distance metric, which is effective 
in high-dimensional space post-PCA. 

• Decision Tree (DT): 
For the Decision Tree, a relatively shallow 
structure was enforced with max_depth=10 
to avoid overfitting. Splitting required at 
least 10 samples (min_samples_split=10) 
and 5 per leaf (min_samples_leaf=5), 
promoting simpler, more interpretable trees. 
The criterion='gini' was selected for 
computational efficiency while preserving 
accuracy. 

These optimized hyperparameters were selected based on 
cross-validated performance metrics and were integrated 
into ensemble models, including voting and stacking 
classifiers. This optimization process ensures that each 
model contributes effectively to the ensemble's overall 
performance, with particular attention paid to maintaining 
inference efficiency suitable for deployment in real-time 
IoT systems. 

Proposed Ensemble Approach 

Our proposed approach integrates four supervised 
learning algorithms—Random Forest (RF), Decision Tree 
(DT), Logistic Regression (LR), and K-Nearest Neighbors 
(KNN)—through two ensemble techniques: voting and 
stacking. Fig. 7 illustrates the architecture of our proposed 
system. 

1) Voting Classifier 

The voting classifier aggregates predictions from the four 
base models through a democratic process. We 
implemented a soft voting mechanism, where the final 
classification is determined by averaging the predicted 
probabilities from each model and selecting the class with 
the highest average probability. This approach leverages 
diverse algorithms' complementary strengths while 
mitigating their weaknesses. The implementation involved 
the following configuration: 

2) Stacking Classifier 

The stacking classifier introduces a meta-learner that 
learns to optimally combine the predictions of the base 
models. We configured the stacking architecture with the 
same four base models (RF, DT, LR, KNN) and a Logistic 
Regression meta-learner. This hierarchical approach 
enables the system to capture complex relationships 
between the outputs of the base models, potentially 
achieving higher detection accuracy. The implementation 
involved the following configuration: 

Evaluation Metrics 

We evaluated the performance of our ensemble models 
using several metrics: 

1. Accuracy: The proportion of correct predictions 
(both true positives and true negatives) among 
the total number of cases examined.  

Accuracy =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   (3.1) 

2. Precision: The proportion of true positive 
predictions among all positive predictions made 
by the model. 

Precision =    
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃 
    (3.2) 

3. Recall: The proportion of true positive 
predictions among all actual positive instances in 
the data. 

Recall = 
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁 
    (3.3) 
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4. F1-Score: The harmonic mean of precision and 
recall, providing a balance between the two 
metrics. 

F1-Score = 2 * 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
   (3.4) 

5. Inference Time: The time the trained model 
requires to make predictions on new data, a 
critical metric for real-time detection systems. 

Additionally, we analyzed the confusion matrices to gain 
deeper insights into the error patterns of each ensemble 
method, examining the distributions of true positives, true 
negatives, false positives, and false negatives. 

RESULTS AND ANALYSIS 

This section presents the experimental results of our 
ensemble learning approach for DDoS detection in IoT 
environments. We evaluate the performance of both 
voting and stacking classifiers and compare them with 
previous research. 

Voting Classifier Performance 

The voting classifier demonstrated exceptional 
performance in distinguishing between normal and attack 
traffic. Table 1 presents the detailed classification metrics 
for this ensemble method. 

 
Figure 7. Architecture of the proposed ensemble-based DDoS detection system. 

 
Figure 8. Voting Classifier Configuration. 
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Figure 9. Stacking Classifier Configuration. 

Table 1. Performance Metrics of Voting Classifier 

Class Precision Recall F1-score Support 

Normal (0) 0.99 1.00 0.99 66,718 
Attack (1) 1.00 0.99 0.99 57,345 
Macro Avg 0.99 0.99 0.99 124,063 
Weighted Avg 0.99 0.99 0.99 124,063 

 
The voting classifier achieved an overall accuracy of 
99.39%, with balanced performance across both normal 
and attack traffic categories. For normal traffic (Class 0), 
the model achieved a precision of 0.99 and a perfect recall 
of 1.00, resulting in an F1-score of 0.99. Similarly, for 
attack traffic (Class 1), the model demonstrated a perfect 

precision of 1.00 and a recall of 0.99, maintaining an F1-
score of 0.99. 

