Optimization of Methylene Blue Adsorption onto Activated Carbon derived from Pineapple Peel Waste using Response Surface Methodology
DOI:
https://doi.org/10.56919/usci.2324.006Keywords:
Activated carbon, Adsorption capacity, Methylene blue dye, Response Surface Methodology, Wsatewater treatmentAbstract
This study focuses on the optimization of methylene blue (MB) adsorption onto activated carbon derived from pineapple peel waste (ACPPW) using response surface methodology (RSM). The activated carbon was synthesized via a chemical activation method and characterized using FTIR spectroscopy. The adsorption process was optimized by investigating the effects of three key parameters: adsorbent dosage, initial dye concentration, and contact time. A Central Composite Design (CCD) with 20 runs was employed, and ANOVA was performed to determine the significance of each parameter. The central composite design (CCD) was employed to determine the effect of three independent variables, namely adsorbent dosage (X1), initial MB concentration (X2), and contact time (X3), on the response variable, MB removal efficiency (Y). The optimal conditions for achieving a high adsorption capacity of 98.19 % for methylene blue dye were determined to be an adsorbent dosage of 400 mg/L, an initial dye concentration of 15 mg/L, and a contact time of 12 minutes. The regression equation achieved a high R2 value of 0.9883, indicating a good fit for the experimental data and the model's reliability. These findings provide valuable insights into efficiently utilizing pineapple peel waste as a sustainable source for producing activated carbon with excellent adsorption capabilities for dye removal, thus contributing to environmental sustainability and waste management efforts.
References
Abbasi, N., Khan, S. A., & Khan, T. A. J. J. o. W. P. E. (2021). Response surface methodology mediated process optimization of Celestine blue B uptake by novel custard apple seeds activated carbon/FeMoO4 nanocomposite. 43, 102267. https://doi.org/10.1016/j.jwpe.2021.102267
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A.-G., Elsamahy, T., . . . Safety, E. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Albalasmeh, A., Gharaibeh, M. A., Mohawesh, O., Alajlouni, M., Quzaih, M., Masad, M., & El Hanandeh, A. J. J. o. S. C. S. (2020). Characterization and Artificial Neural Networks Modelling of methylene blue adsorption of biochar derived from agricultural residues: Effect of biomass type, pyrolysis temperature, particle size. 24(11), 811-823. https://doi.org/10.1016/j.jscs.2020.07.005
Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., . . . Technology. (2020). Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. 50(10), 1043-1084. https://doi.org/10.1080/10643389.2019.1642835
Arabi, M., Ghaedi, M., Ostovan, A., Tashkhourian, J., & Asadallahzadeh, H. J. U. S. (2016). Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software. 33, 67-76. https://doi.org/10.1016/j.ultsonch.2016.04.022
Auta, M., & Hameed, B. J. C. E. J. (2011). Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. 175, 233-243. https://doi.org/10.1016/j.cej.2011.09.100
Bhowmik, M., Deb, K., Debnath, A., & Saha, B. J. A. O. C. (2018). Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: neural network modeling and response surface methodology optimization. 32(3), e4186. https://doi.org/10.1002/aoc.4186
Birniwa, A. H., Mahmud, H. N. M. E., Abdullahi, S. S. a., Habibu, S., Jagaba, A. H., Ibrahim, M. N. M., . . . Umar, K. J. P. (2022). Adsorption behavior of methylene blue cationic dye in aqueous solution using polypyrrole-polyethylenimine nano-adsorbent. 14(16), 3362. https://www.mdpi.com/2073-4360/14/16/3362
Bose, S., Mukherjee, T., Rahaman, M. J. E. P., & Energy, S. (2021). Simultaneous adsorption of manganese and fluoride from aqueous solution via bimetal impregnated activated carbon derived from waste tire: Response surface method modeling approach. 40(4), e13600. https://doi.org/10.1002/ep.13600
Dastkhoon, M., Ghaedi, M., Asfaram, A., Goudarzi, A., Mohammadi, S. M., & Wang, S. J. U. S. (2017). Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies. 37, 94-105. https://doi.org/10.1016/j.ultsonch.2016.11.025
