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INTRODUCTION
The foundation of many conventional inventory models 
is the idea of a single ware-house with infinite capacity. In 
most corporate setups, this assumption is, nevertheless, 
questionable. The retailer might buy many things at once 
due to stock-outs, price discounts (for bulk purchases), 
quantity discounts, inflation fears, demand uncertainties, 
and other factors. Due to their bulk, these goods might 
not fit in the current storage, which is known as owned 
ware-houses with a limited capacity. The retailer may lease 
a different location known as the rental ware-house. 
Products are transferred from the rented ware-house to 
the own ware-house and sold. This is because better-
preserving equipment with a slower rate of deterioration 
will make the holding cost in the rental ware-house higher 
than that in the owned ware-house. Thus, it is more 
economical to use up the goods from rented ware-houses 
sooner. A two-ware-house inventory model for non-
instantaneous deteriorating goods with allowable payment 
delays under inflationary conditions was developed by 
Tiwari et al. (2016). Because customers' patience wanes 
with time, shortages and partial backlogs are accepted. The 

model establishes the retailer's ideal replenishment 
procedures, optimising the optimal profit present value 
per unit of time. In the work of Kumar et al. (2017), the 
exponential demand rate and allowable payment delay are 
considered with the established two-ware-house inventory 
model for deteriorating goods. The shortage is not 
permitted, and the rate of deterioration is constant. 
Chandra et al. (2017) established ordering strategies for 
non-instantaneously deteriorating goods with price-
dependent demand, two-storage facilities under 
permissible payment delays, shortages are allowed and 
fully backlogged, and the objective function is to maximize 
profit. To maximize overall profit per unit of time, Jaggi et 
al. (2017) established a two-ware-house inventory model 
that takes into account defective quality products, 
deterioration, and one level of trade credit. The model also 
optimizes the order quantity. Udayakumar and Geetha 
(2018) investigated an economic order quantity model 
with a constant demand rate, two-storage levels, and a 
permissible payment delay for non-instantaneous 
deteriorating items. In this model, shortages are not 
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ABSTRACT 
The retailer's ideal replenishment strategy for non-instantaneous decaying goods with two-
phase demand rates, two storage facilities, and shortages under a permissible payment delay 
has been determined in this study. While the constant demand rate is considered once 
deterioration has begun, the demand rate up to that point is believed to be a time-dependent 
quadratic function. Backlogs and shortages are also taken into consideration. Whether or not 
the backlog will be accepted depends on how long it will be until the next replenishment. As 
a result, the backlogging rate fluctuates and depends on how long it takes for the next refill. 
The models identify the ideal cycle length, order amount, and period at which the inventory 
level in the owned warehouse reaches zero in order to reduce the overall variable cost per 
unit of time. For the solutions to exist and be unique, both the necessary and sufficient 
requirements must be met. The best trade credit period is identified for each model using 
numerical examples, and the best model among the created models is identified using the best 
trade credit periods. Sensitivity analysis can offer some managerial insights. 
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considered, and the goal is to minimize the total variable 
cost per unit of time. For technology products with 
linearly growing market sizes, Kumar and Chanda (2018) 
established a two-ware-house inventory model with 
deterioration where demand follows the innovation 
diffusion criterion. The approach is predicated on the idea 
that holding costs in a rented ware-house are higher than 
those in an own ware-house. According to Chakrabarty et 
al. (2018), a two-ware-house inventory model was 
constructed for a single item that was deteriorating under 
the assumptions of shortages, partial backlogs, delayed 
payments, the impact of inflation, and the time value of 
money. Similarly, in the planning for a finite horizon 
where backorder is envisaged, two ware-house capacities 
(owned and rented) have been taken into account. The 
system employs a two-ware-house concept when the order 
volume exceeds the available storage space in the own 
ware-house. A positive, zero, or negative ending inventory 
level is thus possible. An inventory model with two ware-
houses, deteriorating aspect, exponentially decreasing 
demand rate, and limited suspension price with salvages 
was established by Sahoo et al. (2020). The model shows a 
rented ware-house in place of an inherent one. The 
intrinsic ware-house's rate of deterioration displays a linear 
function of time, but the rental home's rate of degradation 
gives a persistent function. Calculating salvage value on 
one's own ware-house. In a two-ware-house setting, 
Gupta et al. (2020) designed retailers' ordering procedures 
for time-varying deteriorating goods with partial backlogs 
and allowable payment delays. The model calculates the 
retailer's ideal ordering and backlog rules by minimising 
the related cost. A two-storage production inventory 
model with demand based on price and time was 
established by Datta et al. (2022). The selling price and the 
time determine the rate of demand. The rate of 
deterioration is constant, while the holding expense for 
on-site storage changes over time. By determining the 
most effective replenishment plan, rental storage costs can 
be reduced since the deterioration rate is assumed to be 
time-dependent while the holding cost is assumed to be 
constant. Babangida and Baraya (2020) devised an 
economic order quantity model. However, given the 
consumers' irritable and unpredictable character, it is 
impossible to know whether all customers will be willing 
to wait for a backorder when shortages emerge. When 
there are shortages, some customers who don't have 
immediate demands might wait for the backorders to 
arrive, while others might choose to purchase from 
alternative vendors. Due to the aforementioned, it is 
necessary to take into account the opportunity cost 
associated with lost sales when creating the model. The 
amount of time that must pass before the next 
replenishment for the majority of commodities will 
determine whether or not the backlog is tolerated. As a 
result, the backlog rate should vary and be based on when 
the next replenishment will arrive. 

This study has considered the retailer's ideal 
replenishment strategy for non-instantaneous decaying 
goods with two-phase demand rates, two-storage 

facilities, and shortages under a permissible payment 
delay. Before the onset of deterioration, the demand rate 
is thought to be a time-dependent quadratic function; 
following this point, it is treated as a constant function 
until all the inventory has been consumed. Partially 
backlogged shortages are allowed. Backlogs are either 
accepted or rejected based on the length of the waiting 
period, hence the backlogging rate is variable and 
dependent on when the next replenishment will occur. 
This study aims to provide a mathematical model for 
economic order quantity that predicts the ideal time with 
positive inventory, the ideal cycle length, and the ideal 
order quantity that minimizes total variable cost per unit 
time and provides the optimal trade credit period. The 
conditions that must exist for the optimal solutions to be 
unique have been identified. Additionally, 
some numerical examples have been provided to 
illustrate the model's presumptive conclusions. After 
performing sensitivity analysis on a few model 
parameters to determine the best options, 
recommendations for reducing the overall variable cost 
of the inventory system have been given. 

MODEL DESCRIPTION AND FORMULATION  

This section provides the model notation, assumptions, 
and formulation. 

2.1 Notations and Assumptions  
2.1.1 Notations 

𝐴 The ordering cost per order. 

𝐶 The purchasing cost per unit per unit time 
($/unit/ year). 

𝑆 The selling price per unit per unit time ($/unit/ 
year). 

𝐶𝑏 Shortage cost per unit per unit of time. 

ℎ𝑜 The holding cost per unit per unit time in own 
ware-house ($/unit/ year). 

ℎ𝑟 The holding cost per unit per unit time in rented 
ware-house ($/unit/ year). 

𝐼𝑐 The interest charged in stock by the supplier per 
Dollar per year ($/unit/year). 

𝐼𝑒 The interest earned per Dollar per year 

($/unit/year) (𝐼𝑐 ≥ 𝐼𝑒). 

M The trade credit period (in year) for settling 
accounts. 

𝜃𝑜 Constant deterioration rate in own warehouse, 

where 0 < 𝜃𝑜 < 1. 
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𝜃𝑟 Constant deterioration rate in rented ware-

house, where 0 < 𝜃𝑟 < 1, 𝜃𝑟 < 𝜃𝑜 

𝑡𝑑 The length of time in which the product exhibits 
no deterioration. 

𝑡𝑟 Time at which the inventory level reaches zero 
in rented ware-house. 

𝑡𝑜 Time at which the inventory level reaches zero 
in the owned ware-house. 

𝑇 The length of the replenishment cycle time (time 
unit). 

𝑄𝑚 The maximum positive inventory level per cycle 

𝑄𝑑 Capacity of the owned ware-house 

(𝑄𝑚 − 𝑄𝑑) Capacity of rented ware-house 

𝐵𝑚 The backorder level during the shortage period. 

𝑄 The order quantity during the cycle length, 

where 𝑄 = (𝑄𝑚 + 𝐵𝑚). 

𝐼𝑂(𝑡)  Inventory level in the owned warehouse at any 

time 𝑡, where 0 ≤ 𝑡 ≤ 𝑇. 

𝐼𝑟(𝑡)  Inventory level in the rented warehouse at any 

time 𝑡, where 0 ≤ 𝑡 ≤ 𝑇. 

𝐼𝑠(𝑡)  Shortage level at any time 𝑡 where 𝑡𝑜 ≤ 𝑡 ≤ 𝑇. 

2.1.2 Assumptions 

This model is established under the following 
assumptions. 

1. The replenishment rate is instantaneous. 
2. The lead time is zero. 
3. A single non-instantaneous decaying item is 

considered. 

4. The own warehouse has a fixed capacity of 𝑄𝑑 units; 

the rented ware-house has capacity of (𝑄𝑚 − 𝑄𝑑). 
5. The unit inventory holding cost per unit time in the 

rented ware-house is higher than that in the owned 
ware-house and the deterioration rate in the rented 
ware-house is less than that in the owned ware-house. 

6. There is no replacement or repair for deteriorated 
goods during the period under consideration. 

7. Demand before deterioration begins is a quadratic 

function of time 𝑡, which is more realistic because it 
represents both accelerated and retarded growth in 
demand rate of goods such as petrochemicals, 
aircraft, computers, seasonal products whose demand 
rises rapidly to a peak in the mid-season and then falls 
rapidly as the season wanes out and seems to be a 

better representation of time-varying market demand 

and is given by 𝛼 + 𝛽𝑡 + 𝛾𝑡2, where 𝛼 ≥ 0, 𝛽 ≠
0, 𝛾 ≠ 0. 

8. Demand rate after deterioration sets in is assumed to 

be constant and is given by 𝜆. 

9. During the trade credit period 𝑀 (0 < 𝑀 < 1), the 
account is not settled; generated sales revenue is 
deposited in an interest-bearing account. At the end 
of the period, the retailer pays off all units bought and 
starts to pay the capital opportunity cost for the goods 
in stock. 

10. During the stock out phase, shortages are permitted 
and partially backlogged; the backlogging rate is 
dynamic and based on how long it takes for the next 
replenishment; the longer the waiting time, the 
smaller the backlogging rate will be. The negative 

inventory backlog rate is calculated as 𝐵(𝑡) =
1

1+𝛿(𝑇−𝑡)
, 𝛿 is the backlogging parameter ( 0 < 𝛿 <

1)and  (𝑇 − 𝑡) is waiting time (𝑡𝑜 ≤ 𝑡 ≤ 𝑇), 1 −
𝐵(𝑡) is the remaining fraction lost. 

FORMULATION OF THE MODEL 

The retailer's ideal replenishment strategy for non-
instantaneous decaying commodities with two-phase 
demand rates, two-storage facilities, and shortages within 
a permissible payment delay has been taken into 
consideration in this article. Allowable payment delays 
encourage retailers to stock up on more goods since they 
boost sales, increase cash flow, lower the cost of stock 
holding, draw in new customers, or just retain their 
current ones. When the quantity exceeds the merchant's 
ware-house capacity, the retailer may choose to rent a 
ware-house to store the excess inventory. In this 

inventory system, 𝑄𝑚 units of a single product arrive at 
the inventory at the beginning of the cycle in which 

𝑄𝑑  units are stored in their own ware-house and the 

remaining (𝑄𝑚 − 𝑄𝑑) units in a rented ware-house. 
Thus, in order to find the optimal replenishment policy 

of the inventory system, two cases of when  𝑡𝑑 < 𝑡𝑟 and 

when  𝑡𝑑 > 𝑡𝑟 are discussed and are as follows.  

