Modification of Glassy Carbon Electrode Using Microcrystalline Cellulose-Ethylenediaminetetraacetic Acid for the Detection of Lead and Cadmium Ions
DOI:
https://doi.org/10.56919/usci.1122.028Keywords:
Microcrystalline Cellulose-Ethylinediamine Tetra acetic Acid, Microcrystalline Cellulose, Glassy Carbon electrode, Cadmium, Lead, Electrochemical sensorAbstract
There is a greater need for the identification and monitoring of metal contaminants as a result of the growing hazard that heavy metal contamination of water poses to the environment. In this work, microcrystalline cellulose was functionalised with ethylenediaminetetraacetic acid, and the product analysed using scanning electron microscopy and X-ray diffraction techniques. The functionalised microcrystalline cellulose-ethylenediaminetetraacetic acid was employed to modify the glassy carbon electrode. Detection for Pb2+ and Cd2+ ions was determined using square wave anodic stripping voltammetric analysis at square wave potential scan of -1.0 V to -0.2 V, and deposition potential of -1.0 V in 0.1M acetate buffer for 240 sec. Higher current response of Pb2+ was obtained at -0.6 V and that of Cd2+ at -0.8V. Limit of detection for Pb2+ was 1.8 ppb (MCC-EDTA GCE) and 5.0 ppb (MCC-GCE) , while that of Cd2+ was 7 ppb (MCC-EDTA GCE) and 10 ppb (MCC-GCE), these indicate MCC EDTA GCE has higher sensitivity towards detection of the metal ions and selectivity of modifiers for detection of Pd2+ and Cd2+ was achieved successfully.
References
Ajab, H., Yaqub, A., Nazir, M. S., Rozaini, M. Z. H., & Abdullah, M. A. (2020). Optimisation of oil palm-based cellulose and hydroxyapatite-carbon composite electrode for trace Pb (II) ions detection in aqueous system. BioResources, 15(3), 6273-6281. [Crossref] https://doi.org/10.15376/biores.15.3.6273-6281
Ajab, H., Dennis, J. O., & Abdullah, M. A. (2018). Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum. International journal of biological macromolecules, 113, 376-385. [Crossref] https://doi.org/10.1016/j.ijbiomac.2018.02.133
El-Naggar, M. E., Radwan, E. K., El-Wakeel, S. T., Kafafy, H., Gad-Allah, T. A., El-Kalliny, A. S., & Shaheen, T. I. (2018). Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal. International Journal of Biological Macromolecules, 113, 248-258. [Crossref] https://doi.org/10.1016/j.ijbiomac.2018.02.126
Ernest, E. M., & Peter, A. C. (2022). Application of Selected Chemical Modification Agents on Banana Fibre for Enhanced Composite Production. Cleaner Materials, 100131. [Crossref] https://doi.org/10.1016/j.clema.2022.100131
Fouad, H., Kian, L. K., Jawaid, M., Alotaibi, M. D., Alothman, O. Y., & Hashem, M. (2020). Characterization of microcrystalline cellulose isolated from Conocarpus fiber. Polymers, 12(12), 2926. [Crossref] https://doi.org/10.3390/polym12122926
Garba, Z. N., Lawan, I., Zhou, W., Zhang, M., Wang, L., & Yuan, Z. (2020). Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals-a review. Science of the Total Environment, 717, 135070. [Crossref] https://doi.org/10.1016/j.scitotenv.2019.135070
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. [Crossref] https://doi.org/10.3390/ijerph17113782
Hassan, K. M., Elhaddad, G. M., &AbdelAzzem, M. (2019). Voltammetric determination of cadmium (II), lead (II) and copper (II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly (1, 8-diaminonaphthalene). Microchimica Acta, 186(7), 1-10. [Crossref] https://doi.org/10.1007/s00604-019-3552-0
Jegatheesan, A., Murugan, J., Neelagantaprasad, B., & Rajarajan, G. (2012). FTIR, XRD, SEM, TGA investigations of ammonium dihydrogen phosphate (ADP) single crystal. International Journal of Computer Applications, 53(4). [Crossref] https://doi.org/10.5120/8408-2040
Kulpa-Koterwa, A., Ossowski, T., &Niedziałkowski, P. (2021). Functionalised Fe3O4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection-A Mini Review. Materials, 14(24), 7725. [Crossref] https://doi.org/10.3390/ma14247725
Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., ... & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International journal of environmental research and public health, 17(7), 2179. [Crossref] https://doi.org/10.3390/ijerph17072179
Kumary, V. A., Nancy, T. M., Divya, J., & Sreevalsan, K. (2013). Nonenzymatic glucose sensor: glassy carbon electrode modified with graphene-nickel/nickel oxide composite. Int. J. Electrochem. Sci, 8, 2220-2228. https://doi.org/10.1016/S1452-3981(23)14303-3
Nazir, M. S., Wahjoedi, B. A., Yussof, A. W., & Abdullah, M. A. (2013). Eco-friendly extraction and characterisation of cellulose from oil palm empty fruit bunches. BioResources, 8(2), 2161-2172. Crossref] https://doi.org/10.15376/biores.8.2.2161-2172
Petovar, B., Xhanari, K., &Finšgar, M. (2018). A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta, 1004, 10-21. [Crossref] https://doi.org/10.1016/j.aca.2017.12.020
Proshad, R., Islam, S., Tusher, T. R., Zhang, D., Hadka, S., Gao, J., & Kundu, S. (2021). Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: a study on an urban river in vicinity to industrial areas of Bangladesh. Toxin reviews, 40(4), 803-819. [Crossref]
https://doi.org/10.1080/15569543.2020.1780615
Randviir, E. P. (2018). A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochimica Acta, 286, 179-186. [Crossref] https://doi.org/10.1016/j.electacta.2018.08.021
Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and characterization of porous microcrystalline cellulose from corncob. Industrial crops and products, 151, 112457. [Crossref] https://doi.org/10.1016/j.indcrop.2020.112457
Wang, R., Deng, L., Fan, X., Li, K., Lu, H., & Li, W. (2021). Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide. International Journal of Biological Macromolecules, 189, 607-617. [Crossref] https://doi.org/10.1016/j.ijbiomac.2021.08.156
Wu, Y., Jiang, Y., Li, Y., & Wang, R. (2019). Optimum synthesis of an amino functionalised microcrystalline cellulose from corn stalk for removal of aqueous Cu2+. Cellulose, 26(2), 805-821. [Crossref] https://doi.org/10.1007/s10570-018-2113-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.