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INTRODUCTION
The Kumaraswamy’s double bound distribution is a family 
of continuous probability distributions defined on the 
interval (0,1) suitable for physical variables.  The 
Kumaraswamy (Kw) distribution was developed by 
Kumaraswamy (1980).  The distribution sharess some 
similar characteristics with the Beta distribution but is 
much simpler to use, especially in simulation studies.  Both 
distributions are defined on the same support (0,1).  The 
Kumaraswamy and Exponentiated Kumaraswamy 
families suffer a lack of scale parameters (Nkrumah, 2021).  
Effectively, they are not flexible enough for the lack of 
variability control (Fernando et al. 2017).  To achieve more 
flexibility and applicability, it is necessary to introduce a 
scale parameter to the EKw distribution.  The main goal 
of this research is to develop a new probability distribution 
by adding a single scale parameter to the baseline 
Exponentiated Kumaraswamy distribution, which can 
then be used to model real-world datasets with high 
peakedness. 

To increase the flexibility in data modeling, researchers 
have devised multiple methods for appending a 
parameter(s) to an existing probability distribution.  
Among them are:  

Exponentiated Kumaraswamy-G of Silva et al. (2019), 
Weibull Burr X of Usman et al. (2019), New odd Fréchet-

G family of Sadiq et al. (2022) The Inverse Lomax-G of 
Falgore and Doguwa (2020), Odd Beta Prime-G of 
Sulaiman et al. (2023), Generalized Odd Maxwell-G of 
Ishaq et al. (2023), New generalized odd Fréchet-G 
(NGOF-G) family of distribution of Sadiq et al. (2023a), 
New generalized odd Fréchet-exponentiated-G family of 
Sadiq et al. (2023b), New generalized odd Fréchet-odd 
exponential-G family of Sadiq et al. (2023c), The odd 
Rayleigh-G family by Sadiq et al. (2024) among others. 

Let a random variable X follow the Exponentiated 
Kumaraswamy distribution with parameters a,b, and γ, 
defined by Lemonte et al. (2013), then its cumulative 
distribution function is given as: 

𝐺(𝑥; 𝑎, 𝑏, 𝛾) = (1 − (1 − 𝑥𝑎)𝑏)𝛾            𝑥  ∈ (0,1)

  𝑎, 𝑏, 𝛾 > 0    (1) 

the pdf of the EKw distribution is given as: 

𝑔(𝑥; 𝑎, 𝑏, 𝛾) = 𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 −
𝑥𝑎)𝑏)𝛾−1           (2) 

Several studies have employed the Exponentiated 
Kumaraswamy distribution to extend existing 
distributions.  Examples include, Huang and Oluyede 
(2013), who developed the Exponentiated 
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Kumaraswamy-Dagum (EKD) family of distribution, and 
Bursa and Ozel (2017) developed the Exponentiated 
Kumaraswamy power function distribution.  

Yahaya and Mohammed (2017) developed the 

Transmuted Kumaraswamy Inverse Exponential 

distribution.  Abba et al. (2017) presented a study on the 

Exponentiated Kumaraswamy Inverse Exponential 

distribution.  Silva et al. (2019) introduced the 

Exponentiated Kumaraswamy-G family of distribution, 

Mohammed (2019) presented a Theoretical Analysis of 

the Exponentiated Transmuted Kumaraswamy 

distribution, Joseph and Ravindran (2023) introduced the 

Transmuted Exponentiated Kumaraswamy (TEKw) 

distribution, and Salau et al. (2025) also developed the 

Type I half logistic Exponentiated Kumaraswamy 

distribution.  Clearly, all the aforementioned contributions 

to the Kumaraswamy distribution considered 

exponentiating the Kw distribution, thereby adding 

another shape parameter.  Meanwhile, in this work, we 

employ a generator with a single scale parameter to 

improve on the existing distribution  

Here, we employ a novel family of lifetime distributions 
known as the Zubair-G family developed by Zubair (2018) 
to come up with a new distribution.  The cdf and pdf of 
the Zubair-G family can be defined as: 

