Comparative Phytochemical Screening and Acute Toxicity Study of Two Varieties of Ginger, Zingiber officinale
DOI:
https://doi.org/10.56919/usci.1122.002Keywords:
Zingiber officinale,, phytochemical, LD50, Albino Mice, acute toxicity, methanolic extractsAbstract
Phytochemicals are a wide range of compounds that exist naturally in plants, enhancing them with a defensive role that prevents the advancement of chronic diseases. The present study was conducted to determine and compare the presence of phytochemicals and acute toxicity of the two varieties of Zingiber officinale. Samples of Z. officinale were extracted with methanol by maceration, and the extracts were screened for phytochemicals by conventional techniques, while extracts were evaluated for acute toxicity to estimate the LD50 through oral administration in albino mice. Results showed the presence of alkaloids, flavonoids, saponins, steroids, tannins, terpenoids, cardiac glycosides, carbohydrates and the absence of anthraquinone in all the two varieties of the methanolic extracts for both the leaves and the rhizomes. The acute toxicity study showed that the local variety (LV) had oral LD50 values of 2154.1mg/kgBW (leaves) and 3807.8 mg/kgBW (rhizomes). In comparison, the improved variety (IV) had LD50 values of 3807.8 mg/kgBW (leaves) and > 5000 mg/kgBW (rhizomes) in the mice. Findings from the preliminary phytochemical screening implies that both two varieties of Z. officinale are rich in phytochemicals and that both varieties are less toxic with the local variety having higher toxic effect with respect to the LD50 values.
References
Abdulrasheed Hadiza Haruna, Akilu Mariya, Mohammed Mairo. (2020). Phytochemical Analysis of Daucus Carota and Zingiber officinale Samples Collected from Gwarimpa Abuja Nigeria. Journal of Diseases and Medicinal Plants. 6(2). 45-49. https://doi.org/10.11648/j.jdmp.20200602.13.
https://doi.org/10.11648/j.jdmp.20200602.13
Abubakar, A., Yusuf, Bashir Lawal, Asmau, N., Abubakar, Eustace, B., Berinyuy, Yemisi, O., Omonije, Sheriff, I., Umar, Mohammed, N., Shebe, Yusuf, M., Alhaji. (2018). In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clinical Phytoscience. 4:12 https://doi.org/10.1186/s40816-018-0070-2 .
https://doi.org/10.1186/s40816-018-0070-2
Ahmad, I. and Beg, A. Z. (2001). Phytochemical and antimicrobial studies on forty Indian Medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology 74: 87-91
https://doi.org/10.1016/S0378-8741(00)00335-4
Ajazuddin, T., Shailender, S. (2010). Evaluation of physico-chemical and phytochemical Properties of Safoot Sana polyherbal formulations. Journal of Pharmacognosy Research. 2(5):318-322.
https://doi.org/10.4103/0976-4836.72332
Alemu, B.K., Ayalew Getahun, K., Kahaliw, W. (2020). In vitro Antioxidant and in vivo Wound Healing Activities of the 80% Methanol Extract and Solvent Fractions of Seeds of Brassica carinata A. Braun (Brassicaceae) in Mice. Journal of Experimental Pharmacology. 12:463-474. doi: 10.2147/JEP.S278622. PMID: 33192105; PMCID: PMC7654552.
https://doi.org/10.2147/JEP.S278622
Anas, K., Durga, J., Ashutosh, M., Dinesh, C., Indranil, K. Y., Jain, D. A. (2010). Anti- snake venom activity of different extracts of Pouzolzia indica against Russel viper venom. International Journal of Chemical Technology Research. 2:744-751.