3.1 Case I: when 𝒕𝒅 < 𝒕𝒓 (Deterioration starts before 
the inventory level in rented ware-house becomes 
zero) 

Figure 3.1 designates the behaviour of the inventory 

system. During the time interval [0, 𝑡𝑑], the inventory 

level 𝐼𝑟(𝑡) in rented warehouse is depleting gradually due 
to market demand only and it is assumed to be a 

quadratic function of time 𝑡 whereas in the owned ware-
house inventory level remains unchanged. At time 

interval [𝑡𝑑 , 𝑡𝑟] the inventory level 𝐼𝑟(𝑡) in the rented 
ware-house is depleting due to combined effects of 

constant market demand rate 𝜆 and deterioration while 
the inventory level in the owned ware-houses gets used 

up due to deterioration only. At time interval [𝑡𝑟 , 𝑡𝑜], 
the inventory level 𝐼𝑜(𝑡) in the owned ware-house 
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depletes to zero due to the combined effects of consumer 
demand and deterioration. Shortages occur at the time 

𝑡 = 𝑡𝑜 and are partially backlogged in the interval [𝑡𝑜,

𝑇]. The whole process of the inventory system is 
repeated. 

 
Figure 3.1: Two-ware-house inventory system when 𝑡𝑑 < 𝑡𝑟 

 The differential equations that describe the inventory 
level in both rented ware-house and owned ware-house 

at any time 𝑡 over the period [0, 𝑇] are given by 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
= −(𝛼 + 𝛽𝑡 + 𝛾𝑡2),                                           0 ≤ 𝑡 ≤  𝑡𝑑                                           (1) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝑟𝐼𝑟(𝑡) = −𝜆,                                                   𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑟                                          (2) 

𝑑𝐼𝑜(𝑡)

𝑑𝑡
+ 𝜃𝑜𝐼𝑜(𝑡) = 0,                                                      𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑟                                         (3) 

𝑑𝐼𝑜(𝑡)

𝑑𝑡
+ 𝜃𝑜𝐼𝑜(𝑡) = −𝜆,                                                    𝑡𝑟 ≤ 𝑡 ≤  𝑡𝑜                                       (4) 

𝑑𝐼𝑠(𝑡)

𝑑𝑡
= −

𝜆

1 + 𝛿(𝑇 − 𝑡)
,                                 𝑡𝑜 ≤ 𝑡 ≤  𝑇                                                                  (5) 

with boundary conditions 𝐼𝑟(0) = 𝑄𝑚 − 𝑄𝑑 ,   𝐼𝑟(𝑡𝑟) = 0, 𝐼𝑜(𝑡𝑑) =  𝑄𝑑 , 𝐼𝑜(𝑡𝑜) = 0 and 𝐼𝑠(𝑡𝑜) =  0. 

The solutions of equations (1), (2), (3), (4) and (5) are as follows 

𝐼𝑟(𝑡) = 𝑄𝑚 − 𝑄𝑑 − (𝛼𝑡 + 𝛽
𝑡2

2
+ 𝛾

𝑡3

3
) ,             0 ≤ 𝑡 ≤  𝑡𝑑                                                 (6) 

𝐼𝑟(𝑡) =
𝜆

𝜃𝑟
(𝑒𝜃𝑟(𝑡𝑟−𝑡) − 1),                                                      𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑟                                (7) 
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𝐼𝑜(𝑡) = 𝑄𝑑𝑒
𝜃𝑜(𝑡𝑑−𝑡),                                                            𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑟                                     (8)  

𝐼𝑜(𝑡) =
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡) − 1),                                                        𝑡𝑟 ≤ 𝑡 ≤  𝑡𝑜                             (9) 

𝐼𝑠(𝑡)  = −
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)] − 𝑙𝑛[1 + 𝛿(𝑇 − 𝑡)]],                 𝑡𝑜 ≤ 𝑡 ≤  𝑇                     (10) 

Considering continuity of 𝐼𝑜(𝑡) at 𝑡 = 𝑡𝑟 , it follows from equations (8) and (9) that 

𝑄𝑑 =
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 𝑒𝜃𝑜(𝑡𝑟−𝑡𝑑)),                                         𝑡𝑜 ≤ 𝑡 ≤  𝑇                            (11) 

Considering continuity of 𝐼𝑟(𝑡) at 𝑡 = 𝑡𝑑, it follows from equations (6) and (7) that 

𝑄𝑚 =
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 𝑒𝜃𝑜(𝑡𝑟−𝑡𝑑)) + (𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) +

𝜆

𝜃𝑟
(𝑒𝜃𝑟(𝑡𝑟−𝑡𝑑) − 1),           𝑡𝑜 ≤ 𝑡

≤  𝑇                                                                                                                                (12) 

The maximum backordered units 𝐵𝑚 is obtained at 𝑡 = 𝑇, and then from equation (10), it follows that 

𝐵𝑚 = −𝐼𝑠(𝑇) =
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)]]                                                                                    (13) 

Consequently, the order size across the entire time period [0, 𝑇] is 

𝑄 = 𝑄𝑚 + 𝐵𝑚 =
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 𝑒𝜃𝑜(𝑡𝑟−𝑡𝑑)) + (𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) +

𝜆

𝜃𝑟
(𝑒𝜃𝑟(𝑡𝑟−𝑡𝑑) − 1)

+
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)]]                                           (14) 

The total variable cost per unit time 𝑍(𝑡𝑜 ,𝑇 ) is given by 

𝑍(𝑡𝑜 ,𝑇 ) =

{
 
 

 
 
𝑍11(𝑡𝑜 ,𝑇 ),           Sub − case 1.1: 0 < 𝑀 ≤ 𝑡𝑑

𝑍12(𝑡𝑜 ,𝑇 ),             Sub − case 1.2: 𝑡𝑑 < 𝑀 ≤ 𝑡𝑟

𝑍13(𝑡𝑜 ,𝑇 ),             Sub − case 1.3: 𝑡𝑟 < 𝑀 ≤ 𝑡𝑜

𝑍14(𝑡𝑜 ,𝑇 ),             Sub − case 1.4:𝑀 > 𝑡𝑜           

                                         (15) 

where 

𝑍11(𝑡𝑜, 𝑇) =
1

𝑇
{Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned 

ware-house + deterioration cost + backordered cost+ cost of lost sales + interest charge– interest 
earned} 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑑

0

+∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

+ 𝐶 [𝜃𝑟∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

] + 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

]

+ 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

 

+ 𝑐𝐼𝑐 [∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑀

0

]} 
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=
𝜆

𝑇
{
1

2
𝑊11𝑡𝑜

2 − X11𝑡𝑜 + 𝑌11 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                (16) 

but 

 𝑊11 = [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐[(𝑡𝑑 −𝑀)𝜃𝑜 + 1]], X11 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝑡𝑑𝜃𝑜 + 𝑐𝐼𝑐[𝑡𝑑𝜃𝑜(𝑡𝑑 −

𝑀) +𝑀]] and 

𝑌11 =
1

𝜆
[𝐴 + ℎ𝑟 [(𝛼

𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆

2
{𝑡𝑟
2 + 𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2𝑡𝑑}] + ℎ𝑜 [
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑

2 − 𝑡𝑟
2𝑡𝑑) − 𝑡𝑟

2}]

+ 𝐶 [
𝜆

2
{𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2} + 
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑 − 𝑡𝑟

2)}]

+ 𝑐𝐼𝑐 [
𝜆(𝑡𝑑 −𝑀)

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑 − 𝑡𝑟

2) − 2𝑡𝑑 + 𝜃𝑟(𝑡𝑟 − 𝑡𝑑)
2} +

𝛼

2
(𝑡𝑑 −𝑀)

2

+
𝛽

6
(2𝑡𝑑 +𝑀)(𝑡𝑑 −𝑀)

2 +
𝛾

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 +𝑀2)(𝑡𝑑 −𝑀)
2 +

𝜆

2
𝑡𝑑
2]

− 𝑠𝐼𝑒 (
𝛼

2
𝑀2 +

𝛽

3
𝑀3 +

𝛾

4
𝑀4)]. 

𝑍12(𝑡𝑜, 𝑇) =
1

𝑇
{Ordering costs plus inventory holding costs for both owned and rented ware-houses plus deterioration 

costs plus backordered costs plus lost sales costs plus interest charge minus interest gained} 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑑

0

+∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

+ 𝐶 [𝜃𝑟∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

] + 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

]

+ 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

 + 𝑐𝐼𝑐 [∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+∫ 𝜆𝑡𝑑𝑡
𝑀

𝑡𝑑

]} 

=
𝜆

𝑇
{
1

2
𝑊12𝑡𝑜

2 − X12𝑡𝑜 + 𝑌12 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                  (17) 

where 

𝑊12 = [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐], X12 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝑡𝑑𝜃𝑜 + 𝑐𝐼𝑐𝑀] and 

𝑌12 =
1

𝜆
[𝐴 + ℎ𝑟 [(𝛼

𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆

2
{𝑡𝑟
2 + 𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2𝑡𝑑}] + ℎ𝑜 [
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑

2 − 𝑡𝑟
2𝑡𝑑) − 𝑡𝑟

2}]

+ 𝐶 [
𝜆

2
{𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2} + 
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑 − 𝑡𝑟

2)}] + 𝑐𝐼𝑐
𝜆

2
𝑀2

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆𝑀2

2
−
𝜆𝑡𝑑

2

2
]]. 

𝑍13(𝑡𝑜, 𝑇) =
1

𝑇
{Ordering expenses plus inventory holding expenses for rented ware-houses plus inventory holding 

expenses for owned ware-houses plus deterioration expenses plus backordered expenses  plus the cost 
of lost sales plus interest charges minus interest gained} 
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=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑑

0

+∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

+ 𝐶 [𝜃𝑟∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

] + 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

]

+ 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

 + 𝑐𝐼𝑐 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑀

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+∫ 𝜆𝑡𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝜆𝑡𝑑𝑡
𝑀

𝑡𝑟

]} 

=
𝜆

𝑇
{
1

2
𝑊13𝑡𝑜

2 − X13𝑡𝑜 + 𝑌13 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}               (18) 

where 

𝑊13 = [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐], X13 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝑡𝑑𝜃𝑜 + 𝑐𝐼𝑐𝑀] and 

𝑌13 =
1

𝜆
[𝐴 + ℎ𝑟 [(𝛼

𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆

2
{𝑡𝑟
2 + 𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2𝑡𝑑}] + ℎ𝑜 [
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑

2 − 𝑡𝑟
2𝑡𝑑) − 𝑡𝑟

2}]

+ 𝐶 [
𝜆

2
{𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2} + 
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑 − 𝑡𝑟

2)}] + 𝑐𝐼𝑐
𝜆

2
𝑀2

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆𝑀2

2
−
𝜆𝑡𝑑

2

2
]]. 

and 

 

𝑍14(𝑡𝑜, 𝑇) =
1

𝑇
{Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned 

ware-house + deterioration cost + backordered cost+ cost of lost sales – interest earned} 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑑

0

+∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

]

+ 𝐶 [𝜃𝑟∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑡𝑑

+ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑟

] + 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

]

+ 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ (𝑀 − 𝑡𝑜)∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡
𝑡𝑑

0

+∫ 𝜆𝑡𝑑𝑡
𝑡𝑟

𝑡𝑑

+ (𝑀 − 𝑡𝑜)∫ 𝜆𝑑𝑡
𝑡𝑟

𝑡𝑑

+∫ 𝜆𝑡𝑑𝑡
𝑡𝑜

𝑡𝑟

+ (𝑀 − 𝑡𝑜)∫ 𝜆𝑑𝑡
𝑡𝑜

𝑡𝑟

]} 

=
𝜆

𝑇
{
1

2
𝑊14𝑡𝑜

2 − X14𝑡𝑜 + 𝑌14 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                  (19) 

where 

𝑊14 = [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑠𝐼𝑒], X14 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝑡𝑑𝜃𝑜 + 𝑠𝐼𝑒 [𝑡𝑑 +𝑀 −

1

𝜆
(𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+

𝛾
𝑡𝑑
3

3
)]]  and 
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𝑌14 =
1

𝜆
[𝐴 + ℎ𝑟 [(𝛼

𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆

2
{𝑡𝑟
2 + 𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2𝑡𝑑}] + ℎ𝑜 [
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑

2 − 𝑡𝑟
2𝑡𝑑) − 𝑡𝑟

2}]

+ 𝐶 [
𝜆

2
{𝜃𝑟(𝑡𝑟 − 𝑡𝑑)

2} + 
𝜆

2
{𝜃𝑜(2𝑡𝑟𝑡𝑑 − 𝑡𝑟

2)}]

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +𝑀(𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) −

𝜆

2
(2𝑀 + 𝑡𝑑)𝑡𝑑]]. 