𝐹(𝑥; 𝛼, 𝜉) =
𝑒𝛼𝐺(𝑥;𝜉)2−1

𝑒𝛼−1
 

  −∞ < 𝑥 <  ∞  (3) 

where, 𝛼 > 0 is a scale parameter and 𝛏 > 0
 
is a vector of 

parameters for any baseline distribution 

the pdf of the Zubair-G family is given by: 

𝑓(𝑥; 𝛼, 𝜉) =
2𝛼𝑔(𝑥;𝜉)𝐺(𝑥;𝜉)𝑒𝛼𝐺(𝑥;𝜉)2

𝑒𝛼−1
   (4) 

THE ZUBAIR EXPONENTIATED 
KUMARASWAMY (ZEKw) DISTRIBUTION 

We define the cdf of the new ZEKw distribution by 
substituting (1) in (3) as:  

𝐹(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) =
𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

2

−1

𝑒𝛼−1
 

0 < 𝑥 < 1

      (5) 

𝛼 > 0, 𝑎 > 0, 𝑏 > 0 𝛾 > 0
   

𝛼 is scale parameter , 𝑎, 𝑏, 𝛾 are shape parameters
 

differentiating (5) we have the pdf of the ZEKw 
distribution as: 

𝑓(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) =

2𝛼𝑎𝑏𝛾𝑥𝑎−1(1−𝑥𝑎)𝑏−1(1−(1−𝑥𝑎)𝑏)
𝛾−1

(1−(1−𝑥𝑎)𝑏)
𝛾
𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

2

𝑒𝛼−1
     

         (6)
 

the survival function of the ZEKw distribution is given 
by: 

𝑆(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) =
𝑒𝛼−𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

2

𝑒𝛼−1
  

      (7) 

the hazard rate function of the ZEKw distribution is given 
as:

 

ℎ(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) =

2𝛼𝑎𝑏𝛾𝑥𝑎−1(1−𝑥𝑎)𝑏−1(1−(1−𝑥𝑎)𝑏)
𝛾−1

(1−(1−𝑥𝑎)𝑏)
𝛾
𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

2

𝑒𝛼−𝑒
𝛼((1−(1−𝑥𝑎)𝑏)

𝛾
)
2

     

         (8) 

the reverse hazard rate of the ZEKw distribution is given 
by: 

𝑟ℎ(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) =

2𝛼𝑎𝑏𝛾𝑥𝑎−1(1−𝑥𝑎)𝑏−1(1−(1−𝑥𝑎)𝑏)
𝛾−1

(1−(1−𝑥𝑎)𝑏)
𝛾
𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

2

𝑒
𝛼((1−(1−𝑥𝑎)𝑏)

𝛾
)
2

−1

 (9) 

the cumulative hazard rate of the ZEKw distribution 
function is given as: 

𝐻(𝑥; 𝛼, 𝑎, 𝑏, 𝛾) = − 𝑙𝑜𝑔 (
𝑒𝛼−𝑒

𝛼((1−(1−𝑥𝑎)
𝑏
)
𝛾
)

𝑒𝛼−1
)

 (10) 

Plots of the ZEKw distributions pdf, cdf, survival, and 
hazard rate with various parameter values are shown in 
Figures 1, 2, 3, and 4, respectively. 

In Figure 1, it is observed that the distribution is left-
skewed, and the peakedness of the distribution increases 
with an increase in the value of the additional scale 
parameter.   

