Lattice connectivity and entanglement in quantum spin-glasses

Authors

DOI:

https://doi.org/10.56919/usci.1122.042

Keywords:

quantum entanglement, ising model, von Neumann entropy, Hamiltonian simulation

Abstract

I have studied the role of lattice connectivity and coupling weights distribution on the entanglement of  quantum spin-glasses. It's found in this work that the connectivity of the lattice weakly influence the degree of entanglement in the spin-glass compared to the distribution of the coupling constants between the spins. This suggest important implications for machine learning models such as Boltzmann machines and the study of complex quantum systems.

References

Bapst, V., Foini, L., Krzakala, F., Semerjian, G., & Zamponi, F. (2013). The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective. Physics Reports, 523(3), 127-205.

https://doi.org/10.1016/j.physrep.2012.10.002

Côté, J., & Kourtis, S. (2022). Entanglement phase transition with spin glass criticality. Physical Review Letters, 128(24), 240601.

https://doi.org/10.1103/PhysRevLett.128.240601

Georges, A., Parcollet, O., & Sachdev, S. (2000). Mean field theory of a quantum Heisenberg spin glass. Physical Review Letters, 85(4), 840.

https://doi.org/10.1103/PhysRevLett.85.840

Grest, G. S., Soukoulis, C. M., & Levin, K. (1986). Cooling-rate dependence for the spin-glass ground-state energy: Implications for optimization by simulated annealing. Physical Review Letters, 56(11), 1148.

https://doi.org/10.1103/PhysRevLett.56.1148

Hen, I., Job, J., Albash, T., Rønnow, T. F., Troyer, M., & Lidar, D. A. (2015). Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A, 92(4), 042325.

https://doi.org/10.1103/PhysRevA.92.042325

Koh, C. Y. (2014). Entanglement and quantum spin glass. International Journal of Modern Physics B, 28(20), 1430012.

https://doi.org/10.1142/S0217979214300126

Koh, C. Y., & Kwek, L. C. (2014). Entanglement and quantum phase transition of spin glass: A renormalization group approach. Physics Letters A, 378(37), 2743-2749.

https://doi.org/10.1016/j.physleta.2014.07.042

Kopeć, T. K., & Usadel, K. D. (1997). Quantum spin glass on the Bethe lattice. Physical Review Letters, 78(10), 1988.

https://doi.org/10.1103/PhysRevLett.78.1988

Laumann, C. R., Parameswaran, S. A., Sondhi, S. L., & Zamponi, F. (2010). AKLT models with quantum spin glass ground states. Physical Review B, 81(17), 174204.

https://doi.org/10.1103/PhysRevB.81.174204

Laumann, C., Scardicchio, A., & Sondhi, S. L. (2008). Cavity method for quantum spin glasses on the Bethe lattice. Physical Review B, 78(13), 134424.

https://doi.org/10.1103/PhysRevB.78.134424

Mossi, G., Parolini, T., Pilati, S., & Scardicchio, A. (2017). On the quantum spin glass transition on the Bethe lattice. Journal of Statistical Mechanics: Theory and Experiment, 2017(1), 013102.

https://doi.org/10.1088/1742-5468/aa5286

Yatsuzuka, H., Haraguchi, Y., Matsuo, A., Kindo, K., & Katori, H. A. (2022). Spin-glass transition in the spin-orbit-entangled J eff= 0 Mott insulating double-perovskite ruthenate. Scientific Reports, 12(1), 2429.

https://doi.org/10.1038/s41598-022-06467-2

Downloads

Published

2022-09-30

How to Cite

Ibrahim, Y. (2022). Lattice connectivity and entanglement in quantum spin-glasses. UMYU Scientifica, 1(1), 332–335. https://doi.org/10.56919/usci.1122.042