3.1.1 Optimal Decision 

The necessary and sufficient conditions are developed to determine the best ordering policies that optimizes the total 

variable cost per unit time. The necessary condition for the total variable cost per unit time 𝑍𝑖𝑗(𝑡𝑜, 𝑇) to be minimum 

are 
𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 
= 0 and 

𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑇
= 0 for 𝑖 = 1 when 𝑡𝑟 > 𝑡𝑑 and 𝑗 = 1, 2, 3, 4. The value of (𝑡𝑜, 𝑇) obtained from 

𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 
= 0 and

𝜕𝑍𝑖 𝑗(𝑡𝑜,𝑇)

𝜕𝑇
= 0 and for which the sufficient condition {(

𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜
2 ) (

𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑇2
) − (

𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 𝜕𝑇
)
2

} >

0 is satisfied which gives a minimum for the total variable cost per unit time 𝑍𝑖𝑗(𝑡𝑜, 𝑇).  

Optimality condition for sub-case 1.1: 𝟎 < 𝑴 ≤ 𝒕𝒅 

The necessary conditions for the total variable cost in equation (16) to be the minimum are 
𝜕𝑍11(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍11(𝑡𝑜,𝑇)

𝜕𝑇
=

0, which give 

𝜕𝑍11(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊11𝑡𝑜 − X11 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                            (20) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊11𝑡𝑜 − X11)                                                                                                 (21) 

Note that 

𝑊11𝑡𝑜 − X11 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜
+ 𝑐𝐼𝑐((𝑡𝑜 −𝑀) + 𝜃𝑜(𝑡𝑑 −𝑀)(𝑡𝑜 − 𝑡𝑑))] > 0 

since (𝑡𝑑 −𝑀) ≥ 0, (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍11(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊11𝑡𝑜

2 − X11𝑡𝑜 + 𝑌11 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                               (22) 

T from equation (21) is substituted into equation (22) which yields 

𝑊11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌11 − X11

2 ) = 0 (23) 

Let   ∆11= 𝑊11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑
2 − 2X11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌11 − X11

2 ), then the 

outcome shown below is attained. 

Lemma 1.1 

(i) If   ∆11≤ 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , ∞) (say 𝑡𝑜11
∗ ) which satisfies equation (23) not only exists but also is unique. 

(ii) If   ∆11> 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , ∞) which satisfies equation (23) does not exist. 
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Proof of (i): From equation (23), a new function 𝐹11(𝑡𝑜) is defined as follows 

𝐹11(𝑡𝑜) = 𝑊11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X11(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌11 − X11

2 ),           𝑡𝑜
∈ [𝑡𝑑 , ∞)                                            (24) 

Taking the first-order derivative of 𝐹11(𝑡𝑜) with respect to 𝑡𝑜 ∈ [𝑡𝑑 , ∞) yields 

𝐹11(𝑡𝑜)

𝑑𝑡𝑜
= 2(𝑊11𝑡𝑜 − X11)(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿)) > 0 

Because (𝑊11𝑡𝑜 − X11) > 0 and (𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿)) = [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + 𝑐𝐼𝑐[(𝑡𝑑 −𝑀)𝜃𝑜 + 1]] > 0 

Hence 𝐹11(𝑡𝑜) is a strictly increasing of 𝑡𝑜 in the interval [𝑡𝑑 , ∞). Moreover, lim
𝑡𝑜→∞

𝐹11(𝑡𝑜) = ∞ and 𝐹11(𝑡𝑑)  = ∆11≤

0. Therefore, by applying intermediate value theorem, there exists a unique 𝑡𝑜 say 𝑡11
∗ ∈ [𝑡𝑑 , ∞) such that 𝐹11(𝑡𝑜11

∗ ) =
0. Hence 𝑡𝑜11

∗  is the unique solution of equation (23). Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜11
∗ ) can be found from equation 

(23) and is given by 

𝑡𝑜11
∗ =

X11
𝑊11

+
1

𝑊11
√
(2𝑊11𝑌11 − X11

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊11 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (25) 

Once 𝑡𝑜11
∗  is obtained, then the value of 𝑇 (denoted by 𝑇11

∗ ) can be found from equation (21) and is given by 

𝑇11
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊11𝑡𝑜11

∗ − X11)                                                                                          (26) 

Equations (25) and (26) give the optimal values of 𝑡𝑜11
∗  and 𝑇11

∗ for the cost function in equation (16) only if X11 satisfies 
the inequality given in equation (27) 

X11
2 < 2𝑊11𝑌11                                                                                                                               (27) 

Proof of (ii): If  ∆11> 0, then from equation (24), 𝐹11(𝑡𝑜) > 0. Since 𝐹11(𝑡𝑜) is a strictly increasing function of 𝑡𝑜 ∈
[𝑡𝑑 , ∞), 𝐹11(𝑡𝑜) > 0 for all 𝑡𝑜 ∈ [𝑡𝑑 , ∞). Thus, a value of 𝑡𝑜 ∈ [𝑡𝑑 , ∞) cannot be found such that 𝐹11(𝑡𝑜) = 0. This 
completes the proof. 

Theorem 1.1 

(i) If  ∆11≤ 0, then the total variable cost 𝑍11(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜11
∗ , 𝑇11

∗ ), 
where (𝑡𝑜11

∗ , 𝑇11
∗ ) is the point which satisfies equations (23) and (20). 

(ii) If ∆1> 0, then the total variable cost 𝑍11(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜11
∗ , 𝑇11

∗ ) where 𝑡𝑜11
∗ = 𝑡𝑑  and 

𝑇11
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊11𝑡𝑑 − X11) 

Proof of (i): When ∆11≤ 0, it is observed that 𝑡𝑜11
∗  and 𝑇11

∗  are the unique solutions of equations (23) and (20) from 

Lemma l.1(i). Taking the second derivative of 𝑍11(𝑡𝑜, 𝑇) with respect to 𝑡𝑜 and 𝑇, and then finding the values of these 

functions at the point (𝑡𝑜11
∗ , 𝑇11

∗ ) yields 

𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑡𝑜
2

|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

=
𝜆

𝑇11
∗ 𝑊11 > 0 

𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑡𝑜𝜕𝑇
|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

= −
𝜆

𝑇11
∗ (𝐶𝑏 + 𝐶𝜋𝛿) 
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𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑇2
|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

=
𝜆

𝑇11
∗ (𝐶𝑏 + 𝐶𝜋𝛿) > 0 

and 

(
𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑡𝑜
2

|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

)(
𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑇2
|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

) − (
𝜕2𝑍11(𝑡𝑜,   𝑇)

𝜕𝑡𝑜𝜕𝑇
|
(𝑡𝑜11
∗ ,   𝑇11

∗ )

)

2

=
𝜆2(𝐶𝑏 + 𝐶𝜋𝛿)

𝑇11
∗2 [ℎ𝑜[𝜃𝑜𝑡𝑑 + 1] + 𝐶𝜃𝑜 + 𝑐𝐼𝑐[(𝑡𝑑 −𝑀)𝜃𝑜 + 1]] > 0    (28) 

It is therefore concluded from equation (28) and Lemma 1.1 that 𝑍11(𝑡𝑜11
∗ ,   𝑇11

∗ ) is convex and (𝑡𝑜11
∗ ,   𝑇11

∗ ) is the global 

minimum point of 𝑍11(𝑡𝑜,   𝑇). Hence the values of 𝑡𝑜 and 𝑇 in equations (25) and (26) are optimal. 

Proof of (ii): When  ∆11> 0, then 𝐹11(𝑡𝑜) > 0 for all 𝑡𝑜 ∈ [𝑡𝑑 , ∞). Thus, 
𝜕𝑍11(𝑡𝑜,   𝑇)

𝜕𝑇
=

𝐹11(𝑡𝑜)

𝑇2
> 0 for all 𝑡𝑜 ∈ [𝑡𝑑 , ∞) 

which implies 𝑍11(𝑡𝑜,   𝑇) is an increasing function of T. Thus 𝑍11(𝑡𝑜,   𝑇) has a minimum value when T is minimum. 

Therefore, 𝑍11(𝑡𝑜,   𝑇) has a minimum value at the point (𝑡𝑜11
∗ ,   𝑇11

∗ ) where 𝑡𝑜11
∗ = 𝑡𝑑 and 𝑇11

∗ =
1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊11𝑡𝑑 −

X11). This completes the proof. 

Optimality condition for sub-case 1.2: 𝒕𝒅 < 𝑴 ≤ 𝒕𝒓 

The necessary conditions for the total variable cost in equation (17) to be the minimum are 
𝜕𝑍12(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍12(𝑡𝑜,𝑇)

𝜕𝑇
=

0, which give 

𝜕𝑍12(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊12𝑡𝑜 − X12 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                            (29) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊12𝑡𝑜 − X12)                                                                                                 (30) 

Note that 

𝑊12𝑡𝑜 − X12 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜 + 𝑐𝐼𝑐((𝑡𝑜 −𝑀))] > 0 

 since (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍12(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊12𝑡𝑜

2 − X12𝑡𝑜 + 𝑌12 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                               (31) 

Replacing 𝑇 from equation (30) into equation (31) yields 

𝑊12(𝑊12 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X12(𝑊12 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌12 − X12

2 ) = 0(32) 

Let   ∆12= 𝑊12(𝑊12 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟
2 − 2X12(𝑊12 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌12 − X12

2 ), then the 

following result is obtained. 

Lemma 1.2 

(i) If   ∆12≤ 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑟 , ∞) (say 𝑡𝑜12
∗ ) which satisfies equation (32) not only exists but also is unique. 
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(ii) If   ∆12> 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑟 , ∞) which satisfies equation (32) does not exist. 

Proof: The process of proof is similar to Lemma 1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜12
∗ ) can be found from equation (32) and is given by 

𝑡𝑜12
∗ =

X12
𝑊12

+
1

𝑊12
√
(2𝑊12𝑌12 − X12

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊12 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (33) 

Once 𝑡𝑜12
∗  is obtained, then the value of 𝑇 (denoted by 𝑇12

∗ ) can be found from equation (30) and is given by 

𝑇12
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊12𝑡𝑜12

∗ − X12)                                                                                          (34) 

Equations (33) and (34) give the optimal values of 𝑡𝑜12
∗  and 𝑇12

∗  for the cost function in equation (17) only if X12 satisfies 
the inequality given in equation (35) 

X12
2 < 2𝑊12𝑌12                                                                                                                               (35) 

Theorem 1.2 

(i) If  ∆12≤ 0, then the total variable cost 𝑍12(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜12
∗ , 𝑇12

∗ ), 
where (𝑡𝑜12

∗ , 𝑇12
∗ ) is the point which satisfies equations (32) and (29). 

(ii) If ∆12> 0, then the total variable cost 𝑍12(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜12
∗ , 𝑇12

∗ ) where 𝑡𝑜12
∗ = 𝑡𝑟  and 

𝑇12
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊12𝑡𝑟 − X12) 

Proof. The process of proof is similar to Theorem 1.1 

Optimality condition for sub-case 1.3: 𝒕𝒓 < 𝑀 ≤ 𝒕𝒐 

The necessary conditions for the total variable cost 𝑍13(𝑡𝑜, 𝑇) in equation (18) to be the minimum are 
𝜕𝑍13(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍13(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍13(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊13𝑡𝑜 − X13 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                            (36) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊13𝑡𝑜 − X13)                                                                                                 (37) 

Note that 

𝑊13𝑡𝑜 − X13 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜 + 𝑐𝐼𝑐((𝑡𝑜 −𝑀))] > 0 

 since (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍13(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊13𝑡𝑜

2 − X13𝑡𝑜 + 𝑌13 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                               (38) 

Replacing 𝑇 from equation (37) into equation (38) yields 
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𝑊13(𝑊13 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X13(𝑊13 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌13 − X13

2 ) = 0(39) 

Let   ∆13= 𝑊13(𝑊13 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀
2 − 2X13(𝑊13 − (𝐶𝑏 + 𝐶𝜋𝛿)) 𝑀 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌13 − X13

2 ), then the 

following result is obtained. 

Lemma 1.3 

(i) If   ∆13≤ 0, then the solution of 𝑡𝑜 ∈ [𝑀,∞) (say 𝑡𝑜13
∗ ) which satisfies equation (39) does not only exists but also 

unique. 

(ii) If   ∆13> 0, then the solution of 𝑡𝑜 ∈ [𝑀,∞) which satisfies equation (39) does not exist. 

Proof: The process of proof is similar to Lemma 1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜13
∗ ) can be found from equation (39) and is given by 

𝑡𝑜13
∗ =

X13
𝑊13

+
1

𝑊13
√
(2𝑊13𝑌13 − X13

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊13 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (40) 

Once 𝑡𝑜13
∗  is obtained, then the value of 𝑇 (denoted by 𝑇13

∗ ) can be found from equation (37) and is given by 

𝑇13
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊13𝑡𝑜13

∗ − X13)                                                                                          (41) 

Equations (40) and (41) give the optimal values of 𝑡𝑜13
∗  and 𝑇13

∗  for the cost function in equation (18) only if X13 satisfies 
the inequality given in equation (42) 

X13
2 < 2𝑊13𝑌13                                                                                                                               (42) 

Theorem 1.3 

(i) If  ∆13≤ 0, then the total variable cost 𝑍13(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜13
∗ , 𝑇13

∗ ), 
where (𝑡𝑜13

∗ , 𝑇13
∗ ) is the point which satisfies equations (39) and (36). 