STATISTICAL PROPERTIES OF THE ZEKw 
DISTRIBUTION 

In this section, we derive some necessary statistical 
properties, including the quantile function, moment, 
moment generating function, skewness, kurtosis, and 
distribution of order statistics. 
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Figure 1: PDF plot of the ZEKw Distribution                 Figure 2: CDF plot of ZEKw Distribution  

       

Figure 3: Survival function plot of ZEKw Distribution   Figure 4: Hazard rate function plot of ZEKw Distribution  

QUANTILE FUNCTION OF THE ZEKw 
DISTRIBUTION 

The quantile function of X, say Q(u), is the inverse of the 

cdf and is given as:

 

𝑥 = 𝐹−1(𝑢)
     (10) 

where u is distributed uniformly throughout the [0,1] 
interval. 

using (5) the quantile function of the ZEKw distribution 
can be derived as: 

  𝑥 =

[
 
 
 

1 − [1 − [[
𝑙𝑜𝑔[1+𝑢(𝑒𝛼−1)]

𝛼
]

1

2
]

1

𝛾

]

1

𝑏

]
 
 
 

1

𝑎

  (11) 

MEDIAN OF THE ZEKw DISTRIBUTION 

The median of the ZEKw distribution can be derived by 
substituting for u = 0.5 in equation (3.25). 

https://scientifica.umyu.edu.ng/


 
 

UMYU Scientifica, Vol. 4 NO. 2, June 2025, Pp 439 – 447. 

 442 

 

 https://scientifica.umyu.edu.ng/                      Habib et al., /USci, 4(2): 439 – 447, June 2025  
 

Q(0.5) =  

[
 
 
 

1 − [1 − [[
𝑙𝑜𝑔[1+0.5(𝑒𝛼−1)]

𝛼
]

1

2
]

1

𝛾

]

1

𝑏

]
 
 
 

1

𝑎

 (12) 

MOMENT OF THE ZEKw DISTRIBUTION 

Moments can be used to derive the mean, skewness, and 

kurtosis of a probability distribution.  The rth moment of 
a random variable X is defined as; 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥) 𝑑𝑥
∞

−∞

    (13)

 

according to Zubair (2018), the rth moment of the Zubair-
G random variable is defined as: 

𝐸(𝑋𝑟) = 2∑
𝛼𝑖+1

(𝑒𝛼−1)𝑖!

∞
𝑖=0 ∫ 𝑥𝑟𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)2𝑖+1 𝑑𝑥

∞

−∞

      (14) 

substituting equation (1) and (2) in (14) we have: 

𝐸(𝑋𝑟) = 2𝑎𝑏𝛾 ∑
𝛼𝑖+1

(𝑒𝛼 − 1)𝑖!

∞

𝑖=0

∫ 𝑥𝑟+𝑎−1(1
1

0

− 𝑥𝑎)𝑏−1(1

− (1 − 𝑥𝑎)𝑏)𝛾−1 ((1

− (1 − 𝑥𝑎)𝑏))
2𝑖𝛾+𝛾

 𝑑𝑥 

𝐸(𝑋𝑟) = 2𝑎𝑏𝛾 ∑
𝛼𝑖+1

(𝑒𝛼−1)𝑖!

∞
𝑖=0 ∫ 𝑥𝑟+𝑎−1(1 −

1

0

𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)2𝛾(𝑖+1)−1 𝑑𝑥

  (15)

 

by binomial expansion, 

( ) ( )
0

1 ( 1)
k j k j

j

j

z z


=

− = −
   (16)

 

using (16) it follows that: 

(1 − (1 − 𝑥𝑎)𝑏)2𝛾(𝑖+1)−1 =

∑ (−1)𝑗 (
2𝛾(𝑖 + 1) − 1

𝑗
) (1 − 𝑥𝑎)𝑏𝑗∞

𝑗=0

  (17)

 

substituting (17) into (15)   

𝐸(𝑋𝑟)

= 2𝑎𝑏𝛾 ∑∑
(−1)𝑗𝛼𝑖+1

(𝑒𝛼 − 1)𝑖!