Figure 10 presents the confusion matrix for the voting 
classifier, providing deeper insights into its classification 
performance. 

 
Figure 10. Confusion matrix for the voting classifier, showing the distribution of true positives, true negatives, 
false positives, and false negatives. 

The confusion matrix reveals 66,686 true negatives 

(correctly identified benign traffic) and 56,623 true 

positives (accurately detected attack instances). The false 

positives (benign instances misclassified as attacks) are 

minimal at 32, indicating a low false alarm rate. The false 

negatives, where attacks are incorrectly classified as 

benign, are relatively low at 722. 

The false positives, which are the benign traffic 
misclassified as attacks, could lead to wasted 
computational effort or unwarranted service throttling on 
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IoT devices, while the false negatives, which are the attack 
traffic undetected as benign, pose the greatest security risk 
by allowing malicious flows to bypass defenses in the IoT 
environment. Balancing these errors is critical because 
false positives in IoT contexts can trigger unnecessary 
alerts, cause redundant network filtering rules, and drain 
device resources through unwarranted defensive actions. 
False negatives can be more critical, as undetected attacks 
can compromise device integrity, disrupt services, and 
facilitate lateral movement within an IoT environment. 

Stacking Classifier Performance 

The stacking classifier demonstrated similarly impressive 
performance metrics, as detailed in Table 2. 

The stacking classifier achieved an overall accuracy of 
99.40%, with consistent performance across both traffic 
categories. The precision, recall, and F1-score values 
match those of the voting classifier, demonstrating the 

robustness of ensemble approaches for this detection task. 
Figure 11 presents the confusion matrix for the stacking 
classifier. 

The confusion matrix shows 66,629 true negatives and 
56,749 true positives. The stacking classifier produced 89 
false positives and 596 false negatives, reflecting a slightly 
different error distribution compared to the voting 
classifier. 

Although the Stacking Classifier has a slightly higher false 
positive rate, it substantially reduces false negatives, which 
is more desirable in practical IoT environments where 
security risks from undetected attacks outweigh the cost 
of occasional false alarms. In contrast, the Voting 
Classifier offers slightly better precision but may leave 
more threats undetected, potentially compromising 
system resilience in high-stakes IoT applications. 
Therefore, the Stacking Classifier strikes a better balance 
for critical security contexts 

Table 2. Performance Metrics of Stacking Classifier 

Class Precision Recall F1-score Support 

Normal (0) 0.99 1.00 0.99 66,718 
Attack (1) 1.00 0.99 0.99 57,345 
Macro Avg 0.99 0.99 0.99 124,063 
Weighted Avg 0.99 0.99 0.99 124,063 

 
Figure 11. Confusion matrix for the stacking classifier, showing the distribution of true positives, true negatives, 
false positives, and false negatives. 

Inference Time Analysis 

Inference time is critical for real-time detection systems, 
particularly in resource-constrained IoT environments. 
Fig. 12 compares the inference times of both ensemble 
methods. 

The voting classifier exhibited an inference time of 
190.9872 milliseconds, while the stacking classifier 
required 224.9587 milliseconds. This difference of 
approximately 34 milliseconds reflects the increased 
computational complexity of the stacking architecture, 
which employs a meta-learner for prediction generation. 
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In evaluating the reported inference times of 190–225 
milliseconds (ms) for ensemble classifiers in IoT 
environments, it is essential to benchmark these figures 
against industry standards to assess their suitability for 
real-time applications. 