Assam Assam, J.P., Yumsu Tcham, M.F., Moni, NEDF, Betote, D.P.H., Fossi, T.C., Penlap, B.V. (2020). Phytochemical screening, Antimycobacterial activity of three medicinal Cameroonians plants and Acute toxicity of hydroethanolic extract of Vitellaria paradoxa. Journal of Drug Delivery and Therapeutics. 10(1-s), 96-104 http://dx.doi.org/10.22270/jddt.v10i1-s.3848.
https://doi.org/10.22270/jddt.v10i1-s.3848
Barbosa, A., Silveira, G. D., de Menezes, I., Neto, J., Bitencurt, J., Estavam, C. D., de Lima, A., Thomazzi, S. M., Guimaraes, A. G., Quintans, L. J. (2013). Antidiabetic effect of the ChrysobalanusicacoL. Aqueous extract in rats. J. Med. Food. 16, 538-543. https://doi.org/10.1089/jmf.2012.0084
https://doi.org/10.1089/jmf.2012.0084
Benny, M., Shylaja, M.R., Antony, B., Gupta, N.K., Mary, R., Anto, A., Jacob, S. (2021). Acute and sub-acute toxicity studies with ginger extract in rats. Int J Pharm Sci & Res. 12(5): 2799-09. https://doi.org/10.13040/IJPSR.0975-8232.12(5).2799-09 .
CIOMS (1985). Council for International Organizations of Medical Sciences International Guiding principles for biomedical research involving animals.
Evans, W.C., Trease, G.E. (2002). Pharmacognosy, Edinburgh, W. B., Sunder.
Ho, S., Chang, K., Lin, C. (2013). Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 2013, 141, 3183-3191.
https://doi.org/10.1016/j.foodchem.2013.06.010
Ibukun, O, Oluwadare, E.E. (2021). In vitro Antioxidant Property and Acute Toxicity Study of Methanol Extract of Leaves of Zingiber officinale and Curcuma longa. Free Radicals and Antioxidants. 11(2):42-5.
https://doi.org/10.5530/fra.2021.2.10
Jean Carlo González-Guevara, German, L., Madrigal Redondo, Rolando Vargas Zuñiga, Santiago Rodríguez Sibaja, (2020). Comparison of the antifungal and antibacterial effect of the essential oil and ethanolic extract of the Zingiber officinale Rhizome (Ginger) cultivated in the San Carlos zone, Costa Rica in order to standardize a hydroponic medicinal cultivation of the same. Journal of Pharmacognosy and Phytochemistry. 9(2): 43-50.
Kobo, P.I., Erin, P.J., Suleiman, M.M., Aliyu, H., Tauheed, M., Muftau, S., Mamman, M. (2014). Antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger) on Trypanosoma brucei brucei-infected Wistar mice. Veterinary World .7(10): 770-775.
https://doi.org/10.14202/vetworld.2014.770-775
Kure S. T. (2007). The prospect of Ginger production in Jaba local government area kaduna state, Nigeria. Unpublished HND project. College of Agriculture, DAC/ABU Zaria.
Lawal, B., Ossai, P.C., Shittu, O.K., Abubakar, A.N. (2014). Evaluation of phytochemicals, proximate, minerals and anti-nutritional compositions of yam peel, maize chaff and bean coat. Inter Appl Biol Res. 2014;6(2):01-17.
Lorke D. (1983). New approach to practical Acute Toxicity Testing. PubMed U.S. National Institute of Health Pp.275-277.
https://doi.org/10.1007/BF01234480
Manju, A., Pushpa. (2020). Phytochemical analysis and in vitro free radical scavenging activity of rhizome of Zingiber officinale Roscoe. Annals of Phytomedicine. 9(2):257-262. http://dx.doi.org/10.21276/ap.2020.9.2.24.
https://doi.org/10.21276/ap.2020.9.2.24
Monika Biswas, Pranab Borah, Munmi Bora, MousmiSaikia. (2019). Pharmacognostic Evaluation, Phytochemical Screening and Antimicrobial Activity of Rhizome of Zingiber officinaleRoscoe (cvMoran). Research & Reviews in Biotechnology & Biosciences. 6(1), 5-14. https://doi.org/10.6084/m9.figshare.9384611.v1
Musa K.Y. (2005). Phytochemical and Biological Studies of Dyschoristeperrottetii (Acantheceae), Ph.D Dissertation, Department of Pharmacognosy and Drug Development, Ahmadu Bello University, Zaria, Nigeria. P 49.