∞

𝑗=0

∞

𝑖=0

(
2𝛾(𝑖 + 1) − 1

𝑗
)∫ 𝑥𝑟+𝑎−1(1

1

0

− 𝑥𝑎)𝑏(𝑗+1)−1 𝑑𝑥 
taking the integral part: 

∫ 𝑥𝑟+𝑎−1(1 − 𝑥𝑎)𝑏(𝑗+1)−1 𝑑𝑥
1

0
= 𝐵 (

𝑟

𝑎
+ 1, 𝑏(𝑗 + 1))

      (18)

 

where, 𝐵 (
𝑟

𝑎
+ 1, 𝑏(𝑗 + 1)) is a beta function. 

𝐸(𝑋𝑟) =

2𝑏𝛾 ∑ ∑
(−1)𝑗𝛼𝑖+1

(𝑒𝛼−1)𝑖!

∞
𝑗=0

∞
𝑖=0 (

2𝛾(𝑖 + 1) − 1
𝑗

)𝐵 (
𝑟

𝑎
+

1, 𝑏(𝑗 + 1))     (19) 

equation (19) is the equation of rth moment of the ZEKw 
distribution 

Let 2𝑏𝛾 ∑ ∑
(−1)𝑗𝛼𝑖+1

(𝑒𝛼−1)𝑖!

∞
𝑗=0

∞
𝑖=0 (

2𝛾(𝑖 + 1) − 1
𝑗

) = 𝑊𝑖𝑗

      (20) 
FIRST, SECOND, THIRD, AND FOURTH 
MOMENTS OF THE ZEKw DISTRIBUTION 
By substituting for r = 1 in (19) and substituting (20) in 
(19) we have the first moment as: 

𝜇1 = 𝑊𝑖𝑗𝐵 (
1

𝑎
+ 1, 𝑏(𝑗 + 1))

   (21)

 

The second moment for r = 2 

𝜇2 = 𝑊𝑖𝑗𝐵 (
2

𝑎
+ 1, 𝑏(𝑗 + 1))

    (22) 
The third moment for r = 3 

𝜇3 = 𝑊𝑖𝑗𝐵 (
3

𝑎
+ 1, 𝑏(𝑗 + 1))

   (23)

 

The fourth moment for r = 4 

𝜇4 = 𝑊𝑖𝑗𝐵 (
4

𝑎
+ 1, 𝑏(𝑗 + 1))

    (24) 

SKEWNESS AND KURTOSIS OF THE ZEKw DISTRIBUTION  

Skewness is the measure of asymmetry of a probability distribution about it mean, mathematically defined as: 

𝛽1 =
(𝜇3)2

(𝜇2)3

            (25)

 

the kurtosis is defined as:  

𝛽2 =
𝜇4

(𝜇2)2

            (26) 
MOMENT GENERATING FUNCTION OF THE ZEKw DISTRIBUTION 
The moment generating function of a continuous random variable X is defined as: 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥∞

−∞
𝑓(𝑥) 𝑑𝑥

           (27) 
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according to Zubair (2018) the general expression for the moment generating function (mgf) of the Zubair-G random 
variable X is given by: 

𝑀𝑥(𝑡) = 2∑ ∑
𝑡𝑟𝛼𝑖+1

(𝑒𝛼−1)𝑟!𝑖!
∞
𝑟=0

∞
𝑖=0 ∫ 𝑥𝑟∞

−∞
𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)2𝑖+1 𝑑𝑥     (28) 

substituting (1) and (2) in (28) 

𝑀𝑥(𝑡) = 2∑ ∑
𝑡𝑟𝛼𝑖+1

(𝑒𝛼−1)𝑟!𝑖!
∞
𝑟=0

∞
𝑖=0 ∫ 𝑥𝑟1

0
𝑎𝑏𝛾𝑥𝑎−1((1 − 𝑥𝑎)𝑏−1)(1 − (1 − 𝑥𝑎)𝑏)𝛾((1 − (1 − 𝑥𝑎)𝑏)𝛾)2𝑖+1 𝑑𝑥

 
            (29) 
the integral part have been previously simplified in (18) as: 