Industry benchmarks indicate that acceptable inference 
latency varies depending on the specific application and its 
real-time requirements. For instance, in latency-sensitive 
applications such as autonomous vehicles or industrial 
automation, end-to-end latency requirements are 
stringent; a latency of 100 milliseconds or less is often 
considered essential(Sumaiya et al., 2024). However, 
latency requirements are more relaxed for applications like 

smart surveillance or environmental monitoring, with 
acceptable inference times ranging from 100 to 300 ms 
(Sumaiya et al., 2024). 

Given this context, the reported inference times of 190–
225 ms are within acceptable limits for non-critical IoT 
applications but may be inadequate for time-sensitive 
scenarios. Therefore, while the ensemble classifiers 
demonstrate promising accuracy, their deployment should 
be carefully considered in the context of the specific 
latency requirements of the intended IoT application. 
Further optimization may be necessary to meet the 
stringent latency demands of critical real-time systems. 

 
Figure 12. Comparison of inference times between voting and stacking classifiers. 

Comparative Analysis 

To evaluate the effectiveness of our ensemble approach, 
we compared the performance of both classifiers with 
previous research (Alotaibi & Ilyas, 2023; Jony & Arnob, 
2024). Table 3 presents this comparative analysis. 

Our ensemble methods demonstrate superior 
performance compared to both single-algorithm 
approaches on the same dataset (Jony & Arnob, 2024) and 
previous ensemble implementations on different datasets 

(Alotaibi & Ilyas, 2023). The voting classifier achieves a 
0.20% improvement in accuracy over the best single-
algorithm approach (Decision Tree), while the stacking 
classifier shows a 0.21% improvement. While these 
percentage improvements may appear modest, they 
represent significant enhancements in real-world 
applications where even small improvements in accuracy 
can substantially impact system security. Figure 14 
visualizes the accuracy comparison between different 
approaches. 

Table 3. Comparative Analysis of DDOS Detection Approaches 

Method Dataset Accuracy Precision Recall F1-score Inference Time 

Decision Tree  CIC-IoT2023 99.19% 0.99 0.99 0.99 N/A 
Random Forest CIC-IoT2023 99.16% 0.99 0.99 0.99 N/A 
K-Nearest Neighbors CIC-IoT2023 93.80% 0.94 0.94 0.94 N/A 
Logistic Regression  CIC-IoT2023 82.75% 0.83 0.83 0.83 N/A 
Ensemble (Stacking)  TON-IoT 98.63% 98.20% 98.60% 98.61% N/A 
Voting Classifier (Ours) CIC-IoT2023 99.39% 0.99 0.99 0.99 190.99ms 
Stacking Classifier (Ours) CIC-IoT2023 99.40% 0.99 0.99 0.99 224.97ms 

Comparative Evaluation on the CIC-IoT2023 Dataset 

The findings of this study were compared with recent 
research that also used the CIC-IoT2023 dataset for 
DDoS detection in IoT environments. This is to allow us 
to assess how our ensemble methods perform relative to 
existing approaches on the same benchmark. 

Mante & Kolhe (2024) evaluated tree-based and ensemble 
classifiers, including Decision Tree, Random Forest, Extra 
Trees, and XGBoost. Their stacking model, which used 
XGBoost as the base learner, achieved a classification 
accuracy of 99.30%. Our stacking classifier slightly 
outperforms this at 99.40% and shows a more favorable 
error distribution, particularly in reducing false 
negatives—an essential factor in preventing undetected 
attacks in IoT networks. Ye et al., (2025) focused on 
detecting low-rate DDoS (LDDoS) attacks, which are 
elusive and more difficult to identify. Their model 
achieved an accuracy, precision, recall, and F1-score of 
0.96 using behavioral features and a stacking classifier. 

While effective for LDDoS detection, these results fall 
short of the 0.99 scores achieved by our models in 
precision, recall, and F1-score. However, their emphasis 
on behavioral traits offers a direction worth exploring to 
improve sensitivity to low-bandwidth threats. 