(ii) If ∆13> 0, then the total variable cost 𝑍13(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜13
∗ , 𝑇13

∗ ) where 𝑡𝑜13
∗ = 𝑀  and 

𝑇13
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊13𝑀 − X13) 

Proof: The process of proof is similar to Theorem 1.1. 

Optimality condition for sub-case 1.4: 𝑴 > 𝒕𝒐 

The necessary conditions for the total variable cost 𝑍14(𝑡𝑜, 𝑇) in equation (19) to be the minimum are 
𝜕𝑍14(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍14(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍14(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊14𝑡𝑜 − X14 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                            (43) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊14𝑡𝑜 − X14)                                                                                                 (44) 

Note that 
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𝑊14𝑡𝑜 − X14 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜

+ 𝑠𝐼𝑒 [(𝑡𝑜 − 𝑡𝑑) + (𝛼𝑡𝑑 + 𝛽
𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
)
1

𝜆
− 𝑀]] > 0 

Similarly  

𝜕𝑍14(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊14𝑡𝑜

2 − X14𝑡𝑜 + 𝑌14 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                               (45) 

Replacing 𝑇 from equation (44) into equation (45) yields 

𝑊14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌14 − X14

2 ) = 0(46) 

Let ∆14𝑎= 𝑊14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟
2 − 2X14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌14 − X14

2 ) and ∆14𝑏=

𝑊14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀
2 − 2X14(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌14 − X14

2 ), then the following result is 

obtained. 

Lemma 1.4 

(i) If ∆14𝑎≤ 0 ≤ ∆14𝑏 , then the solution of 𝑡𝑜 ∈ [𝑡𝑟 , 𝑀] (say 𝑡𝑜14
∗ ) which satisfies equation (46) does not only exists 

but also unique. 

(ii) If ∆14𝑏< 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑟 , 𝑀]  which satisfies equation (46) does not exist. 

Proof : The process of proof is similar to Lemma 1.1. 

 Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜14
∗ ) can be found from equation (46) is given by 

𝑡𝑜14
∗ =

X14
𝑊14

+
1

𝑊14
√
(2𝑊14𝑌14 − X14

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊14 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (47) 

Once 𝑡𝑜14
∗  is obtained, then the value of 𝑇 (denoted by 𝑇14

∗ ) can be found from equation (44) and is given by 

𝑇14
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊14𝑡𝑜14

∗ − X14)                                                                                          (48) 

Equations (47) and (48) give the optimal values of 𝑡𝑜14
∗  and 𝑇14

∗  for the cost function in equation (19) only if X14 satisfies 
the inequality given in equation (49) 

X14
2 < 2𝑊14𝑌14                                                                                                                               (49) 

Theorem 1.4 

(i) If ∆14𝑎≤ 0 ≤ ∆14𝑏, then the total variable cost 𝑍14(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point 

(𝑡𝑜14
∗ , 𝑇14

∗ ), where (𝑡𝑜14
∗ , 𝑇14

∗ ) is the point which satisfies equations (46) and (43). 

(ii) If  ∆14𝑏< 0, then the total variable cost 𝑍14(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜14
∗ , 𝑇14

∗ ) where 𝑡𝑜14
∗ = 𝑀  

and 𝑇14
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊14𝑀 − X14) 

(iii) If  ∆14𝑎> 0, then the total variable cost 𝑍14(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜14
∗ , 𝑇14

∗ ) where 𝑡𝑜14
∗ = 𝑡𝑟  

and 𝑇14
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊14𝑡𝑟 − X14) 

Proof. The process of proof is similar to Theorem 1.1 
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Thus, the economic order quantity (𝐸𝑂𝑄) corresponding to the optimal cycle length 𝑇∗ will be computed as follows: 

𝐸𝑂𝑄∗ =The maximum inventory +the backordered units during the shortage period. 

=
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜

∗−𝑡𝑑) − 𝑒𝜃𝑜(𝑡𝑟−𝑡𝑑)) + (𝛼𝑡𝑑 + 𝛽
𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) +

𝜆

𝜃𝑟
(𝑒𝜃𝑟(𝑡𝑟−𝑡𝑑) − 1)

+
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇∗ − 𝑡𝑜

∗)]]                                                                      (50) 

3.1.2    Numerical Examples 

This section provides some numerical examples to 
illustrate the model established. 

Example 3.1.1 (Sub-case 1.1) 

Consider an inventory system with the following input 

parameters:  𝐴 = $350/order, 𝐶 = $45/unit/year, 𝑆 =
$65/unit/year, ℎ𝑜 = $5/unit/year, ℎ𝑟 =
$12/unit/year, 𝜃𝑜 = 0.05 units/year, 𝜃𝑟 =
0.03 units/year, 𝛼 = 980 units, 𝛽 = 180 units, 𝛾 = 15 

units, 𝜆 = 450 units, 𝑡𝑑 = 0.1971 year (72 days), 𝑡𝑟 =
0.2136 year (78 days),  𝐶𝑏 = $20/unit/year, 𝐶𝜋 =
$5/unit/year, 𝛿 = 0.8, 𝑀 = 0.0684 year (25 days), 𝐼𝑐 =
0.1,   𝐼𝑒 = 0.08. It is observed that 𝑀 ≤ 𝑡𝑑 , ∆11=
−58.0529 < 0, X11

2 = 0.5878, 2𝑊11𝑌11 = 106.7819 

and hence X11
2 < 2𝑊11𝑌11. Substituting the above values 

in equations (25), (26), (16) and (50), the value of 
optimal time at which the inventory level reaches zero in 
the owned ware-house, cycle length, total variable cost 
and economic order quantity are respectively obtained as 

follows:𝑡𝑜11
∗ = 0.4311 year (157 days), 𝑇11

∗ = 0.6116 

year (223 days), 𝑍11(𝑡𝑜11
∗ ,  𝑇11

∗ ) = $2175.1477 per year 

and 𝐸𝑂𝑄11
∗ = 378.4898 units per year.  

Example 3.1.2 (Sub-case 1.2) 

The data are same as in Example 3.1.1 except that   𝑀 =
0.2382 year (87 days). It is observed that  𝑀 >
𝑡𝑑 ,  ∆12= −49.2285 < 0, X12

2 = 2.3259, 2𝑊12𝑌12 =
94.1807 and hence X12

2 < 2𝑊12𝑌12. Substituting the 

above values in equations (33), (34), (17) and (50), the 
value of optimal time at which the inventory level reaches 
zero in the owned ware-house, cycle length, total variable 
cost and economic order quantity are respectively 

obtained as follows: 𝑡𝑜12
∗ = 0.4244 year (155 days), 

𝑇12
∗ = 0.5695 year (208 days), 𝑍12(𝑡𝑜12

∗ ,  𝑇12
∗ ) =

$1567.2293 per year and 𝐸𝑂𝑄12
∗ = 793.8139 units per 

year.  

Example 3.1.3 (Sub-case 1.3) 

The data are same as in Example 3.1.1 except that   𝑀 =
0.2464 year (90 days). It is observed that  𝑀 > 𝑡𝑟, ∆13=
−44.0696 < 0, X13

2 = 2.4398, 2𝑊13𝑌13 = 94.0811 

and hence X13
2 < 2𝑊13𝑌13. Substituting the above values 

in equations (40), (41), (18) and (50), the value of 
optimal time at which the inventory level reaches zero in 
the owned ware-house, cycle length, total variable cost 
and economic order quantity are respectively obtained as 

follows: 𝑡𝑜13
∗ = 0.4250 year (155 days), 𝑇13

∗ = 0.5689 

year (208 days), 𝑍13(𝑡𝑜13
∗ ,  𝑇13

∗ ) = $1553.7399 per year 

and 𝐸𝑂𝑄13
∗ = 661.6315 units per year.  

Example 3.1.4 (Sub-case 1.4) 

The data are same as in Example 3.1.1 except that 𝑀 =
0.3559 year (130 days). It is observed that  ∆14𝑎=
−26.4815 < 0,  ∆14𝑏= 6.7339 > 0, X14

2 = 1.1149, 

2𝑊14𝑌14 = 65.0493. Here   ∆14𝑎≤ 0 ≤  ∆14𝑏 and 

X14
2 < 2𝑊14𝑌14. Substituting the above values in 

equations (47), (48), (19) and (50), the value of 
optimal time at which the inventory level reaches zero in 
the owned ware-house, cycle length, total variable cost 
and economic order quantity are respectively obtained as 

follows: 𝑡𝑜14
∗ = 0.3325 year (121 days), 𝑇14

∗ = 0.4617 

year (169 days), 𝑍14(𝑡𝑜14
∗ ,  𝑇14

∗ ) = $1394.9979 per year 

and 𝐸𝑂𝑄14
∗ = 565.3016 units per year. It is also seen 

that  𝑀 > 𝑡𝑜. 

3.1.3 Summary of numerical examples 

Table 3.1.3 Comparison of Results 
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Sub-case 1.4 provides the optimal deterioration period 
and total variable cost while sub-case 1.2 provides the 
optimal EOQ, as such, cases 1.2 and 1.4 are the feasible 
cases in which an optimal case can be determined. 
Averagely, 3.8164 units per day can be ordered at a cost 

of $7.5348 when the time to settle the account is from 
the beginning of the deterioration period to the time at 
which the inventory level reaches zero in a rented ware-
house (Sub-case 1.2) while 3.3450 units per day can be 

ordered at a cost of $8.2544 when the time to settle the 
account exceeds the time at which the inventory level 
reaches zero in the owned ware-house (Sub-case 1.4). 
This shows that considering the credit period to be from 
when deterioration starts to when the inventory level 
reaches zero in a rented ware-house provides both 
optimal total variable cost and profit which proved sub-
case 1.2 optimal among others. 

3.2 Case II: when 𝒕𝒅 < 𝒕𝒓 (Deterioration starts after 
the inventory level in the rented ware-house 
becomes zero) 

Figure 3.2 designates behaviours of the inventory system. 

During the time interval [0, 𝑡𝑟], the inventory level 𝐼𝑟(𝑡) 
in the rented ware-house is depleting gradually due to 
market demand only and it is assumed to be a quadratic 

function of time 𝑡 whereas in the owned ware-house 

inventory level remains unchanged. At time interval [𝑡𝑟 ,
𝑡𝑑] the inventory level 𝐼𝑜(𝑡) in the owned ware-house is 
depleting due to demand from the consumers and is also 

assumed to be a quadratic function of time 𝑡. At time 

interval [𝑡𝑑 , 𝑡𝑜], the inventory level 𝐼𝑜(𝑡) in the owned 
ware-house depletes to zero due to the combined effects 
of demand from the consumers and deterioration. 

Shortages occur at the time 𝑡 = 𝑡𝑜 and are partially 

backlogged in the interval [𝑡𝑜 , 𝑇]. The whole process of 
the inventory is repeated.  

 

Figure 3.2: Two-ware-house inventory system when 𝑡𝑑 > 𝑡𝑟 

The differential equations that describe the inventory 
level in both rented ware-house and owned ware-house 

at any time 𝑡 over the period [0, 𝑇] are given by 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
= −(𝛼 + 𝛽𝑡 + 𝛾𝑡2),                                           0 ≤ 𝑡 ≤  𝑡𝑟                                         (51) 

𝑑𝐼𝑜(𝑡)

𝑑𝑡
= −(𝛼 + 𝛽𝑡 + 𝛾𝑡2),                                         𝑡𝑟 ≤ 𝑡 ≤  𝑡𝑑                                         (52) 
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𝑑𝐼𝑜(𝑡)

𝑑𝑡
+ 𝜃𝑜𝐼𝑜(𝑡) = −𝜆,                                                𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑜                                        (53) 

𝑑𝐼𝑠(𝑡)

𝑑𝑡
= −

𝜆

1 + 𝛿(𝑇 − 𝑡)
,                                               𝑡𝑜 ≤ 𝑡 ≤  𝑇                                       (54) 

with boundary conditions 𝐼𝑟(𝑡𝑟) = 0, 𝐼𝑜(𝑡𝑟) =  𝑄𝑑 , 𝐼𝑜(𝑡𝑜) = 0 and 𝐼𝑠(𝑡𝑜) = 0. 