𝑏𝛾 ∑ (−1)𝑗∞
𝑗=0 (

2𝛾(𝑖 + 1) − 1
𝑗

)𝐵 (
𝑟

𝑎
+ 1, 𝑏(𝑗 + 1))

      (30)

 

substituting (30) in (29) the mgf of ZEKw is given as: 

𝑀𝑥(𝑡) = 2𝑏𝛾 ∑ ∑ ∑ (
2𝛾(𝑖 + 1) − 1

𝑗
)∞

𝑗=0
(−1)𝑗𝑡𝑟𝛼𝑖+1

(𝑒𝛼−1)𝑟!𝑖!
∞
𝑟=0

∞
𝑖=0 𝐵 (

𝑟

𝑎
+ 1, 𝑏(𝑗 + 1))   (31) 

ORDER STATISTICS OF THE ZEKw DISTRIBUTION 

Let 𝐹𝑟:𝑘(𝑥) and 𝑓𝑟:𝑘(𝑥) denote the CDF and PDF of the rth order statistics Xr:k respectively.  Then, from David H.A 

(1981), the density of 𝑋𝑟:𝑘 for r =1, 2,…,k is given by, 

𝑔𝑟:𝑘(𝑥) =
𝑓(𝑥)

𝐵(𝑟,𝑘−𝑟+1)
∑ (−1)𝑖∞

𝑖,𝑟=0 (
𝑘 − 𝑟

𝑖
) (𝐹(𝑥))𝑖+𝑟−1

       (32) 
the pdf of the Rth order statistic for the ZEKw distribution is derived by substituting equations (5) and (6) into equation 
(32). 

𝑓𝑟:𝑘(𝑥) =
1

𝐵(𝑟, 𝑘 − 𝑟 + 1)
(
2𝛼𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝛾−1(1 − (1 − 𝑥𝑎)𝑏)𝛾)𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)2

𝑒𝛼 − 1
) × 

∑ (−1)𝑖∞
𝑖,𝑟=0 (

𝑘 − 𝑟
𝑖

) (
𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)−1

𝑒𝛼−1
)
𝑖+𝑟−1

       

(33)

 

by setting r = 1 and r = k in equation (33) the pdf of the minimum and maximum order statistic of the ZEKw distribution 
is obtained respectively as:

 

𝑓1:𝑘(𝑥) =
1

𝐵(1, 𝑘)
(
2𝛼𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝛾−1(1 − (1 − 𝑥𝑎)𝑏)𝛾)𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)2

𝑒𝛼 − 1
) × 

∑ (−1)𝑖𝑘−1
𝑖=0 (

𝑘 − 1
𝑟

) (
𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)−1

𝑒𝛼−1
)
𝑖

        (34)

 

𝑓𝑘:𝑘(𝑥) =
1

𝐵(𝑘, 1)
(
2𝛼𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝛾−1(1 − (1 − 𝑥𝑎)𝑏)𝛾)𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)2

𝑒𝛼 − 1
) × 

∑ (−1)𝑖∞
𝑖,𝑘=0 (

𝑒𝛼((1−(1−𝑥𝑎)𝑏)𝛾)−1

𝑒𝛼−1
)
𝑖+𝑘−1

        (35) 

MAXIMUM LIKELIHOOD ESTIMATION OF THE ZEKw DISTRIBUTION 

Let 𝑥1, 𝑥2, . . . , 𝑥𝑛  be a random sample of size n from the ZEKw distribution with parameters𝛼, 𝑎, 𝑏 and 𝛾.  Using (6), 
the likelihood function is given by, 

𝐿(𝑥𝑖; 𝛼, 𝑎, 𝑏, 𝛾) = ∏ (
2𝛼𝑎𝑏𝛾𝑥𝑖

𝑎−1(1−𝑥𝑖
𝑎)𝑏−1(1−(1−𝑥𝑖

𝑎)𝑏)
𝛾−1

(1−(1−𝑥𝑖
𝑎)𝑏)

𝛾
𝑒

𝛼((1−(1−𝑥𝑖
𝑎)

