Modification of Glassy Carbon Electrode Using Microcrystalline Cellulose-Ethylenediaminetetraacetic Acid for the Detection of Lead and Cadmium Ions

Authors

  • Sakinatu Almustapha Department of Basic and applied Sciences, College of Science and Technology, Hassan Usman Katsina Polytechnic. P.M.B 2052 Katsina, Katsina State, Nigeria https://orcid.org/0000-0001-6270-7640

DOI:

https://doi.org/10.56919/usci.1122.028

Keywords:

Microcrystalline Cellulose-Ethylinediamine Tetra acetic Acid, Microcrystalline Cellulose, Glassy Carbon electrode, Cadmium, Lead, Electrochemical sensor

Abstract

There is a greater need for the identification and monitoring of metal contaminants as a result of the growing hazard that heavy metal contamination of water poses to the environment. In this work, microcrystalline cellulose was functionalised with ethylenediaminetetraacetic acid, and the product analysed using scanning electron microscopy and X-ray diffraction techniques. The functionalised microcrystalline cellulose-ethylenediaminetetraacetic acid was employed to modify the glassy carbon electrode. Detection for Pb2+ and Cd2+ ions was determined using square wave anodic stripping voltammetric analysis at square wave potential scan of -1.0 V to -0.2 V, and deposition potential of -1.0 V in 0.1M acetate buffer for 240 sec. Higher current response of Pb2+ was obtained at -0.6 V and that of Cd2+ at -0.8V. Limit of detection for Pb2+  was 1.8 ppb (MCC-EDTA GCE) and 5.0 ppb (MCC-GCE) , while that of Cd2+  was 7 ppb (MCC-EDTA GCE) and 10 ppb (MCC-GCE), these indicate MCC EDTA GCE has higher sensitivity towards detection of the metal ions and selectivity of modifiers for detection of Pd2+ and Cd2+ was achieved successfully.

References

Ajab, H., Yaqub, A., Nazir, M. S., Rozaini, M. Z. H., & Abdullah, M. A. (2020). Optimisation of oil palm-based cellulose and hydroxyapatite-carbon composite electrode for trace Pb (II) ions detection in aqueous system. BioResources, 15(3), 6273-6281. [Crossref] https://doi.org/10.15376/biores.15.3.6273-6281

Ajab, H., Dennis, J. O., & Abdullah, M. A. (2018). Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum. International journal of biological macromolecules, 113, 376-385. [Crossref] https://doi.org/10.1016/j.ijbiomac.2018.02.133

El-Naggar, M. E., Radwan, E. K., El-Wakeel, S. T., Kafafy, H., Gad-Allah, T. A., El-Kalliny, A. S., & Shaheen, T. I. (2018). Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal. International Journal of Biological Macromolecules, 113, 248-258. [Crossref] https://doi.org/10.1016/j.ijbiomac.2018.02.126

Ernest, E. M., & Peter, A. C. (2022). Application of Selected Chemical Modification Agents on Banana Fibre for Enhanced Composite Production. Cleaner Materials, 100131. [Crossref] https://doi.org/10.1016/j.clema.2022.100131

Fouad, H., Kian, L. K., Jawaid, M., Alotaibi, M. D., Alothman, O. Y., & Hashem, M. (2020). Characterization of microcrystalline cellulose isolated from Conocarpus fiber. Polymers, 12(12), 2926. [Crossref] https://doi.org/10.3390/polym12122926

Garba, Z. N., Lawan, I., Zhou, W., Zhang, M., Wang, L., & Yuan, Z. (2020). Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals-a review. Science of the Total Environment, 717, 135070. [Crossref] https://doi.org/10.1016/j.scitotenv.2019.135070

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. [Crossref] https://doi.org/10.3390/ijerph17113782

Hassan, K. M., Elhaddad, G. M., &AbdelAzzem, M. (2019). Voltammetric determination of cadmium (II), lead (II) and copper (II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly (1, 8-diaminonaphthalene). Microchimica Acta, 186(7), 1-10. [Crossref] https://doi.org/10.1007/s00604-019-3552-0

Jegatheesan, A., Murugan, J., Neelagantaprasad, B., & Rajarajan, G. (2012). FTIR, XRD, SEM, TGA investigations of ammonium dihydrogen phosphate (ADP) single crystal. International Journal of Computer Applications, 53(4). [Crossref] https://doi.org/10.5120/8408-2040

Kulpa-Koterwa, A., Ossowski, T., &Niedziałkowski, P. (2021). Functionalised Fe3O4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection-A Mini Review. Materials, 14(24), 7725. [Crossref] https://doi.org/10.3390/ma14247725

Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., ... & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International journal of environmental research and public health, 17(7), 2179. [Crossref] https://doi.org/10.3390/ijerph17072179

Kumary, V. A., Nancy, T. M., Divya, J., & Sreevalsan, K. (2013). Nonenzymatic glucose sensor: glassy carbon electrode modified with graphene-nickel/nickel oxide composite. Int. J. Electrochem. Sci, 8, 2220-2228. https://doi.org/10.1016/S1452-3981(23)14303-3

Nazir, M. S., Wahjoedi, B. A., Yussof, A. W., & Abdullah, M. A. (2013). Eco-friendly extraction and characterisation of cellulose from oil palm empty fruit bunches. BioResources, 8(2), 2161-2172. Crossref] https://doi.org/10.15376/biores.8.2.2161-2172

Petovar, B., Xhanari, K., &Finšgar, M. (2018). A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta, 1004, 10-21. [Crossref] https://doi.org/10.1016/j.aca.2017.12.020

Proshad, R., Islam, S., Tusher, T. R., Zhang, D., Hadka, S., Gao, J., & Kundu, S. (2021). Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: a study on an urban river in vicinity to industrial areas of Bangladesh. Toxin reviews, 40(4), 803-819. [Crossref]

https://doi.org/10.1080/15569543.2020.1780615

Randviir, E. P. (2018). A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochimica Acta, 286, 179-186. [Crossref] https://doi.org/10.1016/j.electacta.2018.08.021

Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and characterization of porous microcrystalline cellulose from corncob. Industrial crops and products, 151, 112457. [Crossref] https://doi.org/10.1016/j.indcrop.2020.112457

Wang, R., Deng, L., Fan, X., Li, K., Lu, H., & Li, W. (2021). Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide. International Journal of Biological Macromolecules, 189, 607-617. [Crossref] https://doi.org/10.1016/j.ijbiomac.2021.08.156

Wu, Y., Jiang, Y., Li, Y., & Wang, R. (2019). Optimum synthesis of an amino functionalised microcrystalline cellulose from corn stalk for removal of aqueous Cu2+. Cellulose, 26(2), 805-821. [Crossref] https://doi.org/10.1007/s10570-018-2113-8

Downloads

Published

2022-09-30

How to Cite

Almustapha, S. (2022). Modification of Glassy Carbon Electrode Using Microcrystalline Cellulose-Ethylenediaminetetraacetic Acid for the Detection of Lead and Cadmium Ions. UMYU Scientifica, 1(1), 221–226. https://doi.org/10.56919/usci.1122.028