The solutions of equations (51), (52), (53) and (54) are as follows 

𝐼𝑟(𝑡) = 𝛼(𝑡𝑟 − 𝑡) +
𝛽

2
(𝑡𝑟
2 − 𝑡2) +

𝛾

3
(𝑡𝑟
3 − 𝑡3),             0 ≤ 𝑡 ≤  𝑡𝑟                                    (55) 

𝐼𝑜(𝑡) = 𝑄𝑑 + 𝛼(𝑡𝑟 − 𝑡) +
𝛽

2
(𝑡𝑟
2 − 𝑡2) +

𝛾

3
(𝑡𝑟
3 − 𝑡3),             𝑡𝑟 ≤ 𝑡 ≤  𝑡𝑑                      (56) 

𝐼𝑜(𝑡) =
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡) − 1),                                                        𝑡𝑑 ≤ 𝑡 ≤  𝑡𝑜                           (57) 

𝐼𝑠(𝑡)  = −
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)] − 𝑙𝑛[1 + 𝛿(𝑇 − 𝑡)]],                       𝑡𝑜 ≤ 𝑡 ≤  𝑇            (58) 

Considering continuity of 𝐼𝑜(𝑡) at 𝑡 = 𝑡𝑑 , it follows from equations (56) and (57) that 

𝑄𝑑 = 𝛼(𝑡𝑑 − 𝑡𝑟) +
𝛽

2
(𝑡𝑑
2 − 𝑡𝑟

2) +
𝛾

3
(𝑡𝑑
3 − 𝑡𝑟

3) +
𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 1)                               (59) 

Now, at 𝑡 = 0 when 𝐼𝑟(𝑡) = 𝑄𝑚 − 𝑄𝑑 and solving equation (55) to get the maximum inventory level per cycle as  

𝑄𝑚 = 𝛼𝑡𝑑 +
𝛽

2
𝑡𝑑
2 +

𝛾

3
𝑡𝑑
3 +

𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 1)                                                                     (60) 

The maximum backordered units 𝐵𝑚 is obtained at 𝑡 = 𝑇, and then from equation (58), it follows that 

𝐵𝑚 = −𝐼𝑠(𝑇) =
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)]]                                                                                    (61) 

Thus the order size during total time interval [0, 𝑇] is 

𝑄 = 𝑍 + 𝐵𝑚 = 𝛼𝑡𝑑 +
𝛽

2
𝑡𝑑
2 +

𝛾

3
𝑡𝑑
3 +

𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜−𝑡𝑑) − 1) +

𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇 − 𝑡𝑜)]],                           𝑡𝑜 ≤ 𝑡

≤  𝑇                                  (62) 

The total variable cost per unit time  𝑍(𝑡𝑜 ,𝑇 ) is given by 

𝑍(𝑡𝑜 ,𝑇 ) =

{
 
 

 
 
𝑍21(𝑡𝑜 ,𝑇 ),      Sub − case 2.1              0 < 𝑀 ≤ 𝑡𝑟

𝑍22(𝑡𝑜 ,𝑇 ),      Sub − case  2.2            𝑡𝑟 < 𝑀 ≤ 𝑡𝑑

𝑍23(𝑡𝑜 ,𝑇 ),        Sub − case 2.3             𝑡𝑑 < 𝑀 ≤ 𝑡𝑜

𝑍24(𝑡𝑜 ,𝑇 ),        Sub − case 2.4                       𝑀 > 𝑡𝑜

                                    (63) 

where  

𝑍21(𝑡𝑜, 𝑇) = (Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned ware-
house + deterioration cost + backordered cost+ interest charge – interest earned) 
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=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑟

0

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

] + 𝐶 [ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

+ 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

] + 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

+ 𝑐𝐼𝑐 [∫ 𝐼𝑟(𝑡)𝑑𝑡
𝑡𝑟

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑀

0

]} 

=
𝜆

𝑇
{
1

2
𝑊21𝑡𝑜

2 − X21𝑡1 + 𝑌21 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                   (64) 

where 

𝑊21 = [ℎ𝑜[𝜃𝑜𝑡𝑑 +  1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐[𝜃𝑜(𝑡𝑑 −𝑀) +   1]], X21 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝜃𝑜𝑡𝑑 + 𝑐𝐼𝑐[𝑀 +

𝜃𝑜𝑡𝑑(𝑡𝑑 −𝑀)]]  and  

𝑌21 =
1

𝜆
[𝐴 + ℎ𝑟 {

𝛼

2
𝑡𝑟
2 +

𝛽

3
𝑡𝑟
3 +

𝛾

4
𝑡𝑟
4} + ℎ𝑜 [

𝛼

2
(𝑡𝑑
2 − 𝑡𝑟

2) +
𝛽

3
(𝑡𝑑
3 − 𝑡𝑟

3) +
𝛾

4
(𝑡𝑑
4 − 𝑡𝑟

4) +
𝜆𝜃𝑜𝑡𝑑

3

2
− 
𝜆

2
𝑡𝑑
2]

+ 𝐶
𝜆

2
𝜃𝑜𝑡𝑑

2

+ 𝑐𝐼𝑐 [
𝛼

2
(𝑡𝑑 −𝑀)

2 +
𝛽

6
(2𝑡𝑑 +𝑀)(𝑡𝑑 −𝑀)

2 +
𝛾

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 +𝑀2)(𝑡𝑑 −𝑀)
2 − 

𝜆

2
𝑡𝑑
2

+ 𝜆𝑀𝑡𝑑 +
𝜆𝜃𝑜𝑡𝑑

2(𝑡𝑑 −𝑀)

2
] − 𝑠𝐼𝑒 (

𝛼

2
𝑀2 +

𝛽

3
𝑀3 +

𝛾

4
𝑀4)]. 

𝑍22(𝑡𝑜, 𝑇) = (Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned ware-
house + deterioration cost + backordered cost+ interest charge – interest earned) 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑟

0

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

] + 𝐶 [ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

+ 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

] + 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

+ 𝑐𝐼𝑐 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑟

0

+∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑀

𝑡𝑟

]} 

=
𝜆

𝑇
{
1

2
𝑊22𝑡𝑜

2 − X22𝑡𝑜 + 𝑌22 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                      (65) 

where  

𝑊22 = [ℎ𝑜[𝜃𝑜𝑡𝑑 +  1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐[𝜃𝑜(𝑡𝑑 −𝑀) +   1]], X22 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝜃𝑜𝑡𝑑 + 𝑐𝐼𝑐[𝑀 +

𝜃𝑜𝑡𝑑(𝑡𝑑 −𝑀)]]  and  
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𝑌22 =
1

𝜆
[𝐴 + ℎ𝑟 {

𝛼

2
𝑡𝑟
2 +

𝛽

3
𝑡𝑟
3 +

𝛾

4
𝑡𝑟
4} + ℎ𝑜 [

𝛼

2
(𝑡𝑑
2 − 𝑡𝑟

2) +
𝛽

3
(𝑡𝑑
3 − 𝑡𝑟

3) +
𝛾

4
(𝑡𝑑
4 − 𝑡𝑟

4) +
𝜆𝜃𝑜𝑡𝑑

3

2
− 
𝜆

2
𝑡𝑑
2]

+ 𝐶
𝜆

2
𝜃𝑜𝑡𝑑

2

+ 𝑐𝐼𝑐 [
𝛼

2
(𝑡𝑑 −𝑀)

2 +
𝛽

6
(2𝑡𝑑 +𝑀)(𝑡𝑑 −𝑀)

2 +
𝛾

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 +𝑀2)(𝑡𝑑 −𝑀)
2 − 

𝜆

2
𝑡𝑑
2

+ 𝜆𝑀𝑡𝑑 +
𝜆𝜃𝑜𝑡𝑑

2(𝑡𝑑 −𝑀)

2
] − 𝑠𝐼𝑒 (

𝛼

2
𝑀2 +

𝛽

3
𝑀3 +

𝛾

4
𝑀4)]. 

𝑍23(𝑡𝑜, 𝑇) = (Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned ware-
house + deterioration cost + backordered cost+ interest charge – interest earned) 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑟

0

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

] + 𝐶 [ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

+ 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

] + 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

+ 𝑐𝐼𝑐 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑀

]

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑟

0

+∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝜆𝑡𝑑𝑡
𝑀

𝑡𝑑

]} 

=
𝜆

𝑇
{
1

2
𝑊23𝑡𝑜

2 − X23𝑡𝑜 + 𝑌23 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                 (66) 

where  

𝑊23 = [ℎ𝑜[𝜃𝑜𝑡𝑑 +  1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑐𝐼𝑐], X23 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝜃𝑜𝑡𝑑 + 𝑐𝐼𝑐𝑀] and  

𝑌23 =
1

𝜆
[𝐴 + ℎ𝑟 {

𝛼

2
𝑡𝑟
2 +

𝛽

3
𝑡𝑟
3 +

𝛾

4
𝑡𝑟
4} + ℎ𝑜 [

𝛼

2
(𝑡𝑑
2 − 𝑡𝑟

2) +
𝛽

3
(𝑡𝑑
3 − 𝑡𝑟

3) +
𝛾

4
(𝑡𝑑
4 − 𝑡𝑟

4) +
𝜆𝜃𝑜𝑡𝑑

3

2
− 
𝜆

2
𝑡𝑑
2]

+ 𝐶
𝜆

2
𝜃𝑜𝑡𝑑

2 + 𝑐𝐼𝑐
𝜆

2
𝑀2 − 𝑠𝐼𝑒 [(𝛼

𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆𝑀2

2
−
𝜆𝑡𝑑

2

2
]]. 

and 

𝑍24(𝑡𝑜, 𝑇) = (Ordering cost + inventory holding cost for rented ware-house+ inventory holding cost for owned ware-
house + deterioration cost + backordered cost – interest earned) 

=
1

𝑇
{𝐴 + ℎ𝑟 [∫ 𝐼𝑟(𝑡)𝑑𝑡

𝑡𝑟

0

] + ℎ𝑜 [∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑟

0

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

] + 𝐶 [ 𝜃𝑜∫ 𝐼𝑜(𝑡)𝑑𝑡
𝑡𝑜

𝑡𝑑

]

+ 𝐶𝑏 [∫ −𝐼𝑠(𝑡)𝑑𝑡
𝑇

𝑡𝑜

] + 𝐶𝜋𝜆∫ (1 −
𝜆

1 + 𝛿(𝑇 − 𝑡)
) 𝑑𝑡

𝑇

𝑡𝑜

− 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑟

0

+ (𝑀 − 𝑡𝑜)∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡
𝑡𝑟

0

+∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

𝑡𝑟

+ (𝑀 − 𝑡𝑜)∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡
𝑡𝑑

𝑡𝑟

+∫ 𝜆𝑡𝑑𝑡
𝑡𝑜

𝑡𝑑

+ (𝑀 − 𝑡𝑜)∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡
𝑡𝑜

𝑡𝑑

]} 

=
𝜆

𝑇
{
1

2
𝑊24𝑡𝑜

2 − X24𝑡𝑜 + 𝑌24 +
(𝐶𝑏 + 𝐶𝜋𝛿)

2
𝑇2 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜𝑇}                 (67) 
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where 

 𝑊24 = [ℎ𝑜[𝜃𝑜𝑡𝑑 +  1] + 𝐶𝜃𝑜 + (𝐶𝑏 + 𝐶𝜋𝛿) + 𝑠𝐼𝑒], X24 = [ℎ𝑜𝜃𝑜𝑡𝑑
2 + 𝐶𝜃𝑜𝑡𝑑 + 𝑠𝐼𝑒 [𝑡𝑑 +𝑀 −

1

𝜆
(𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+

𝛾
𝑡𝑑
3

3
)]] and  

𝑌24 =
1

𝜆
[𝐴 + ℎ𝑟 {

𝛼

2
𝑡𝑟
2 +

𝛽

3
𝑡𝑟
3 +

𝛾

4
𝑡𝑟
4} + ℎ𝑜 [

𝛼

2
(𝑡𝑑
2 − 𝑡𝑟

2) +
𝛽

3
(𝑡𝑑
3 − 𝑡𝑟

3) +
𝛾

4
(𝑡𝑑
4 − 𝑡𝑟

4) +
𝜆𝜃𝑜𝑡𝑑

3

2
− 
𝜆

2
𝑡𝑑
2]

+ 𝐶
𝜆

2
𝜃𝑜𝑡𝑑

2 − 𝑠𝐼𝑒 [(𝛼
𝑡𝑑
2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +𝑀(𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) −

𝜆𝑡𝑑
2

2
−𝑀𝑡𝑑𝜆]]. 