𝑏
)
𝛾
)

𝑒𝛼−1
)𝑛

𝑖=1

     (36)

 

taking the natural log of (36), the log-likelihood function,ℓ is given as: 

ℓ = −𝑛 𝑙𝑜𝑔(𝑒𝛼 − 1) + 𝑛 𝑙𝑜𝑔 2 + 𝑛 𝑙𝑜𝑔 𝛼 + 𝑛 𝑙𝑜𝑔 𝑎 + 𝑛 𝑙𝑜𝑔 𝑏 + 𝑛 𝑙𝑜𝑔 𝛾 + (𝑎 − 1)∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

+ (𝑏 − 1)∑𝑙𝑜𝑔(1 − 𝑥𝑎
𝑖)

𝑛

𝑖=1

+ 
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(𝛾 − 1)∑ 𝑙𝑜𝑔(1 − (1 − 𝑥𝑖
𝑎)𝑏)𝑛

𝑖=1 + 𝛾 ∑ 𝑙𝑜𝑔(1 − (1 − 𝑥𝑖
𝑎)𝑏) +𝑛

𝑖=1 𝛼 ∑ ((1 − (1 − 𝑥𝑖
𝑎)𝑏)𝛾)𝑛

𝑖=1
2
  (37) 

taking the partial derivative of equation (37) with respect to each parameter yield, 
𝜕ℓ

𝜕𝛼
=

−𝑛𝑒𝛼

(𝑒𝛼−1)
+

𝑛

𝛼
+ ∑ ((1 − (1 − 𝑥𝑖

𝑎)𝑏)𝛾)2𝑛
𝑖=1       (38) 

𝜕ℓ

𝜕𝑎
=

𝑛

𝑎
+ ∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

− (𝑏 − 1)∑
𝑥𝑖

𝑎 𝑙𝑜𝑔 𝑥𝑖

(1 − 𝑥𝑖
𝑎)

𝑛

𝑖=1

+ 𝑏(𝛾 − 1)∑
(1 − 𝑥𝑖

𝑎)𝑏−1𝑥𝑎 𝑙𝑜𝑔 𝑥𝑖

(1 − (1 − 𝑥𝑖
𝑎)𝑏)

+

𝑛

𝑖=1

 

𝛾𝑏 ∑
(1−𝑥𝑖

𝑎)𝑏−1𝑥𝑖
𝑎 𝑙𝑜𝑔 𝑥𝑖

(1−(1−𝑥𝑖
𝑎)𝑏)

+ 2𝛼𝑏𝛾(1 − (1 − 𝑥𝑖
𝑎)𝑏)2𝛾−1 ∑ (1 − 𝑥𝑖

𝑎)𝑏−1𝑥𝑖
𝑎 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1     (39) 

𝜕ℓ

𝜕𝑏
=

𝑛

𝑏
+ ∑𝑙𝑜𝑔(1 − 𝑥𝑖

𝑎)

𝑛

𝑖=1

− 2𝛾 ∑
(1 − 𝑥𝑖

𝑎)𝑏 𝑙𝑜𝑔(1 − 𝑥𝑖
𝑎)𝑏

(1 − (1 − 𝑥𝑖
𝑎)𝑏)

𝑛

𝑖=1

+ ∑
(1 − 𝑥𝑖

𝑎)𝑏 𝑙𝑜𝑔(1 − 𝑥𝑖
𝑎)𝑏

(1 − (1 − 𝑥𝑖
𝑎)𝑏)

𝑛

𝑖=1

− 

2𝛼𝑏𝛾(1 − (1 − 𝑥𝑖
𝑎)𝑏)2𝛾−1 ∑ (1 − 𝑥𝑖

𝑎)𝑏 𝑙𝑜𝑔(1 − 𝑥𝑖
𝑎)𝑛

𝑖=1          (40) 
𝜕ℓ

𝜕𝛾
=

𝑛

𝛾
+ 2∑ 𝑙𝑜𝑔(1 − (1 − 𝑥𝑖

𝑎)𝑏) + 2𝛼 ∑ ((1 − (1 − 𝑥𝑖
𝑎)𝑏)𝛾)𝑛

𝑖=1
𝑛
𝑖=1

2
      (41) 

The maximum likelihood estimators of the ZEKw distribution parameters can be obtained by setting equations (38) to 

(41) individually to zero and solving them simultaneously.  However, because the equations are nonlinear, they cannot be 

solved analytically; instead, they can be solved numerically using statistical software like RStudio. 