Ain et al. (2025) proposed a hybrid deep learning model 
combining CNNs, LSTMs, and Autoencoders. Their 
model achieved 96.78% accuracy, demonstrating strong 
performance in identifying complex attack patterns. Still, 
its accuracy lags behind our ensemble methods, and its 
deep learning architecture likely incurs higher 
computational costs. For real-time or resource-
constrained IoT settings, our models offer a more 
practical solution with significantly lower inference 
times—190 milliseconds for the voting model and 225 
milliseconds for stacking—well within the acceptable 
range for non-critical applications. 

Compared to other studies using the CIC-IoT2023 
dataset, our ensemble classifiers show superior accuracy 
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and balanced error rates, with inference times that support 
real-time deployment in most IoT environments. While 
other models bring unique strengths, such as behavioral 
feature modeling or deep learning architectures, they 
either tradeoff accuracy or effectiveness. This suggests our 
approach offers a more reliable and scalable solution for 
practical DDoS detection in IoT networks. 

Error Distribution Analysis 

A more detailed analysis of error distributions reveals 
significant differences between the ensemble approaches. 

Figure 14 compares the false positive and false negative 
rates of both classifiers. 

The voting classifier generated 32 false positives and 722 
false negatives, while the stacking classifier produced 89 
false positives and 596 false negatives. This difference 
highlights a fundamental trade-off: the voting classifier 
excels at minimizing false alarms (false positives), while 
the stacking classifier demonstrates superior capabilities in 
detecting attacks (fewer false negatives). 

 
Figure 13. Accuracy comparison between different machine learning approaches for DDoS detection. 

 
Figure 14. Comparison of false positives and false negatives between voting and stacking classifiers. 
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Evaluation of Real-Time Applicability and 
Computational Efficiency 

The evaluation of real-time applicability and 
computational efficiency across different ensemble 
methods was conducted using a combination of 
performance metrics, including detection accuracy, 
inference time, and confusion matrix analysis. Particular 
attention was paid to the rate of false positives and false 
negatives, as these directly affect the reliability of DDoS 
detection in live IoT environments. Computational 
efficiency was assessed by measuring the average inference 
time per instance, which reflects how quickly a model can 
classify incoming data under operational constraints. 
Given that IoT devices typically operate with limited 
processing power, memory, and energy resources, models 
that incur high computational overhead are unsuitable for 
deployment in such contexts. The ensemble techniques 
under review, including bagging, boosting, voting, and 
stacking, were therefore compared on predictive 
performance and suitability for real-time deployment. 
Among these, stacking exhibited the most favorable 
balance, maintaining high accuracy while keeping 
inference latency within acceptable limits for time-
sensitive IoT applications. 

Ensemble methods, particularly stacking, have 
demonstrated superior performance over individual 
classifiers in detecting Distributed Denial of Service 
(DDoS) attacks within IoT environments. This advantage 
stems from the ability of ensemble techniques to combine 
the strengths of multiple learning algorithms, thereby 
improving generalization and robustness. Stacking utilizes 
a meta-learner to aggregate predictions from diverse base 
models, allowing the system to capture a wider range of 
data patterns and decision boundaries. In the context of 

IoT-based DDoS detection, where traffic patterns are 
highly heterogeneous and often evolve rapidly, traditional 
single classifiers tend to suffer from issues such as 
overfitting or underfitting. Stacking addresses these 
challenges by reducing bias and variance, improving 
detection accuracy and reducing error rates. Furthermore, 
the hierarchical architecture of stacking makes it well-
suited for dynamic IoT networks, as it enables adaptive 
learning across varying operational conditions and threat 
landscapes. This adaptability is critical for mitigating 
complex, large-scale DDoS attacks in environments where 
computational efficiency and detection speed are 
paramount. 