3.2.1 Optimal Decision 

In order to find the optimal ordering policies that minimize the total variable cost per unit time, the necessary and 

sufficient conditions are established. The necessary condition for the total variable cost per unit time 𝑍𝑖𝑗(𝑡𝑜, 𝑇) to be 

minimum are 
𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 
= 0 and 

𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑇
= 0 for 𝑖 = 2 when 𝑡𝑑 > 𝑡𝑟 and 𝑗 = 1, 2, 3, 4. The value of (𝑡𝑜, 𝑇) obtained 

from 
𝜕𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 
= 0 and

𝜕𝑍𝑖 𝑗(𝑡𝑜,𝑇)

𝜕𝑇
= 0 and for which the sufficient condition {(

𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜
2 ) (

𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑇2
) −

(
𝜕2𝑍𝑖𝑗(𝑡𝑜,𝑇)

𝜕𝑡𝑜 𝜕𝑇
)
2

} > 0 is satisfied gives a minimum for the total variable cost per unit time 𝑍𝑖𝑗(𝑡𝑜, 𝑇).  

Optimality condition for sub-case 2.1: 𝟎 < 𝑀 ≤ 𝒕𝒓 

The necessary conditions for the total variable cost 𝑍21(𝑡𝑜, 𝑇) in equation (64) to be the minimum are 
𝜕𝑍21(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍21(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍21(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊21𝑡𝑜 − X21 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                           (68) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊21𝑡𝑜 − X21)                                                                                                 (69) 

Note that 

𝑊21𝑡𝑜 − X21 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜
+ 𝑐𝐼𝑐((𝑡𝑜 −𝑀) + 𝜃𝑜(𝑡𝑑 −𝑀)(𝑡𝑜 − 𝑡𝑑))] > 0 

since (𝑡𝑑 −𝑀), (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑), > 0 

Similarly  

𝜕𝑍21(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊21𝑡𝑜

2 − X21𝑡𝑜 + 𝑌21 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                              (70) 

Replacing 𝑇 from equation (69) into equation (70) yields 

𝑊21(𝑊21 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X21(𝑊21 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌21 − X21

2 ) = 0  (71) 

Let   ∆21= 𝑊21(𝑊21 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟
2 − 2X21(𝑊21 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑟 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌21 − X21

2 ), then the 

following result is obtained. 
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Lemma 3.2.1 

(i) If   ∆21≤ 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑟 , ∞) (say 𝑡𝑜21
∗ ) which satisfies equation (71) does not only exist but also 

unique. 

(ii) If   ∆21> 0, then the solution of 𝑡1 ∈ [𝑡𝑟 , ∞) which satisfies equation (71) does not exist. 

Proof: The process of proof is similar to Lemma 3.1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜21
∗ ) can be found from equation (71) and is given by 

𝑡𝑜21
∗ =

X21
𝑊21

+
1

𝑊21
√
(2𝑊21𝑌21 − X21

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊21 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (72) 

Once 𝑡𝑜21
∗  is obtained, then the value of 𝑇 (denoted by 𝑇21

∗ ) can be found from equation (69) and is given by 

𝑇21
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊21𝑡𝑜21

∗ − X21)                                                                                          (73) 

Equations (72) and (73) give the optimal values of 𝑡𝑜21
∗  and 𝑇21

∗ for the cost function in equation (33) only if X21 satisfies 
the inequality given in equation (74) 

X21
2 < 2𝑊21𝑌21                                                                                                                              (74) 

Theorem 3.2.1 

(i) If  ∆21≤ 0, then the total variable cost 𝑍21(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜21
∗ , 𝑇21

∗ ), 
where (𝑡𝑜21

∗ , 𝑇21
∗ ) is the point which satisfies equations (71) and (68). 

(ii) If ∆21> 0, then the total variable cost 𝑍21(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜21
∗ , 𝑇21

∗ ) where 𝑡𝑜21
∗ = 𝑡𝑟  and 

𝑇21
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊21𝑡𝑟 − X21) 

Proof: The process of proof is similar to Theorem 3.1.1. 

Optimality condition for sub-case 2.2: 𝒕𝒓 < 𝑀 ≤ 𝒕𝒅 

The necessary conditions for the total variable cost 𝑍22(𝑡𝑜, 𝑇) in equation (34) to be the minimum are 
𝜕𝑍22(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and  

𝜕𝑍22(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍22(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊22𝑡𝑜 − X22 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                           (75) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊22𝑡𝑜 − X22)                                                                                                 (76) 

Note that 

𝑊22𝑡𝑜 − X22 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜
+ 𝑐𝐼𝑐((𝑡𝑜 −𝑀) + 𝜃𝑜(𝑡𝑑 −𝑀)(𝑡𝑜 − 𝑡𝑑))] > 0 

since (𝑡𝑑 −𝑀), (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑) > 0 
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Similarly  

𝜕𝑍22(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊22𝑡𝑜

2 − X22𝑡𝑜 + 𝑌22 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                              (77) 

Replacing 𝑇 from equation (76) into equation (77) yields 

𝑊22(𝑊22 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X22(𝑊22 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌22 − X22

2 ) = 0(78) 

Let   ∆22= 𝑊22(𝑊22 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑
2 − 2X22(𝑊22 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌22 − X22

2 ), then the 

following result is obtained. 

Lemma 3.2.2 

(i) If   ∆22≤ 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , ∞) (say 𝑡𝑜22
∗ ) which satisfies equation (78) does not only exist but also 

unique. 

(ii) If   ∆22> 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , ∞)which satisfies equation (78) does not exist. 

Proof: The process of proof is similar to Lemma 3.1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜22
∗ ) can be found from equation (78) and is given by 

𝑡𝑜22
∗ =

X22
𝑊22

+
1

𝑊22
√
(2𝑊22𝑌22 − X22

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊22 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (79) 

Once 𝑡𝑜22
∗  is obtained, then the value of 𝑇 (denoted by 𝑇22

∗ ) can be found from equation (76) and is given by 

𝑇22
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊22𝑡𝑜22

∗ − X22)                                                                                          (80) 

Equations (79) and (80) give the optimal values of 𝑡𝑜22
∗  and 𝑇22

∗  for the cost function in equation (34) only if X22 satisfies 
the inequality given in equation (81) 

X22
2 < 2𝑊22𝑌22                                                                                                                              (81) 

Theorem 3.2.2 

(i) If  ∆22≤ 0, then the total variable cost 𝑍22(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜22
∗ , 𝑇22

∗ ), 
where (𝑡𝑜22

∗ , 𝑇22
∗ ) is the point which satisfies equations (78) and (75). 

(ii) If ∆22> 0, then the total variable cost 𝑍22(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜22
∗ , 𝑇22

∗ ) where 𝑡𝑜22
∗ = 𝑡𝑑  

and 𝑇22
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊22𝑡𝑟 − X22) 

Proof: The process of proof is similar to Theorem 3.1.1. 

Optimality condition for sub-case 2.3: 𝒕𝒅 < 𝑀 ≤ 𝒕𝒐 

The necessary conditions for the total variable cost 𝑍23(𝑡𝑜, 𝑇) in equation (35) to be the minimum are 
𝜕𝑍23(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍23(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍23(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊23𝑡𝑜 − X23 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                           (82) 
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and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊23𝑡𝑜 − X23)                                                                                                 (83) 

Note that 

𝑊23𝑡𝑜 − X23 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜 + 𝑐𝐼𝑐(𝑡𝑜 −𝑀)] > 0 

 since (𝑡𝑜 −𝑀), (𝑡𝑜 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍23(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊23𝑡𝑜

2 − X23𝑡𝑜 + 𝑌23 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                              (84) 

𝑊23(𝑊23 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X23(𝑊23 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌23 − X23

2 ) = 0(85) 

Let   ∆23= 𝑊23(𝑊23 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀
2 − 2X23(𝑊23 − (𝐶𝑏 + 𝐶𝜋𝛿)) 𝑀 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌23 − X23

2 ), then the 

following result is obtained. 

Lemma 3.2.3 

(i) If   ∆23≤ 0, then the solution of 𝑡𝑜 ∈ [𝑀,∞) (say 𝑡𝑜23
∗ ) which satisfies equation (85) does not only exists but also 

unique. 

(ii) If   ∆23> 0, then the solution of 𝑡𝑜 ∈ [𝑀,∞)which satisfies equation (85) does not exist. 

Proof: The process of proof is similar to Lemma 3.1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜23
∗ ) can be found from equation (85) and is given by 

𝑡𝑜23
∗ =

X23
𝑊23

+
1

𝑊23
√
(2𝑊23𝑌23 − X23

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊23 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                               (86) 

Once 𝑡𝑜23
∗  is obtained, then the value of 𝑇 (denoted by 𝑇23

∗ ) can be found from equation (82) and is given by 

𝑇23
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊23𝑡𝑜23

∗ − X23)                                                                                          (87) 

Equations (86) and (87) give the optimal values of 𝑡𝑜23
∗  and 𝑇23

∗ for the cost function in equation (35) only if X23 satisfies 
the inequality given in equation (88) 

X23
2 < 2𝑊23𝑌23                                                                                                                              (88) 

Theorem 3.2.3 

(i) If  ∆23≤ 0,then the total variable cost 𝑍23(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point (𝑡𝑜23
∗ , 𝑇23

∗ ), 
where (𝑡𝑜23

∗ , 𝑇23
∗ ) is the point which satisfies equations (85) and (82). 

(ii) If ∆23> 0, then the total variable cost 𝑍23(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜23
∗ , 𝑇23

∗ ) where 𝑡𝑜23
∗ = 𝑀  and 

𝑇23
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊23𝑀 − X23) 

Proof: The process of proof is similar to Theorem 3.1.1. 

Optimality condition for sub-case 2.4: 𝑴 > 𝒕𝒐. 
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The necessary conditions for the total variable cost 𝑍24(𝑡𝑜, 𝑇) in equation (67) to be the minimum are 
𝜕𝑍24(𝑡𝑜,𝑇)

𝜕𝑡𝑜
= 0 and 

𝜕𝑍24(𝑡𝑜,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍24(𝑡𝑜, 𝑇)

𝜕𝑡𝑜 
=
𝜆

𝑇
{𝑊24𝑡𝑜 − X24 − (𝐶𝑏 + 𝐶𝜋𝛿)𝑇} = 0                                                           (89) 

and 

𝑇 =
1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊24𝑡𝑜 − X24)                                                                                                 (90) 

Note that 

𝑊24𝑡𝑜 − X24 = [ℎ𝑜(𝑡𝑑𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + 𝑡𝑜) + 𝐶𝜃𝑜(𝑡𝑜 − 𝑡𝑑) + (𝐶𝑏 + 𝐶𝜋𝛿)𝑡𝑜

+ 𝑠𝐼𝑒 [(𝑡𝑜 − 𝑡𝑑) + (𝛼𝑡𝑑 + 𝛽
𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
)
1

𝜆
− 𝑀]] > 0 

since , (𝑡𝑜 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍24(𝑡𝑜, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{
1

2
𝑊24𝑡𝑜

2 − X24𝑡𝑜 + 𝑌24 −
𝑇2

2
(𝐶𝑏 + 𝐶𝜋𝛿)} = 0                              (91) 

Replacing 𝑇 from equation (90) into equation (91) yields 

𝑊24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜
2 − 2X24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑜 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌24 − X24

2 ) = 0(92) 

Let ∆24𝑎= 𝑊24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑
2 − 2X24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑡𝑑 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌24 − X24

2 ) and ∆24𝑏=

𝑊24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀
2 − 2X24(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))𝑀 − (2(𝐶𝑏 + 𝐶𝜋𝛿)𝑌24 − X24

2 ), then the following result is 

obtained. 

Lemma 3.2.4 

(i) If ∆24𝑎≤ 0 ≤ ∆24𝑏 , then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , 𝑀] (say 𝑡𝑜24
∗ ) which satisfies equation (92) does not only exists 

but also unique. 

(ii) If ∆24𝑏< 0, then the solution of 𝑡𝑜 ∈ [𝑡𝑑 , 𝑀]  which satisfies equation (92) does not exist. 

Proof: The process of proof is similar to Lemma 3.1.1. 