SIMULATION STUDY 

Here, we explore the consistency and efficiency of the 

maximum likelihood estimators. In this investigation, 

1000 replicates were generated from the ZEKw 

distribution using the quantile function in equation (11).  

Sample sizes of n = 20, 50, 100, 150, 200, and 500 were 

selected.  The actual values of the parameters that were 

selected were γ = 7.2, a = 1.5, b = 6.6, and γ = 4.  From 

the generated replicates, parameter estimates, bias, and 

root mean square error (RMSE) were calculated for each 

of the chosen sample sizes. 

From Table 1, it can be observed that the estimates are 

relatively good as the parameter estimates approach the 

true parameter values for each parameter as the sample 

size increases.  Simultaneously, for each of the four 

parameters, the bias tends to zero as the sample size 

increases, indicating that the estimates are unbiased.  Also, 

the RMSE approaches zero as the sample size increases.  

This proved the consistency of the maximum likelihood 

estimators obtained. 

APPLICATION 

This section uses a real-world dataset to illustrate the 

applicability of ZEKw distribution in data modelling.  The 

performance of the ZEKw distribution is compared with 

that of the Kumaraswamy distributions Exponentiated 

Kumaraswamy, Transmuted Exponentiated 

Kumaraswamy, and Modified Half Logistic 

Exponentiated Kumaraswamy.  AIC and BIC serve as the 

basis for the comparison.  The model with the lowest 

values of AIC and BIC is then selected as the best 

performing model.  We investigate a real-life dataset to 

highlight the effectiveness of the new model. 

Table 1: Monte Carlo simulation study results of the 
first simulation.  

n Parameter Estimate Bias RMSE 

20 α 5.5670 -1.6330 1.7133 

 a 12.6681 11.1681 11.1853 

 b 0.8426 -5.7574 5.7735 

 γ 14.0001 10.0001 10.0224 

50 α 5.7729 -1.4271 1.5115 

 a 12.2406 10.7406 10.7570 

 b 1.1040 -5.4960 5.5184 

 γ 13.6073 9.6073 9.6362 

100 α 6.0272 -1.1728 1.2609 

 a 11.9952 10.4952 10.5116 

 b 1.3130 -5.2870 5.3092 

 γ 13.2250 9.2250 9.2581 

150 α 6.1178 -1.0822 1.1518 

 a 11.8155 10.3155 10.3325 

 b 1.4110 -5.1890 5.2112 

 γ 13.0195 9.0195 9.0493 

200 α 6.1354 -1.0646 1.1276 

 a 11.7165 10.2165 10.2391 

 b 1.5552 -5.0448 5.0685 

 γ 12.8330 8.8330 8.8603 

500 α 6.1447 -1.0553 1.1157 

 a 11.2145 9.7145 9.7458 

 b 1.7249 -4.8751 4.9022 

 γ 12.4484 8.4484 8.4717 

The dataset consists of 20 observations of the 
transformation capacity of a reservoir in California for 
each year from February 1991 to 2010.  The data was used 
by Joseph and Ravindran (2023). 
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0.338936, 0.431915, 0.759932, 0.724626, 0.757583, 

0.811556, 0.785339, 0.783660, 0.815627, 0.847413, 

0.768007, 0.843485, 0.787408, 0.849868, 0.695970, 

0.842316, 0.828689, 0.580194, 0.430681, 0.742000 

Table 2 gives the descriptive summary of the Reservoir 
capacity dataset, which will be used to illustrate the 
usefulness of our proposed model and compare its 
modeling performance alongside the EKw distribution 
and other generalizations of the EKw distribution. 