Nafisa Garba Ayawa, Suleiman Babatunde Ramon-Yusuf, Yunusa Adamu Wada, Sonnie Joshua Oniye, Dalhatu Mukhtari Shehu. (2021). Toxicity study and anti-trypanosomal activities of aqueous and methanol whole plant extracts of Brillantaisia owariensis on Trypanosoma brucei-induced infection in BALB/c mice. Clinical Phytoscience. 7:39. https://doi.org/10.1186/s40816-021-00267-3 .
https://doi.org/10.1186/s40816-021-00267-3
OECD 423., OECD Guideline for testing of chemicals: Acute Oral Toxicity - Acute Toxic Class Method; 2001.
Osabor, V.N., Bassey, F.I., Umoh, U.U. (2015). Phytochemical Screening and Quantitative Evaluation of Nutritional Values of Zingiber officinale (Ginger). American Chemical Science Journal. 8(4): 1-6.
https://doi.org/10.9734/ACSJ/2015/16915
Oussama Bekkouch, Mohamed Harnafi, Ilham Touiss, Saloua Khatib, Hicham Harnafi, Chakib Alem, Souliman Amrani. (2019). In Vitro Antioxidant and in Vivo Lipid-Lowering Properties of Zingiber officinale Crude Aqueous Extract and Methanolic Fraction: A Follow-Up Study. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2019/9734390.
https://doi.org/10.1155/2019/9734390
Qian-Qian Mao, Xiao-Yu Xu, Shi-Yu Cao, Ren-You Gan, Harold Corke, Trust Beta, Hua-Bin Li. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 8, 185. https://doi.org/10.3390/foods8060185.
https://doi.org/10.3390/foods8060185
Rania, A., Naiyl, Badreldin, I., Ahmed. (2018). Phytochemical Screening, Antioxidant and Antibacterial Evaluations of Two Zingiberaceae Plants. Gezira Journal of Engineering and Applied Sciences. 13(2).
Ridwan Olamilekan Adesola, Esther Ogbole, Akogmu Emmanuel Itodo, Oyiza Salami, Modinat Dasola Abdulazeez. (2021). Aqueous Extracts of Ginger (Zingiber officinale Roscoe) and Garlic (Allium satium L.) Bulbs: Phytochemical Screening and in vivo Anti trypanosomal Effect. World news of natural science. 37 (135-150), EISSN 2543-5426.
Sahdeo Prasad, Amit, K., Tyagi. (2015). Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterology Research and Practice. http://dx.doi.org/10.1155/2015/142979.
https://doi.org/10.1155/2015/142979
Salim Faruk Bashir, Sushma Gurumayum, Sawinder Kaur. (2015). In Vitro Antimicrobial Activity and Preliminary Phytochemical Screening of Methanol, Chloroform, And Hot Water Extracts of Ginger (Zingiber Officinale). Asian J Pharm Clin Res. 8(1), 176-180.
Shoaib, M., Shehzad, A., Butt, M.S., Saeed, M., Raza, H., Niazi, S., Khan, I.M., Shakeel, A. (2016). An overview: Ginger, a tremendous herb. J. Glb. Innov. Agric. Scc. Sci. 4(4):172-187.
https://doi.org/10.22194/JGIASS/4.4.766
Sofowora A. (2008). Medicinal plants and traditional medicine in Africa, 3rd ed., Spectrum Books Limited, Ibadan, Nigeria, pp. 150-153 and 162-172.
Tambunan, A.P., Bahtiar, A., Tjandrawinata, R.R. (2017). Influence of Extraction Parameters on the Yield, Phytochemical, TLC-Densitometric Quantification of Quercetin, and LC-MS Profile, and how to Standardize Different Batches for Long Term from Ageratum conyoides L. Leaves. Pharmacognosy Journal. 9(6):767-74.
https://doi.org/10.5530/pj.2017.6.121
Wei, C., Tsai, Y., Korinek, M., Hung, P., El-Shazly, M., Cheng, Y., Wu, Y., Hsieh, T., Chang, F. (2017). 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int. J. Mol. Sci. 18, 168.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.