Influence of Blending on Mechanical Behavior of Low-Density Polyethylene, Polypropylene, Polyvinylchloride
DOI:
https://doi.org/10.56919/usci.2223.006Keywords:
Polymer, pristine, blend, stress, strain, terpolymer, intermolecular forcesAbstract
Three thermoplastic polymers, low-density polyethylene (LDPE), polypropylene(PP), and polyvinyl chloride (PVC),were synthesized from their raw pellets.Three blends of 1:1 wt.% of low-density polyethylene/polypropylene, low-density polyethylene/polyvinylchloride, polypropylene/polyvinylchloride, and one blend of 1:1:1 wt.% of low-density polyethylene/polypropylene/polyvinylchloride were produced via compression mould method using Two-roll Mill machine and Compression Mould machine. Using the Tensile Strength Tester machine, the pristine polymer and the blends were cut into dumbbell shapes for mechanical testing. The resultsobtained are 9.8MPa and 67.5% maximum stress and strain, respectively, for LDPE, 29MPa, and 12.4% maximum stress and strain, respectively, for neat PP. 25.8MPa and 35% maximum stress and strain respectively for pristine PVC, 19.2MPa and 44% maximum stress and strain respectively for LDPE/PVC blend, 19MPa and 29% maximum stress and strain respectively for LDPE/PP blend, 27.5MPa and10.75% maximum stress and strain respectively for PP/PVC, 21MPa and 10.4% maximum stress and stain respectively for LDPE/PP/PVC blend. The force at peak and the respective peak elongation are; 85.612N and 0.008387m for pristineLDPE, 344.810N and 0.004810m for pristinePP, 264.976N and 0.005496m forpristine PVC, 188.288N and 0.005980m for LDPE/PVC blend, 174.755N and 0.005109m for LDPE/PP blend, 250.196N and0.004287m for PP/PVC blend, 275.175N and 4.009mm for LDPE/PP/PVC blend. The maximum energies expended to have maximum extension are 0.71802784J (LDPE), 2.04578339J (PP), 1.70308635J (PVC), 1.12596224J (LDPE/PVC),0.8928233J (LDPE/PP), 1.50129025J (PP/PVC) and 1.10317658J (LDPE/PP/PVC). These results show improvement in the mechanical properties of the blends when compared with those of the constituent polymers. It also indicatesthat polymeric properties modification via an immiscible polymer blend is possible and easy to achieve.
References
Anjana, R., & George, K. (2012). Reinforcing effect of nano kaolin clay on PP/HDPE blends. International Journal of Engineering Research and Applications, 2(4), 868–872.
Babker, A., Sotnik, S., & Lyashenko, V. (2018). Polymeric Materials in Medicine. Sch. J. Appl. Med Sci, 6, 148–153.
Brennan, J. G., & Day, B. P. F. (2011). Packaging. In Food Processing Handbook (pp. 225–280). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527634361.ch8
Buchalla, R., Schüttler, C., & Bögl, K. W. (1995). Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene. Radiation Physics and Chemistry, 46(4, Part 1), 579–585. https://doi.org/10.1016/0969-806X(95)00222-J
Caren R., Nora A., Itziar O., Valeria P., Celina B., Alejandro J. M., and Gonzalo G-E. (2022).
Improving the Mechanical Performance of LDPE/PP Blends through Microfibrillation. ACS Appl. Polym. Mater. 2022, 4, 3369−3379 https://doi.org/10.1021/acsapm.1c01932
Dikobe, D., & Luyt, A. (2010). Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polymer Letters, 4(11). https://doi.org/10.3144/expresspolymlett.2010.88
George, E. R. (2021). An Introduction to Polymeric Materials for Medical Devices. https://www.meddeviceonline.com/doc/an-introduction-to-polymeric-materials-for-medical-devices-0001
Guerfi, N., & Belhaneche-Bensemra, N. (2014). Preparation, characterization and valorization of regenerated low density polyethylene/polypropylene blends. Environmental Engineering and Management Journal, 13(10), Article 10. http://89.44.47.69/index.php/EEMJ/article/view/2099 https://doi.org/10.30638/eemj.2014.291
Kadhim, L. F., & Kadhim, Z. F. (2017). Studying The Properties of PP/LDPE polymer blend. Journal of University of Babylon, 25(1). https://www.iasj.net/iasj/article/120284
Krastev, R., Djoumaliisky, S., & Borovanska, I. (2013). Long-Term Strength of Polymer Blends from Recycled Materials. Journal of Theoretical and Applied Mechanics, 43(3), 59–66. https://doi.org/10.2478/jtam-2013-0025
Kuno, N., & Fujii, S. (2011). Recent Advances in Ocular Drug Delivery Systems. Polymers, 3(1), Article 1. https://doi.org/10.3390/polym3010193
Margolis, J. M. (2020). Engineering thermoplastics: Properties and applications. CRC Press. .
https://doi.org/10.1201/9781003066156
McCrum, N. G., Buckley, C. P., Buckley, C., & Bucknall, C. (1997). Principles of polymer engineering. Oxford University Press, USA.
Murugesan, S., & Scheibel, T. (2020). Copolymer/Clay Nanocomposites for Biomedical Applications. Advanced Functional Materials, 30(17), 1908101. https://doi.org/10.1002/adfm.201908101
Sadiku, E. R., & Ogunniran, E. S. (2014). Chapter 4—Compatibilization as a Tool for Nanostructure Formation. In S. Thomas, R. Shanks, & S. Chandrasekharakurup (Eds.), Nanostructured Polymer Blends (pp. 101–131). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-3159-6.00004-3
Strapasson, R., Amico, S. C., Pereira, M. F. R., & Sydenstricker, T. H. D. (2005). Tensile and impact behavior of polypropylene/low density polyethylene blends. Polymer Testing, 24(4), 468–473. https://doi.org/10.1016/j.polymertesting.2005.01.001
TROIA, E. (2011). METHODOLOGY FOR RESEARCH AND DEVELOPMENT OF NOVEL MEDICAL DEVICES FOR MINIMALLY INVASIVE INTERVENTIONS [PhD, University of Pisa]. https://etd.adm.unipi.it/t/etd-02092011-143341/
Utracki, L. A., & Wilkie, C. A. (2002). Polymer blends handbook (Vol. 1). Kluwer academic publishers Dordrecht. https://doi.org/10.1007/0-306-48244-4_1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.