Deb, A., Debnath, A., & Saha, B. J. A. O. C. (2020). Ultrasound‐aided rapid and enhanced adsorption of anionic dyes from binary dye matrix onto novel hematite/polyaniline nanocomposite: Response surface methodology optimization. 34(2), e5353. https://doi.org/10.1002/aoc.5353
Deb, A., Kanmani, M., Debnath, A., Bhowmik, K. L., & Saha, B. J. U. s. (2019). Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters. 54, 290-301. https://doi.org/10.1016/j.ultsonch.2019.01.028
Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., & Rogalski, M. J. J. o. t. T. I. o. C. E. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. 53, 112-121. https://doi.org/10.1016/j.jtice.2015.02.025
Fouda-Mbanga, B. G., & Tywabi-Ngeva, Z. J. T. (2022). Application of Pineapple Waste to the Removal of Toxic Contaminants: A Review. 10(10), 561. https://doi.org/10.3390/toxics10100561
Gadekar, M. R., & Ahammed, M. M. J. J. o. e. m. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. 231, 241-248. https://doi.org/10.1016/j.jenvman.2018.10.017
Harish, Kumar, P., Soni, A., Chakinala, A. G., Singhal, R., Joshi, R. P., & Mukhopadhyay, A. K. J. C. (2022). Effect of molarity on methylene blue dye removal efficacy of nano Ca (OH) 2. 7(18), e202200393. https://doi.org/10.1002/slct.202200393
Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. J. J. o. M. L. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. 208, 99-105. https://doi.org/10.1016/j.molliq.2015.03.057
Hiew, B. Y. Z., Lee, L. Y., Lai, K. C., Gan, S., Thangalazhy-Gopakumar, S., Pan, G.-T., & Yang, T. C.-K. J. E. r. (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. 168, 241-253. https://doi.org/10.1016/j.envres.2018.09.030
Igwegbe, C. A., Mohmmadi, L., Ahmadi, S., Rahdar, A., Khadkhodaiy, D., Dehghani, R., & Rahdar, S. J. M. (2019). Modeling of adsorption of methylene blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. 6, 1779-1797. https://doi.org/10.1016/j.mex.2019.07.016
Islam, T., Repon, M. R., Islam, T., Sarwar, Z., Rahman, M. M. J. E. S., & Research, P. (2023). Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. 30(4), 9207-9242. https://link.springer.com/article/10.1007/s11356-022-24398-3
Jawad, A. H., Abd Malek, N. N., Khadiran, T., ALOthman, Z. A., Yaseen, Z. M. J. D., & Materials, R. (2022). Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: an optimized process. 128, 109288. https://doi.org/10.1016/j.diamond.2022.109288
Jawad, A. H., Abdulhameed, A. S., Wilson, L. D., Syed-Hassan, S. S. A., ALOthman, Z. A., & Khan, M. R. J. C. J. o. C. E. (2021). High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. 32, 281-290. https://doi.org/10.1016/j.cjche.2020.09.070
Jawad, A. H., Abdulhameed, A. S. J. E., Ecology, & Environment. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. 5(6), 456-469. https://link.springer.com/article/10.1007/s40974-020-00177-z
Karimifard, S., & Moghaddam, M. R. A. J. S. o. t. T. E. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. 640, 772-797. https://doi.org/10.1016/j.scitotenv.2018.05.355
Khader, E. H., Mohammed, T. J., & Albayati, T. M. J. D. W. T. (2021). Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. 229, 372-383. https://scholar.google.com
Khafri, H. Z., Ghaedi, M., Asfaram, A., & Safarpoor, M. J. U. s. (2017). Synthesis and characterization of ZnS: Ni-NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design. 38, 371-380. https://doi.org/10.1016/j.ultsonch.2017.03.033
Khattabi, E. H. E., Rachdi, Y., Bassam, R., Mourid, E., Naimi, Y., Alouani, M. E., & Belaaouad, S. J. R. J. o. P. C. B. (2021). Enhanced elimination of methyl orange and recycling of an eco-friendly adsorbent activated carbon from aqueous solution. 15(Suppl 2), S149-S159. https://link.springer.com/article/10.1134/S1990793122020063
Kumar, M., & Tamilarasan, R. J. P. J. o. C. T. (2013). Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora. 15(2), 29--39. https://www.infona.pl/resource/bwmeta1.element.baztech-bc10cc0c-a785-4662-a692-e5d1b8c8630a