Thus, the value of 𝑡𝑜 (denoted by 𝑡𝑜24
∗ ) can be found from equation (92) is given by 

𝑡𝑜24
∗ =

X24
𝑊24

+
1

𝑊24
√
(2𝑊24𝑌24 − X24

2 )(𝐶𝑏 + 𝐶𝜋𝛿)

(𝑊24 − (𝐶𝑏 + 𝐶𝜋𝛿))
                                                             (93) 

Once 𝑡𝑜24
∗  is obtained, then the value of 𝑇 (denoted by 𝑇24

∗ ) can be found from equation (90) and is given by 

𝑇24
∗ =

1

(𝐶𝑏 + 𝐶𝜋𝛿)
(𝑊24𝑡𝑜24

∗ − X24)                                                                                          (94) 
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Equations (93) and (94) give the optimal values of 𝑡𝑜24
∗  and 𝑇24

∗  for the cost function in equation (67) only if X24 

satisfies the inequality given in equation (95). 

X24
2 < 2𝑊24𝑌24                                                                                                                              (95) 

Theorem 3.2.4 

(i) If ∆24𝑎≤ 0 ≤ ∆24𝑏, then the total variable cost 𝑍24(𝑡𝑜, 𝑇) is convex and reaches its global minimum at the point 

(𝑡𝑜24
∗ , 𝑇24

∗ ), where (𝑡𝑜24
∗ , 𝑇24

∗ )is the point which satisfies equations (92) and (90). 

(ii) If  ∆42< 0, then the total variable cost 𝑍24(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜24
∗ , 𝑇24

∗ ) where 𝑡𝑜24
∗ = 𝑀  

and 𝑇24
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊24𝑀 − X24). 

(iii) If  ∆24𝑎> 0, then the total variable cost 𝑍24(𝑡𝑜, 𝑇) has a minimum value at the point (𝑡𝑜24
∗ , 𝑇24

∗ ) where 𝑡𝑜24
∗ = 𝑡𝑑  

and 𝑇24
∗ =

1

(𝐶𝑏+𝐶𝜋𝛿)
(𝑊24𝑡𝑑 − X24) 

Proof: The process of proof is similar to Theorem 3.1.1. 

Thus, the economic order quantity (𝐸𝑂𝑄) corresponding to the optimal cycle length 𝑇∗ will be computed as follows: 

𝐸𝑂𝑄∗ =The maximum inventory +the backordered units during the shortage period. 

= 𝛼𝑡𝑑 +
𝛽

2
𝑡𝑑
2 +

𝛾

3
𝑡𝑑
3 +

𝜆

𝜃𝑜
(𝑒𝜃𝑜(𝑡𝑜

∗−𝑡𝑑) − 1) +
𝜆

𝛿
[𝑙𝑛[1 + 𝛿(𝑇∗ − 𝑡𝑜

∗)]]                  (96) 

3.2.2   Numerical Examples 

This section provides some numerical examples to 
illustrate the model established. 

Example 3.2.1 (Sub-case 2.1) 

The data are same as in Example 3.1.1 except that   𝑡𝑑 =
0.2218 year (81 days). It is observed that ∆21=
−53.3986 < 0, X21

2 = 0.6836, 2𝑊21𝑌21 = 103.4295 

and hence X21
2 < 2𝑊21𝑌21. Substituting the above 

values in equations (72), (73), (64) and (96), the value 
of optimal time at which the inventory level reaches zero 
in the owned ware-house, cycle length, total variable cost 
and economic order quantity are respectively obtained as 

follows: 𝑡𝑜21
∗ = 0.4257 year (155 days), 𝑇21

∗ = 0.6013 

year (220 days), 𝑍21(𝑡𝑜21
∗ ,  𝑇21

∗ ) = $1896.2495 per year 

and 𝐸𝑂𝑄21
∗ = 388.0180 units per year.  

Example 3.2.2 (Sub-case 2.2) 

The data are same as in Example 3.2.1 except that   𝑀 =
0.2382 year (87 days). It is observed that  𝑀 >
𝑡𝑟 ,  ∆22= −42.1049 < 0, X22

2 = 2.5041, 2𝑊22𝑌22 =
85.1944 and hence X22

2 < 2𝑊22𝑌22. Substituting the 

above values in equations (79), (80), (65) and ((96), 
the value of optimal time at which the inventory level 
reaches zero in the owned ware-house, cycle length, total 
variable cost and economic order quantity are 

respectively obtained as follows: 𝑡𝑜22
∗ = 0.4064 year 

(148 days), 𝑇22
∗ = 0.5403 year (197 days), 

𝑍22(𝑡𝑜22
∗ ,  𝑇22

∗ ) = $1446.2407 per year and 𝐸𝑂𝑄22
∗ =

362.5485 units per year.  

Example 3.2.3 (Sub-case 2.3) 

The data are same as in Example 3.2.1 except that   𝑀 =
0.2464 year (90 days). It is observed that  𝑀 >
𝑡𝑑 ,  ∆23= −39.3460 < 0, X23

2 = 2.6249, 2𝑊23𝑌23 =
86.8411 and hence X23

2 < 2𝑊23𝑌23. Substituting the 

above values in equations (86), (87), (66) and ((96), 
the value of optimal time at which the inventory level 
reaches zero in the owned ware-house, cycle length, total 
variable cost and economic order quantity are 

respectively obtained as follows: 𝑡𝑜23
∗ = 0.4107 year 

(150 days), 𝑇23
∗ = 0.5452 year (199 days), 

𝑍23(𝑡𝑜23
∗ ,  𝑇23

∗ ) = $1452.6834 per year and 𝐸𝑂𝑄23
∗ =

364.7353 units per year.  

Example 3.2.4 (Sub-case 2.4) 

The data are same as in Example 3.2.1 except that 𝑀 =
0.3559 year (130 days). It is observed that  ∆24𝑎=
−18.4884 < 0,  ∆24𝑏= 15.1201 > 0, X24

2 = 0.9060, 

2𝑊24𝑌24 = 53.4469. Here hence  ∆24𝑎≤ 0 ≤  ∆24𝑏 

and X24
2 < 2𝑊24𝑌24. Substituting the above values in 

equations (93), (94), (67) and ((96), the value of 
optimal time at which the inventory level reaches zero in 
the owned ware-house, cycle length, total variable cost 
and economic order quantity are respectively obtained as 

follows: 𝑡𝑜24
∗ = 0.3011 year (110 days), 𝑇24

∗ = 0.4184 

year (153 days), 𝑍24(𝑡𝑜24
∗ ,  𝑇24

∗ ) = $1266.3614 per year 
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and 𝐸𝑂𝑄24
∗ = 308.0575 units per year. It is also seen 

that  𝑀 > 𝑡𝑜. 

3.2.3 Summary of numerical examples 

Table 3.2.3 Comparison of Results 

Sub-case 2.4 provide the optimal deterioration period, 
cycle length and total variable cost while sub-case 2.1 
provides the optimal EOQ, as such, case 2.1 and 2.4 are 
the feasible cases in which an optimal case can be 
determined. On average, 1.7637 units can be ordered per 

day at a cost of $8.6193 when the time to settle the 
account starts from the beginning of the cycle length to 
the time in which the product starts decaying (Sub-case 
2.1) while 2.0135 units can be ordered per day at a cost 

of $8.2769 when the time to settle the account exceeds 
the time at which the inventory level reaches zero in the 
owned ware-house (Sub-case 2.4). This indicates that 
sub-case 2.4 provided the optimal EOQ at minimal cost 
per day. This shows that considering the credit period to 
be from the time at which the inventory level reaches 
zero in the owned ware-house provides both optimal 
total variable cost and profit which proved sub-case 
2.4 optimal among others. 

Generally, determining the optimal among the optimal 
cases of these two different models would prove the 
optimal among the models. Using the same data of both 
numerical examples the optimal sub-cases of these two 

cases can be compared, and it is discovered from sub-case 

1.2 of Case I that 𝑡𝑜
∗= 0.4244y, 𝑇∗=0.5695y, 

𝑍(𝑡𝑜
∗, 𝑇∗)=($)1567.2293 and  𝐸𝑂𝑄∗=793.8139 while in 

sub-case 2.4 of Case II 𝑡𝑜
∗= 0.3011y, 𝑇∗=0.4184y, 

𝑍(𝑡𝑜
∗, 𝑇∗)=($)12663614 and  𝐸𝑂𝑄∗= 308.0575 which 

shows that Case I provided the optimal order quantity 
while Case II provided the optimal total variable cost but, 

in Case I 3.8164 units are ordered per day at $7.5348 while 

in Case II 2.0135 units are ordered per day at $8.2769 
which clearly shows that Case I is an optimal model. 

SENSITIVITY ANALYSIS 

The sensitivity analysis associated with different 
parameters is performed by changing each of the 

parameters from −40% to 40% taking one parameter at 
a time and keeping the remaining parameters unchanged. 
The effects of these parameters on length of time at 
which the inventory level reaches zero in the owned 
ware-house, cycle length, total variable cost and the 
economic order quantity per cycle for all the examples in 
Case I and Case II have been presented in the Tables 
below. 
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Table 4.1 Effect of credit period (𝛿) on decision Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-cases % change 

in 𝛿 

% change in 𝑡𝑜
∗ % change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1.1  

−40% 

 

-0.8812 1.1591 -1.2672 -5.4415 

1.2 -0.6237 1.1103 -21.9649 -0.8968 

1.3 -0.6129 1.1073 -25.5357 -0.8902 

1.4 -0.7337 1.1752 -27.1389 -0.9836 

2.1 -0.8579 1.1572 1.2006 -1.0262 

2.2 -0.5847 1.0988 0.9891 -0.8726 

2.3 -0.5784 1.0969 0.9906 -0.8687 

2.4 -0.7362 1.1760 0.9521 -0.9852 

      

1.1  

−20% 

 

-0.4290 0.5612 -0.6028 -2.7622 

1.2 -0.3034 0.5376 -10.5492 -0.4362 

1.3 -0.2981 0.5361 -12.2620 -0.4330 

1.4 -0.3571 0.5690 -13.0507 -0.4787 

2.1 -0.4176 0.5603 0.5714 -0.4995 

2.2 -0.2844 0.5319 0.4728 -0.4244 

2.3 -0.2813 0.5310 0.4735 -0.4225 

2.4 -0.3583 0.5695 0.4558 -0.4795 

      

1.1  

+20% 

 

0.4075 -0.5279 0.5492 2.8383 

1.2 0.2877 -0.5055 9.7801 0.4137 

1.3  0.2827 -0.5041 11.3643 0.4106 

1.4 0.3391 -0.5353 12.1262 0.4545 

2.1 0.3966 -0.5270 -0.5211 0.4744 

2.2 0.2696 -0.5002 -0.4345 0.4024 

2.3 0.2667 -0.4993 -0.4351 0.4005 

2.4 0.3402 -0.5357 -0.4200 0.4553 

      

1.1  

+40% 

0.7951 -1.0253 1.0516 5.7464 

1.2 0.5610 -0.9818 18.8742 0.8066 

1.3 0.5512 -0.9790 21.9280 0.8005 

1.4 0.6614 -1.0397 23.4250 0.8867 

2.1 0.7738 -1.0237 -0.9982 0.9257 

2.2 0.5256 -0.9714 -0.8352 0.7844 

2.3 0.5199 -0.9698 -0.8364 0.7808 

2.4 0.6637 -1.0405 -0.8082 0.8882 
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Table 4.2 Effect of interest charges (𝐼𝑐) on decision Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-

cases 

% 

change 

in 𝐼𝑐 

% change in 𝑡𝑜
∗ % change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1.1  

−40% 

 

9.6153 5.1399 3.9474 -2.8432 

1.2 6.4488 4.3557 41.3412 -1.7662 

1.3 6.2296 4.2385 49.1319 -1.6435 

1.4 0.000 0.000 0.000 0.000 

2.1 9.2624 4.8210 3.5587 -5.9483 

2.2 6.1249 4.1944 2.8701 -1.6645 

2.3 5.9755 4.1177 2.8253 -1.5543 

2.4 0.000 0.000 0.000 0.000 

      

1.1  

−20% 

 

4.4982 2.3805 1.8310 -1.3971 

1.2 2.9966 2.0211 15.6815 -0.8320 

1.3 2.8935 1.9661 18.6145 -0.7735 

1.4 0.000 0.000 0.000 0.000 

2.1 4.3323 2.2264 1.6468 -2.8800 

2.2 2.8448 1.9455 1.3310 -0.7840 

2.3 2.7745 1.9096 1.3100 -0.7310 

2.4 0.000 0.000 0.000 0.000 

      

1.1  

+20% 

 

-3.9913 -2.0729 -1.5992 1.3491 

1.2 -2.6273 -1.7678 -10.6497 0.7462 

1.3 -2.5351 -1.7188 -12.6168 0.6927 

1.4 0.000 0.000 0.000 0.000 

2.1 -3.8429 -1.9276 -1.4319 2.7164 

2.2 -2.4923 -1.7004 -1.1630 0.7032 

2.3 -2.4292 -1.6687 -1.14435 0.6536 

2.4 0.000 0.000 0.000 0.000 

      