Table 2: Descriptive summary of the reservoir capacity dataset 

N Q1 Median Mean Q3 Min Max 

20 0.7175 0.7758 0.7214 0.8189 0.3389 0.8499 

Table 3: The Maximum likelihood estimates, Log-likelihoods and Goodness-of-Fits statistics of the models 
based on Reservoir capacity dataset.  

Model a b α γ λ -l AIC BIC 

ZEKw 13.98 13.38 2.58 0.10 – -16.84 -25.70 -21.71 

EKw 9.64 6.13 – 0.54 – -14.44 -22.88 -19.89 

MHLEKw 31.42 65.89 – 0.21 – -14.75 -23.50 -20.51 

TEKw 1.63 2.37 – 3.83 -0.52 -12.61 -17.22 -13.23 

Kw 6.35 4.49 – – – -13.47 -22.95 -20.96 

 
Figure 5: Histogram and density plot of the reservoir capacity dataset. 

COMPETING MODELS 

• Exponentiated Kumaraswamy (EKw) 
Distribution  

According to Lemonte et al, (2013) pdf of the EKw 
distibution is given by: 

𝑓(𝑥) = 𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏−1)𝛾−1

      (42) 

• Modified Half Logistic Exponentiated 
Kumaraswamy (MHL-EKw) Distribution  

According to Xiao (2022) the pdf of the MHLEKw 
distribution is given by: 

𝑓(𝑥) =
2𝑎𝑏𝛾𝑥𝑎−1(1−𝑥𝛼)𝑏−1(1−(1−𝑥𝑎)𝑏)

−𝛾−1

(1+(1−(1−𝑥𝑎)𝑏)
−𝛾

)
2   (43) 

• Transmuted Exponentiated Kumaraswamy 
(TEKw) Distribution 

According to Joseph and Ravindran (2023) the pdf of the 
T-EKw distribution is given by: 

𝑓(𝑥) = 𝑎𝑏𝛾𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 −
𝑥𝑎)𝑏)𝛾−1((1 + 𝜆) − 2𝜆(1 − (1 − 𝑥𝑎)𝑎)𝛾) (44) 

• Kumaraswamy (Kw) Distribution   

According to Kumaraswamy (1980) the pdf of the Kw 
distribution is given by: 
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𝑓(𝑥) = 𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1
  (45)

 

Table 3 shows the results of the MLEs, log likelihood, 
AIC, and BIC statistics.  It is evident that the ZEKw 
distribution has the lowest values of AIC (-25.70) and BIC 

(-21.71) and therefore outperforms the baseline EKw and 
other competing models for modeling the Reservoir 
capacity dataset. By visual comparison of figure 6, it is 
evident that the ZEKw distribution is a better fits and 
shows greater superiority over its competitors in modeling 
in Reservoir capacity dataset. 

 
Figure 6: Histogram and estimated density plots of the ZEKw, TKw, MHLEK, EKw and Kw for the reservoir 
capacity dataset 

CONCLUSION  

This study presents the Zubair Exponentiated 
Kumaraswamy distribution, a novel four-parameter 
lifetime model.  Moments, quantile function, moment 
generating function, and distribution of order statistics 
were among the statistical characteristics of the ZEKw 
derived.  To estimate the model parameters, the maximum 
likelihood estimation method was considered.  
Additionally, a simulation was conducted, and the 
outcome demonstrated that the maximum likelihood 
estimators are consistent and efficient.  Based on the 
graphical analysis, we can recommend that the distribution 
can be used to model a dataset with a negatively skewed 
distribution and an increasing failure rate.  The new model 
was found to provide a better fit than the Kw distribution 
and several extensions of the EKw model using the 
Reservoir capacity dataset. 
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