Liu, R., Fu, H., Lu, Y., Yin, H., Yu, L., Ma, L., . . . Nanotechnology. (2016). Adsorption optimization and mechanism of neutral red onto magnetic Ni0. 5Zn0. 5Fe2O4/SiO2 nanocomposites. 16(8), 8252-8262. https://doi.org/10.1166/jnn.2016.11653
Magaji Landan, Ayuba Abdullahi Muhammed, Bishir Usman, Jamilu Abdullahi, & Shehu Habibu. (2013). Thermodynamic properties of chromium adsorption by sediments of River Watari, Kano State. Chemsearch, 4(1), 1-5. https://www.ajol.info/index.php/csj/article/view/115395
Mehra, S., Singh, M., & Chadha, P. J. T. I. (2021). Adverse impact of textile dyes on the aquatic environment as well as on human beings. 28(2), 165. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mehra%2C+S.%2C+Singh%2C+M.%2C+%26+Chadha%2C+P.+J.+T.+I.+%282021%29.+Adverse+impact+of+textile+dyes+on+the+aquatic+environment+as+well+as+on+human+beings.+28%282%29%2C+165.+&btnG=
Mitra, S., Mukherjee, T., & Kaparaju, P. J. E. T. (2021). Prediction of methyl orange removal by iron decorated activated carbon using an artificial neural network. 42(21), 3288-3303. https://doi.org/10.1080/09593330.2020.1725648
Pandey, D., Daverey, A., Dutta, K., Yata, V. K., Arunachalam, K. J. E. T., & Innovation. (2022). Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. 25, 102200. https://doi.org/10.1016/j.eti.2021.102200
Pereira, L. M. S., Milan, T. M., Tapia-Blácido, D. R. J. B., & Bioenergy. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166
Raiyaan, G., Khalith, S., Sheriff, M., & Arunachalam, K. J. J. A. M. B. (2021). Bio-adsorption of methylene blue dye using chitosan-extracted from Fenneropenaeus indicus shrimp shell waste. 10(4), 146-150. https://medcraveonline.com/JAMB/bio-adsorption-of-methylene-blue-dye-using-chitosan-extracted-from-fenneropenaeus-indicus-shrimp-shell-waste.html
Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M. L., & Mbaya, R. (2022). Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, 8(8), e09930. doi:https://doi.org/10.1016/j.heliyon.2022.e09930
Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., . . . Sciences, A. (2020). Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. 27(1), 208-238. https://doi.org/10.1080/25765299.2020.1766799
Rosly, N. Z., Abdullah, A. H., Ahmad Kamarudin, M., Ashari, S. E., Alang Ahmad, S. A. J. I. J. o. E. R., & Health, P. (2021). Adsorption of methylene blue dye by calix [6] arene-modified lead sulphide (Pbs): optimisation using response surface methodology. 18(2), 397. https://doi.org/10.3390/ijerph18020397
Sharma, Y. C., Chemical, U. J. J. o., & Data, E. (2010). Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. 55(1), 435-439. https://pubs.acs.org/doi/abs/10.1021/je900408s
Shrestha, L. K., Thapa, M., Shrestha, R. G., Maji, S., Pradhananga, R. R., & Ariga, K. J. C. (2019). Rice husk-derived high surface area nanoporous carbon materials with excellent iodine and methylene blue adsorption properties. 5(1), 10. https://doi.org/10.3390/c5010010
Suryawanshi, S. S., Kamble, P. P., Gurav, R., Yang, Y.-H., Jadhav, J. P. J. B. C., & Biorefinery. (2023). Statistical comparison of various agricultural and non-agricultural waste biomass-derived biochar for methylene blue dye sorption. 13(6), 5353-5366. https://link.springer.com/article/10.1007/s13399-021-01636-1
Van Tran, T., Nguyen, D. T. C., Nguyen, T. T. T., Nguyen, D. H., Alhassan, M., Jalil, A., . . . Lee, T. J. S. o. T. T. E. (2023). A critical review on pineapple (Ananas comosus) wastes for water treatment, challenges and future prospects towards circular economy. 856, 158817. doi.org/10.1016/j.scitotenv.2022.158817
Yusuf, M. J. T., & clothing. (2019). Synthetic dyes: a threat to the environment and water ecosystem. 11-26. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119526599#page=24
Zhang, J., Lin, G., Yin, X., Zeng, J., Wen, S., & Lan, Y. J. A. p. p. (2020). Application of artificial neural network (ANN) and response surface methodology (RSM) for modeling and optimization of the contact angle of rice leaf surfaces. 42, 1-15. https://link.springer.com/article/10.1007/s11738-020-03040-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.