Intracellular Survival of Toxoplasma gondii: Success and Adaptation
DOI:
https://doi.org/10.56919/usci.2323.013Keywords:
Toxoplama gondii, adaptation, intracellular replication, parasitoporous vacoule, reactive oxygen speciesAbstract
T. gondii was described as the most successful parasite on earth because of its wide range of host agents, intracellular adaptations and its ability to maintain continuous survival for the life span of its host. Its complex movement, penetration and intracellular replication within the host cell are organized in such a way that it invades and evades immune cells. Formation of parasitoporous vacoule within the host cells and strong anti-oxidant system, are factors that add to its ability to maintain itself in a latent stage, evasion of immune cells attack as well as the effects of reactive oxygen species. In immunocompetent individuals, the infection is asymptomatic, and the parasite exists and persists in a slowly replicating bradyzoite stage in skeletal muscle, heart, brain, retina, and placental tissues. Reactivation of the rapidly replicating tachyzoite stage in settings of immune-depression results with severe consequences. This, therefore, prompts the need to understand certain mechanisms through which this organism succeeds and adapts the harsh condition of host cells during infection. The review further portrays the applicability of diagnostics and therapeutics to diagnose, treat and prevent infection with T. gondii.
References
Abdullahi, S. A., Nordin, N., Unyah, N. Z., Basir, R., Daneji, I. M., Nasiru, W. M., & Abd Majid, R. (2023). Tinospora crispa Ethanolic Extract Downregulates Protein Kinase Genes Expression and Activity during Toxoplasma gondii Infection: A Prospective Drug Target for Lytic Cycle Inhibition. Trends in Sciences, 20(7), 6538-6538. https://doi.org/10.48048/tis.2023.6538
Abdullahi, S. A., Unyah, N. Z., Nordin, N., Basir, R., Wana, M. N., Ashraf, A. A., ... & Abd Majid, R. (2019). Therapeutic Targets on Toxoplasma gondii Parasite in Combatting Toxoplasmosis. Annual Research & Review in Biology, 1-15. https://doi.org/10.9734/arrb/2019/v32i230081
Abou-Bacar, A., Pfaff, A. W., Georges, S., Letscher-Bru, V., Filisetti, D., Villard, O., ... & Candolfi, E. (2004). Role of NK cells and gamma interferon in transplacental passage of Toxoplasma gondii in a mouse model of primary infection. Infection and immunity, 72(3), 1397-1401. https://doi.org/10.1128/IAI.72.3.1397-1401.2004
Bahrami, S., Shahriari, A., Tavalla, M., Azadmanesh, S., & Hamidinejat, H. (2016). Blood levels of oxidant/antioxidant parameters in rats infected with Toxoplasma gondii. Oxidative medicine and cellular longevity, 2016. https://doi.org/10.1155/2016/8045969
Blader, I. J. and Saeij, J. P. (2009). Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. Apmis 117(5‐6): 458-476. https://doi.org/10.1111/j.1600-0463.2009.02453.x
Blader, I. J., Coleman, B. I., Chen, C. T. and Gubbels, M. J. (2015). Lytic cycle of Toxoplasma gondii: 15 years later. Annual Review of Microbiology 69:463-485. https://doi.org/10.1146/annurev-micro-091014-104100
Bosch, S. S., Kronenberger, T., Meissner, K. A., Zimbres, F. M., Stegehake, D., Izui, N. M. and Wrenger, C. (2015). Oxidative stress control by apicomplexan parasites. BioMed Research International 2015:1-10. https://doi.org/10.1155/2015/351289
Brunet, J., Pfaff, A. W., Abidi, A., Unoki, M., Nakamura, Y., Guinard, M. and Mousli, M. (2008). Toxoplasma gondii exploits UHRF1 and induces host cell cycle arrest at G2 to enable its proliferation. Cellular Microbiology 10(4): 908-920. https://doi.org/10.1111/j.1462-5822.2007.01093.x
Cai, Y., Chen, H., Jin, L., You, Y., & Shen, J. (2013). STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage. Parasites & vectors, 6, 1-9. https://doi.org/10.1186/1756-3305-6-356
