New Analytical Solutions for the Fractional Modified Korteweg de Vries-Zakharov-Kuznetsov Equation with Beta Derivative

Authors

DOI:

https://doi.org/10.56919/usci.2542.008

Keywords:

Modified methods, (3+1)-dimensional modified Korteweg-de Vries Zukharov-Kuznetsov equation, Atangana’s Beta fractional derivative, sine-cosine method

Abstract

Study’s Excerpt:
• New exact solutions for the modified fractional (3+1)-dimensional Korteweg–de Vries–Zakharov–Kuznetsov equation are presented.
• The 2D and 3D graphical representations of the new solutions are provided.
• The effectiveness of the sine-cosine method is demonstrated.
Full Abstract:
This paper employs the sine-cosine method to derive new exact solutions for the modified fractional (3+1)-dimensional Korteweg-de Vries–Zakharov-Kuznetsov equation using the Beta fractional derivative approach. The effectiveness of the sine-cosine method is demonstrated through the successful construction of exact solutions, which are further illustrated with 3D and 2D graphical representations. The results highlight the potential of this method as a powerful and efficient tool for solving nonlinear fractional partial differential equations, providing insights into the behavior and structure of complex physical phenomena described by such equations.

References

Akinyemi, L., Akpan, U., Veeresha, P., et al. (2022). Computational techniques to study the dynamics of generalized unstable nonlinear Schrodinger equation. Journal of Ocean Engineering and Science. https://doi.org/10.1016/j.joes.2022.02.011

Acey, B., Bas, E., & Abdeljawad, T. (2019). Non-local fractional calculus from different viewpoint generated by truncated M-derivative. Journal of Computational and Applied Mathematics, 366, 112410. https://doi.org/10.1016/j.cam.2019.112410

Ahmed, I., Baba, I. A., Yusuf, A., Kumam, P., & Kumam, W. (2020). Analysis of Caputo fractional-order model for COVID-19 with lockdown. Advances in Difference Equations, 1, 394. https://doi.org/10.1186/s13662-020-02853-0

Akinyemi, L., & Huseen, S. N. (2020). A powerful approach to study the new modified coupled Korteweg-de Vries system. Mathematics and Computers in Simulation, 177, 556-567. https://doi.org/10.1016/j.matcom.2020.05.021

Benjamin, T., Bona, J., & Mahony, J. (1992). Model equations for long waves in nonlinear dispersive systems. Transactions of the Royal Society of London. Series A, 272, 47-78. https://doi.org/10.1098/rsta.1972.0032

Gardner, C., Greene, J., Kruskal, M., & Miura, R. (1967). Method for solving the Korteweg-de Vries equation. Physical Review Letters, 19, 1095-1097. https://doi.org/10.1103/PhysRevLett.19.1095

Helal, M. A., & Seadawy, A. R. (2009). Variational method for the derivative nonlinear Schrondinger equation with computational applications. Physica Scripta, 80, 350-360. https://doi.org/10.1088/0031-8949/80/03/035004

Hirota, R. (1971). Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters, 27, 1192-1194. https://doi.org/10.1103/PhysRevLett.27.1192

I-Wakil, S. A., Abdou, M. A., & Elhanbaly, A. (2006). New solitons and periodic wave solutions for nonlinear evolution equations. Physics Letters A, 353, 40-47. https://doi.org/10.1016/j.physleta.2005.12.055

Kadomtsev, B., & Petviashvili, V. (1970). On the stability of solitary waves in weakly dispersive media. Soviet Physics Doklady, 15, 539-541.

Kalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70. https://doi.org/10.1016/j.cam.2014.01.002

Koca, I., & Atangana, A. (2017). Solutions of Cattaneo-Hristov model of elastic heat diffusion with CF and AB fractional derivatives. Thermal Science, 21, 2299-2305. https://doi.org/10.2298/TSCI160209103K

Korteweg, D., & Vries, G. (1895). On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Philosophical Magazine, 39, 422-443. https://doi.org/10.1080/14786449508620739

Kumar, D., Singh, J., Baleanu, D., & Sushila. (2018). Analysis of regularized long-wave equation associate with new a new fractional operator with Mittag-Leffler type kernel. Physica A: Statistical Mechanics and its Applications, 492, 155-167. https://doi.org/10.1016/j.physa.2017.10.002

Machado, J. T., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 16, 1140-1153. https://doi.org/10.1016/j.cnsns.2010.05.027

Miller, K. S., & Ross, B. (2003). An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc.

Oldham, K. B., & Spanier, J. (1974). The fractional calculus. Academic Press.

Podlubny, I. (1999). Fractional differential equations. Academic Press.

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Gordon and Breach.

Sousa, J. V. D. C., & de Oliveira, E. C. (2018). A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. International Journal of Analysis and Applications, 16, 83-96.

Tariq, K. U., & Seadawy, A. R. (2019). Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony, Kadomtsev Petviashvili Benjamin Bona Mahony and modified Korteweg de Vries Zakharov-Kuznetsov equations and their applications in water waves. Journal of King Saud University - Science, 31, 8-13. https://doi.org/10.1016/j.jksus.2017.02.004

Wazwaz, A. M. (2008). The tanh-coth and the sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer Chree equations. Applied Mathematics and Computation, 195, 24-33. https://doi.org/10.1016/j.amc.2007.04.066

Xu, G. Q., & Li, Z. B. (2005). Exact travelling wave solutions of the Whitham Broer Kaup and Broer Kaup Kupershmidt equations. Chaos, Solitons & Fractals, 24, 549-556. https://doi.org/10.1016/j.chaos.2004.09.017

Yusuf, A., Inc, M., & Baleanu, D. (2019). Optical Solitons With M-Truncated and Beta Derivatives in Nonlinear Optics. Frontiers in Physics, 7, 126. https://doi.org/10.3389/fphy.2019.00126

Published

2025-05-16

How to Cite

Muhammad, M. S., Balili, A., & Sulaiman, S. (2025). New Analytical Solutions for the Fractional Modified Korteweg de Vries-Zakharov-Kuznetsov Equation with Beta Derivative. UMYU Scientifica, 4(2), 62–66. https://doi.org/10.56919/usci.2542.008