Cross-Validation Procedure and Results 

To evaluate the generalization performance and stability 
of the proposed voting ensemble model, we applied 5-fold 
stratified cross-validation using the CIC-IoT2023 dataset. 
This approach ensures that each fold preserves the 
original class distribution, which is particularly important 
for imbalanced datasets common in intrusion detection. 
The model was assessed using the cross_val_score 
function with accuracy as the evaluation metric, and fold-
wise results were visualized to observe performance 
consistency. Figure 15 shows the fold-wise accuracy 
scores, which ranged narrowly between 0.9931 and 
0.9934, with a mean accuracy of 0.993 (99.3%). This high 
and uniform accuracy across all five folds demonstrates 
the robustness and reliability of the voting ensemble 
classifier. The low variance between folds confirms that 
the model does not overfit to specific subsets of the data 
and generalizes well across varying traffic conditions. The 
horizontal line in the plot denotes the average 
performance across all folds, further illustrating the 
model’s consistency.  

 
Figure 15 Voting Ensemble Cross-Validation.  
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Complementarily, Figure 16 presents the cross-validation 
results for the stacking ensemble classifier, which achieved 
even higher performance, with fold-wise accuracy ranging 
from 0.9940 to 0.9945. The mean accuracy of 0.994 
reflects a modest yet meaningful improvement over the 
voting model, reinforcing stacking’s ability to aggregate 
the predictive strengths of multiple base learners using a 
meta-learner. 

Both visualizations clearly illustrate the proposed 
ensemble methods' high reliability and performance 
consistency. These results demonstrate that the models 
are accurate and well-suited for real-time deployment in 
IoT environments where generalization and 
computational stability are paramount. 

 
Figure 16 – Stacking Ensemble Cross-validation 

DISCUSSION 

The findings of this study demonstrate the practical 
advantages of voting and stacking classifiers for detecting 
DDoS attacks in Internet of Things (IoT) environments. 
Both ensemble models achieved exceptionally high 
performance, with accuracy exceeding 99%, precision and 
recall balanced across normal and attack traffic, and 
minimal false classifications. This level of reliability is 
essential for IoT systems, where false positives can lead to 
unnecessary service disruptions, and false negatives can 
allow malicious activity to go undetected. 

Between the two approaches, the stacking classifier 
slightly outperformed the voting ensemble, achieving an 
accuracy of 99.40% compared to 99.39%, while reducing 
the number of false negatives from 722 to 596. Although 
this improvement appears marginal in percentage terms, it 
is meaningful in operational security contexts, where even 
small gains in detection capability can translate to 
significantly enhanced threat mitigation. The stacking 
classifier’s trade-off—incurring a slightly higher number 
of false positives (89 vs. 32)—is considered acceptable in 
IoT settings, where the consequences of undetected 
attacks typically outweigh the cost of benign 
misclassifications. 

Importantly, inference time analysis revealed that both 
models operate well within acceptable latency thresholds 
for non-critical IoT applications. The voting model 
averaged 190.99 ms per inference, while the stacking 
model required 224.96 ms. Although stacking incurs a 
slightly higher computational cost due to its layered 
architecture, both fall within the 100–300 ms range 
deemed acceptable for smart surveillance and 
environmental monitoring applications. However, further 
optimization or model simplification may be necessary for 
latency-critical systems (e.g., autonomous vehicles). 

The comparative analysis with traditional machine 
learning and recent ensemble techniques confirms the 
superiority of our models, particularly when benchmarked 
on the CIC-IoT2023 dataset. While prior studies (e.g., 
Mante & Kolhe, 2024; Ye et al., 2025; Ain et al., 2025) 
offered innovative perspectives—including behavioral 
feature integration and hybrid deep learning 
architectures—the proposed ensemble models not only 
matched or exceeded their accuracy but did so with lower 
inference costs, making them more viable for real-world 
IoT deployments. 

The error distribution analysis also highlights a crucial 
strategic decision point. The voting model favors 
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precision and low false alarm rates, making it ideal for 
environments where uptime is prioritized. In contrast, the 
stacking model is better suited for high-security 
applications due to its superior ability to detect actual 
attacks. 