Coppens, I., Dunn, J. D., Romano, J. D., Pypaert, M., Zhang, H., Boothroyd, J. C. and Joiner, K. A. (2006). Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125(2): 261-274. https://doi.org/10.1016/j.cell.2006.01.056
Du, J., An, R., Chen, L., Shen, Y., Chen, Y., Cheng, L., ... & Shen, J. (2014). Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation. Journal of Biological Chemistry, 289(18), 12578-12592. https://doi.org/10.1074/jbc.M113.544718
Dubey, J. P., Rajendran, C., Ferreira, L. R., Martins, J., Kwok, O. C. H., Hill, D. E, and Jones, J. L. (2011). High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA. International Journal for Parasitology 41(8):827-833. https://doi.org/10.1016/j.ijpara.2011.03.006
Dupont, C. D., Christian, D. A., & Hunter, C. A. (2012, November). Immune response and immunopathology during toxoplasmosis. In Seminars in immunopathology (Vol. 34, pp. 793-813). Springer-Verlag. https://doi.org/10.1007/s00281-012-0339-3
El Hajj, H., Lebrun, M., Arold, S. T., Vial, H., Labesse, G, and Dubremetz, J. F. (2007). ROP18 is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. PLoS Pathogens 3(2): e14. https://doi.org/10.1371/journal.ppat.0030014
Filisetti, D., & Candolfi, E. (2004). Immune response to Toxoplasma gondii. Ann Ist Super Sanita, 40(1), 71-80.
Kwok, L. Y., Schlüter, D., Clayton, C., & Soldati, D. (2004). The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defense against oxidative injury. Molecular microbiology, 51(1), 47-61. https://doi.org/10.1046/j.1365-2958.2003.03823.x
Laliberte, J., & Carruthers, V. B. (2008). Host cell manipulation by the human pathogen Toxoplasma gondii. Cellular and molecular life sciences, 65, 1900-1915. https://doi.org/10.1007/s00018-008-7556-x
McCoy, J. M., Whitehead, L., van Dooren, G. G. and Tonkin, C. J. (2012). TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathogens 8(12): e1003066. https://doi.org/10.1371/journal.ppat.1003066
Mercer, H. L., Snyder, L. M., Doherty, C. M., Fox, B. A., Bzik, D. J., & Denkers, E. Y. (2020). Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathogens, 16(5), e1008572. https://doi.org/10.1371/journal.ppat.1008572
Müller, J., and Hemphill, A. (2013). New approaches for the identification of drug targets in protozoan parasites. International Review of Cell and Molecular Biology 301:359-401. https://doi.org/10.1016/B978-0-12-407704-1.00007-5
Pino, P., Foth, B. J., Kwok, L. Y., Sheiner, L., Schepers, R., Soldati, T., & Soldati-Favre, D. (2007). Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS pathogens, 3(8), e115. https://doi.org/10.1371/journal.ppat.0030115
Robert-Gangneux, F. and Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews 25(2): 264-296. https://doi.org/10.1128/CMR.05013-11
Sautel, C. F., Ortet, P., Saksouk, N., Kieffer, S., Garin, J., Bastien, O., & Hakimi, M. A. (2009). The histone methylase KMTox interacts with the redox‐sensor peroxiredoxin‐1 and targets genes involved in Toxoplasma gondii antioxidant defences. Molecular microbiology, 71(1), 212-226. https://doi.org/10.1111/j.1365-2958.2008.06519.x
Taylor, S., Barragan, A., Su, C., Fux, B., Fentress, S. J., Tang, K., ... & Sibley, L. D. (2006). A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science, 314(5806), 1776-1780. https://doi.org/10.1126/science.1133643
Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Molecular aspects of medicine, 25(1-2), 211-220. https://doi.org/10.1016/j.mam.2004.02.021
Yap, G. S., & Sher, A. (1999). Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology, 201(2), 240-247. https://doi.org/10.1016/S0171-2985(99)80064-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.