1.1  

+40% 

-7.5612 -3.8923 -3.0075 2.6520 

1.2 -4.9509 -3.3277 -18.3959 1.4195 

1.3 -4.7756 -3.2349 -21.7760 1.3169 

1.4 0.000 0.000 0.000 0.000 

2.1 -7.2792 -3.6093 -2.6867 5.2894 

2.2 -4.6949 -3.1998 -2.1884 1.3379 

2.3 -4.5749 -3.1398 -2.1530 1.2418 

2.4 0.000 0.000 0.000 0.000 
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Table 4.3 Effect of interest earn (𝐼𝑒) on decision Variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-

cases 

% 

chan

ge in 

𝐼𝑒 

% change in 

𝑡𝑜
∗ 

% change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1.1  

−40% 

 

0.3420 0.3599 0.2528 0.3917 

1.2 3.7352 4.1520 4.0674 5.3708 

1.3 3.8732 4.3163 5.6208 5.6254 

1.4 22.9868 19.6767 15.5582 11.1561 

2.1 0.3519 0.3720 0.2507 0.4209 

2.2 4.9672 5.5733 3.6390 7.4129 

2.3 4.6624 5.2397 3.4315 7.0023 

2.4 28.1517 24.5809 14.8570 15.4099 

      

1.1  

−20% 

 

0.1712 0.1801 0.1265 0.1960 

1.2 1.8866 2.0971 2.0565 2.7127 

1.3 1.9570 2.1809 2.8428 2.8424 

1.4 10.9142 9.5807 8.1137 6.1482 

2.1 0.1761 0.1862 0.1255 0.2107 

2.2 2.5172 2.8244 1.8449 3.7567 

2.3 2.3609 2.6533 1.7383 3.5458 

2.4 13.4926 12.1091 7.3000 8.5559 

      

1.1  

+20% 

 

-0.1715 -0.1804 -0.1268 -0.1964 

1.2 -1.9270 -2.1420 -2.1050 -2.7708 

1.3 -2.0007 -2.2296 -2.9120 -2.9058 

1.4 -10.0527 -9.2914 -8.9154 -7.3320 

2.1 -0.1764 -0.1865 -0.1257 -0.2111 

2.2 -2.5904 -2.9065 -1.9000 -3.8659 

2.3 -2.4253 -2.7256 -1.7870 -3.6425 

2.4 -12.7355 -12.0983 -7.2649 -10.4617 

      

1.1  

+40% 

-0.4292 -0.4517 -0.3174 -0.4917 

1.2 -4.8993 -5.4460 -5.3608 -7.0447 

1.3 -5.0903 -5.6727 -7.4207 -7.3932 

1.4 -24.0621 -23.1501 -24.2001 -20.8027 

2.1 -0.4417 -0.4670 -0.3147 -0.5284 

2.2 -6.6285 -7.4373 -4.8646 -9.8922 

2.3 -6.1964 -6.9636 -4.5681 -9.3062 

2.4 -31.3614 -31.1754 -18.6897 -30.6977 
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Table 4.4 Effect of shortage cost (𝐶𝑏) on decision Variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-cases % change in 

𝐶𝑏 

% change 

in 𝑡𝑜
∗ 

% change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% 

change 

in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1.1  

−40% 

 

-5.6325 7.8524 4.4093 -9.9386 

1.2 -4.0223 7.5319 22.8794 -5.7837 

1.3 -3.9546 7.5116 31.3419 -5.7436 

1.4 -4.7016 7.9580 32.5846 -6.3030 

2.1 -5.4868 7.8402 4.2626 -6.5634 

2.2 -3.7769 7.4556 4.1929 -5.6366 

2.3 -3.7372 7.4435 4.1966 -5.6128 

2.4 -4.7171 7.9636 4.1566 -6.3125 

      

1.1  

−20% 

 

-2.3984 3.2127 1.8399 -4.1988 

1.2 -1.7024 3.0788 9.5585 -2.4479 

1.3 -1.6732 3.0703 13.0706 -2.4302 

1.4 -1.9987 3.2568 13.6096 -2.6793 

2.1 -2.3353 3.2076 1.7778 -2.7935 

2.2 -1.5968 3.0470 1.7393 -2.3830 

2.3 -1.5797 3.0419 1.7409 -2.3725 

2.4 -2.0053 3.2592 1.7234 -2.6835 

      

1.1  

+20% 

 

1.8521 -2.3595 -1.3865 3.2117 

1.2 1.3042 -2.2585 -7.2081 1.8753 

1.3 1.2813 -2.2521 -9.8346 1.8610 

1.4 1.5399 -2.3928 -10.2628 2.0644 

2.1 1.8024 -2.3556 -1.3387 2.1560 

2.2 1.2215 -2.2345 -1.3000 1.8229 

2.3 1.2081 -2.2307 -1.3013 1.8145 

2.4 1.5453 -2.3946 -1.2875 2.0679 

      

1.1  

+40% 

3.3267 -4.1672 -2.4707 5.7508 

1.2 2.3360 -3.9872 -12.8446 3.3589 

1.3 2.2947 -3.9759 -17.5119 3.3328 

1.4 2.7639 -4.2266 -18.2894 3.7053 

2.1 3.2367 -4.1603 -2.3849 3.8717 

2.2 2.1867 -3.9446 -2.3097 3.2634 

2.3 2.1627 -3.9378 -2.3119 3.2481 

2.4 2.7735 -4.2298 -2.2873 3.7116 
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Table 4.5 Effect of cost of lost sales (𝐶𝜋) on decision Variables
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-cases % change in 

𝐶𝜋 

% change 

in 𝑡𝑜
∗ 

% change in 𝑇∗ % change in 

𝐸𝑂𝑄∗ 

% 

change in 

𝑍(𝑡𝑜
∗, 𝑇∗) 

1.1  

−40% 

 

-0.8812 1.1591 0.6700 -5.4415 

1.2 -0.6237 1.1103 3.4817 -0.8968 

1.3 -0.6129 1.1073 4.7572 -0.8902 

1.4 -0.7337 1.1752 4.9572 -0.9836 

2.1 -0.8579 1.1572 0.6472 -1.0262 

2.2 -0.5847 1.0988 0.6315 -0.8726 

2.3 -0.5784 1.0969 0.6321 -0.8687 

2.4 -0.7362 1.1760 0.6256 -0.9852 

      

1.1  

−20% 

 

-0.4290 0.5612 0.3253 -2.7622 

1.2 -0.3034 0.5376 1.6906 -0.4362 

1.3 -0.2981 0.5361 2.3094 -0.4330 

1.4 -0.3571 0.5690 2.4070 -0.4787 

2.1 -0.4176 0.5603 0.3142 -0.4995 

2.2 -0.2844 0.5319 0.3064 -0.4244 

2.3 -0.2813 0.5310 0.3066 -0.4225 

2.4 -0.3583 0.5695 0.3035 -0.4795 

      

1.1  

+20% 

 

0.4075 -0.5279 -0.3075 2.8383 

1.2 0.2877 -0.5055 -1.5985 0.4137 

1.3 0.2827 -0.5041 -2.1825 0.4106 

1.4 0.3391 -0.5353 -2.2758 0.4545 

2.1 0.3966 -0.5270 -0.2970 0.4744 

2.2 0.2696 -0.5002 -0.2892 0.4024 

2.3 0.2667 -0.4993 -0.2894 0.4005 

2.4 0.3402 -0.5357 -0.2864 0.4553 

      

1.1  

+40% 

0.7951 -1.0253 -0.5987 5.7464 

1.2 0.5610 -0.9818 -3.1122 0.8066 

1.3 0.5512 -0.9790 -4.2485 0.8005 

1.4 0.6614 -1.0397 -4.4310 0.8867 

2.1 0.7738 -1.0237 -0.5782 0.9257 

2.2 0.5256 -0.9714 -0.5625 0.7844 

2.3 0.5199 -0.9698 -0.5631 0.7808 

2.4 0.6637 -1.0405 -0.5572 0.8882 
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RESULTS AND DISCUSSION 

Based on the computational results shown in Tables and 
figures above, the following managerial insights are 
obtained. 

(i) From Table 4.1, when the backlogging parameter 

(𝛿) increases, the optimal time at which the 
inventory level reaches zero in the owned ware-

house (𝑡𝑜
∗),  economic order quantity (𝐸𝑂𝑄∗ ) and 

total variable cost (𝑍( 𝑡1
∗, 𝑇∗)) increase, while the 

optimal cycle length (𝑇∗) decrease and vice versa. 
This is usually the case in real life, as any increase in 
backorder rate increases the order quantity while 
any increase in order quantity increases the total 
variable cost. A balanced backlogging rate is 
recommended to optimize the total variable cost 
and profit at the same time.  

(ii) From Table 4.2, it is observed that as the interest 

charge (𝐼𝑐) increases, the optimal time at which the 
inventory level reaches zero in the owned ware-

house (𝑡𝑜
∗), cycle length (𝑇∗) and order quantity 

(𝐸𝑂𝑄∗ ) decrease, while the total variable cost  

(𝑍(𝑇∗, 𝑡𝑜
∗)) increases and vice versa. This means 

that when interest charge increase, the retailer shall 
order fewer amounts of goods to take the benefit of 

trade credit more recurrently.  As for 𝑀 > 𝑡𝑜, 

increase/decrease in interest charge (𝐼𝑐) does not 
affect the optimal time at which the inventory level 

reaches zero in the owned ware-house (𝑡𝑜
∗), cycle 

length (𝑇∗), economic order quantity (𝐸𝑂𝑄∗ ) and 

total variable cost (𝑍(𝑡𝑜
∗, 𝑇∗)), this is because the 

interest charge is zero when 𝑀 > 𝑡𝑜. Minimum 
interest charge is recommended to minimize the 
total variable cost in this situation. 

(iii) From Table 4.3, when the interest earned (𝐼𝑒) 
increases, the optimal time at which the inventory 

level reaches zero in the owned ware-house (𝑡𝑜
∗), 

cycle length (𝑇∗), economic order quantity 

(𝐸𝑂𝑄∗ ) and total variable cost (𝑍(𝑡𝑜
∗, 𝑇∗)) 

decrease and vice versa. This implies that the retailer 
shall order fewer goods to take the benefit of trade 
credit more recurrently. 

(iv) From Table 4.4, it is observed that when shortage 

cost (𝐶𝑏) increases, the optimal time at which the 
inventory level reaches zero in the owned ware-

house (𝑡𝑜
∗) and total variable cost (𝑍(𝑡𝑜

∗, 𝑇∗)) 

increase, while the optimal cycle length (𝑇∗) and 

economic order quantity (𝐸𝑂𝑄∗ ) decrease and vice 
versa. This implies that when the shortages cost 
increase, the total variable cost increase and the 
number of back-ordered goods reduce drastically 
which in turn lead to a decrease in order quantity. 

(v) From Table 4.5, when the cost of lost sales (𝐶𝜋 ) 
increases, the optimal time at which the inventory 

level reaches zero in the owned ware-house (𝑡𝑜
∗) 

and total variable cost (𝑍(𝑡𝑜
∗, 𝑇∗)) increase, while 

the optimal cycle length (𝑇∗) and economic order 

quantity (𝐸𝑂𝑄∗ ) decrease and vice versa. This 
shows the extreme need of a minimum cost of lost 
sales to optimize the total variable cost. 

CONCLUSION  

In this research, an EOQ model for non-instantaneous 
decaying goods with two-phase demand rates, two-
storage facilities and shortages under permissible delay in 
payments has been established. The demand rate before 
deterioration sets in is assumed to be a time-dependent 
quadratic function after which it is considered as a 
constant function up to when the inventory is completely 
used up. Shortages considered which are partially 
backlogged. The length of the Waiting time would 
determine whether backlogging will be accepted or not, 
hence, the backlogging rate is variable and depends on 
the waiting time for the next replenishment. The optimal 
time at which the inventory level reaches zero in the 
owned ware-house, cycle length and order quantity that 
minimizes total variable cost has been determined. Some 
numerical examples have been given to demonstrate the 
assumed set of results of the model. Then Sensitivity 
analysis of some model parameters on optimal solutions 
have been performed and finally, suggestions toward 
minimizing the total variable cost of the inventory system 
have been provided. The model can be extended by 
taking more realistic assumptions such as variable 
deterioration rate, inflation rates, reliability of goods, 
linear holding cost and so on. 
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