Furthermore, the models’ robustness and generalization 
ability were validated through 5-fold stratified cross-
validation. The voting classifier maintained a mean 
accuracy of 99.3%, with minimal variance across folds. 
The stacking classifier slightly improved on this, achieving 
a mean accuracy of 99.4% and showing similarly stable 
fold-wise results. These findings confirm that both 
ensemble methods are not only accurate but consistently 
reliable, an essential trait for systems operating in 
unpredictable network conditions. 

Overall, this study reinforces the value of ensemble 
learning for DDoS detection in IoT networks. The 
proposed systems achieve a balance of accuracy, 
efficiency, and adaptability by integrating different 
classifiers and optimizing their performance through 
cross-validation. These strengths position ensemble 
methods as a scalable solution for the increasing security 
demands of modern IoT infrastructures. 

Future work may focus on further enhancing these models 
by integrating adaptive learning mechanisms capable of 
detecting emerging and low-rate DDoS patterns in real-
time. Additionally, incorporating behavioral and temporal 
features, as seen in recent studies, could offer further 
improvements in handling stealthier attack types. 
Exploring lightweight model architecture or edge-based 
deployment strategies may also help extend these 
solutions to latency-critical or power-constrained IoT 
settings. 

Implementation Trade-offs 

Despite their similar overall accuracy, the voting and 
stacking classifiers exhibit distinct performance 
characteristics that warrant consideration for practical 
deployment: 

1. Computational Efficiency: The voting 
classifier demonstrates superior computational 
efficiency with an inference time of 190.9872ms 
compared to the stacking classifier's 224.9587ms. 
This difference of approximately 34ms (15% 
faster) could be significant in real-time detection 
scenarios, particularly in resource-constrained 
IoT environments. 

2. Error Distribution: The voting classifier excels 
at minimizing false positives (32 instances) 
compared to the stacking classifier (89 instances), 
representing a 64% reduction in false alarms. 
Conversely, the stacking classifier reduces false 
negatives by 17.5% (596 vs. 722), indicating 
superior attack detection capabilities. 

3. Implementation Complexity: The voting 

classifier offers a simpler architecture with a 

more straightforward implementation, making it 

potentially more suitable for environments with 

limited computational resources. The stacking 

classifier's additional meta-learning layer 

increases implementation complexity but may 

provide better adaptability to evolving attack 

patterns. Table 4 summarizes these trade-offs to 

guide practical implementation decisions. 

Table 4 Implementation of Trade-Offs Between Ensemble Approaches 

Aspect Voting Classifier Stacking Classifier Recommendation 

Accuracy 99.39% 99.40% Stacking for marginally higher accuracy 
Inference Time 190.9872ms 224.9587ms Voting for faster detection 
False Positives 32 89 Voting for fewer false alarms 
False Negatives 722 596 Stacking for fewer missed attacks 
Implementation Complexity Lower Higher Voting for simpler deployment 
Resource Requirements Lower Higher Voting for Res-constr environments 
Adaptability Moderate High Stacking for evolving threat landscapes 

Res-constr = resource-constrained

Practical Implementation Guidelines 

Based on our findings, we propose the following 

guidelines for implementing ensemble learning 

approaches for DDoS detection in IoT environments: 

1. Resource-Constrained Environments: The 

voting classifier offers an optimal balance 

between detection accuracy and efficiency for 

IoT deployments with limited computational 

resources or rigid real-time requirements. Its 

lower inference time and simpler architecture 

make it well-suited for edge devices with 

processing limitations. 

2. High-Security Environments: The stacking 
classifier provides superior protection for 
environments where security is paramount and 
the cost of missed attacks outweighs operational 
disruptions from false alarms. Its enhanced 
attack detection capabilities (fewer false 
negatives) make it ideal for critical infrastructure 
protection. 

3. Balanced Deployments: Both ensemble 
methods offer viable solutions for environments 
requiring a balance between detection accuracy 
and operational efficiency. The choice between 
them should prioritize the most critical 
requirement—minimizing false alarms or 
maximizing attack detection. 
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4. Hybrid Implementations: In some cases, a 
hybrid approach might be optimal, where the 
voting classifier serves as the primary detection 
mechanism, with the stacking classifier deployed 
for secondary verification of suspicious traffic. 
This tiered approach leverages the strengths of 
both methods while managing computational 
overhead. 

