Lattice connectivity and entanglement in quantum spin-glasses
DOI:
https://doi.org/10.56919/usci.1122.042Keywords:
quantum entanglement, ising model, von Neumann entropy, Hamiltonian simulationAbstract
I have studied the role of lattice connectivity and coupling weights distribution on the entanglement of quantum spin-glasses. It's found in this work that the connectivity of the lattice weakly influence the degree of entanglement in the spin-glass compared to the distribution of the coupling constants between the spins. This suggest important implications for machine learning models such as Boltzmann machines and the study of complex quantum systems.
References
Bapst, V., Foini, L., Krzakala, F., Semerjian, G., & Zamponi, F. (2013). The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective. Physics Reports, 523(3), 127-205.
https://doi.org/10.1016/j.physrep.2012.10.002
Côté, J., & Kourtis, S. (2022). Entanglement phase transition with spin glass criticality. Physical Review Letters, 128(24), 240601.
https://doi.org/10.1103/PhysRevLett.128.240601
Georges, A., Parcollet, O., & Sachdev, S. (2000). Mean field theory of a quantum Heisenberg spin glass. Physical Review Letters, 85(4), 840.
https://doi.org/10.1103/PhysRevLett.85.840
Grest, G. S., Soukoulis, C. M., & Levin, K. (1986). Cooling-rate dependence for the spin-glass ground-state energy: Implications for optimization by simulated annealing. Physical Review Letters, 56(11), 1148.
https://doi.org/10.1103/PhysRevLett.56.1148
Hen, I., Job, J., Albash, T., Rønnow, T. F., Troyer, M., & Lidar, D. A. (2015). Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A, 92(4), 042325.
https://doi.org/10.1103/PhysRevA.92.042325
Koh, C. Y. (2014). Entanglement and quantum spin glass. International Journal of Modern Physics B, 28(20), 1430012.
https://doi.org/10.1142/S0217979214300126
Koh, C. Y., & Kwek, L. C. (2014). Entanglement and quantum phase transition of spin glass: A renormalization group approach. Physics Letters A, 378(37), 2743-2749.
https://doi.org/10.1016/j.physleta.2014.07.042
Kopeć, T. K., & Usadel, K. D. (1997). Quantum spin glass on the Bethe lattice. Physical Review Letters, 78(10), 1988.
https://doi.org/10.1103/PhysRevLett.78.1988
Laumann, C. R., Parameswaran, S. A., Sondhi, S. L., & Zamponi, F. (2010). AKLT models with quantum spin glass ground states. Physical Review B, 81(17), 174204.
https://doi.org/10.1103/PhysRevB.81.174204
Laumann, C., Scardicchio, A., & Sondhi, S. L. (2008). Cavity method for quantum spin glasses on the Bethe lattice. Physical Review B, 78(13), 134424.
https://doi.org/10.1103/PhysRevB.78.134424
Mossi, G., Parolini, T., Pilati, S., & Scardicchio, A. (2017). On the quantum spin glass transition on the Bethe lattice. Journal of Statistical Mechanics: Theory and Experiment, 2017(1), 013102.
https://doi.org/10.1088/1742-5468/aa5286
Yatsuzuka, H., Haraguchi, Y., Matsuo, A., Kindo, K., & Katori, H. A. (2022). Spin-glass transition in the spin-orbit-entangled J eff= 0 Mott insulating double-perovskite ruthenate. Scientific Reports, 12(1), 2429.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.