Practical Implications 

The findings of this study have significant practical 
implications for strengthening IoT security against 
Distributed Denial of Service (DDoS) attacks. The 
demonstrated high accuracy and balanced error 
distribution of ensemble learning methods, particularly 
stacking and voting classifiers, highlight their potential for 
deployment in real-world IoT networks. These methods 
effectively mitigate key challenges such as limited 
computational capacity, dynamic attack surfaces, and the 
need for rapid decision-making. By leveraging diverse 
algorithmic perspectives, ensemble models reduce the risk 
of false positives, which can lead to unnecessary service 
disruptions, and false negatives, allowing malicious traffic 
to go undetected. This balance is critical in resource-
constrained IoT systems where operational continuity and 
threat mitigation must coexist. Furthermore, 
incorporating Principal Component Analysis (PCA) for 
dimensionality reduction enhances the feasibility of 
implementing these models in edge devices, thus enabling 
decentralized, real-time DDoS detection with minimal 
computational overhead. 

CONCLUSION AND FUTURE WORK 

This study introduced an enhanced ensemble learning 
approach for detecting Distributed Denial of Service 
(DDoS) attacks within Internet of Things (IoT) 
environments. By implementing voting and stacking 
classifiers that integrate four supervised learning 
algorithms—Random Forest, Decision Trees, Logistic 
Regression, and K-Nearest Neighbors—we achieved high 
detection accuracy alongside reasonable inference times. 
Our experimental results indicate that ensemble methods 
significantly outperform individual algorithms, with the 
voting classifier reaching an accuracy of 99.39% and the 
stacking classifier slightly higher at 99.40%. These 
outcomes surpassed previously established benchmarks. 
A comprehensive analysis of error distributions and 
inference times further revealed the trade-offs in balancing 
computational efficiency, detection performance, and 
false positive mitigation—offering valuable insights for 
real-world deployment. 

The contributions of this research to IoT security are 
threefold. First, the findings demonstrate the suitability of 
ensemble learning techniques for enhancing DDoS 
detection in environments constrained by limited 
computational resources. Second, the study offers 
practical guidance on model implementation tailored to 
varying deployment needs and system specifications. 
Third, it highlights the feasibility of achieving high 
detection accuracy and efficient performance through 

carefully selecting ensemble configurations and data 
preprocessing methods. 

Building on this foundation, future research should 
consider several important directions. One promising 
avenue is the integration of deep learning techniques into 
the ensemble framework, which could improve the 
detection of more complex or evolving attack patterns. 
Future research should also explore adaptive ensemble 
frameworks capable of real-time learning and evolution to 
address the ever-changing nature of DDoS attack vectors. 
This includes the integration of online learning or 
reinforcement learning strategies that allow models to 
continuously update in response to new threats without 
requiring complete retraining. Another priority is the 
development of real-time adaptation mechanisms to 
ensure that models remain effective as threat landscapes 
change over time. Additionally, validating these ensemble 
models across multiple IoT security datasets would help 
confirm their robustness and generalizability in diverse 
operational contexts. Optimizations tailored to specific 
IoT hardware platforms could also reduce inference time 
and resource consumption, enhancing their practical 
viability. The use of federated learning in conjunction with 
ensemble methods also presents a promising avenue, as it 
facilitates collaborative model training across distributed 
devices while preserving data privacy. Finally, future work 
should focus on testing these ensemble frameworks in 
diverse, real-world IoT scenarios—such as smart homes, 
healthcare systems, and industrial control networks—to 
validate their scalability, adaptability, and robustness 
under operational constraints and heterogeneous 
environments. 

Collectively, these research directions offer a roadmap for 
evolving the proposed approach into a more powerful, 
efficient, and adaptable solution for securing the ever-
growing and vulnerable IoT environment. 
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