Crop Yield Prediction in Nigeria Using Machine Learning Techniques: A Case Study of Southern Part Nigeria
DOI:
https://doi.org/10.56919/usci.2324.004Keywords:
Decision tree classifier, Machine Learning, random forest, root mean square error, support vector machineAbstract
A key tool for digitalizing the agriculture sector and other industries is using big data and machine learning to predict farm produce. The inability of farmers to accurately predict yield is a great problem using previous farming experience. This study adopted three (3) machine learning approaches, including a decision tree classifier, random forest, and support vector machine, to model data from different zones and make predictions. The techniques adopted were tested using root mean square error to ensure the right prediction algorithm is adopted and the right values are obtained. Results show prediction from the South East is the best in terms of yields and accuracy when tested and evaluated, with 138.9 %.
References
Aakunuri, M., & Narsimha, G. (2016). Crop Yield Prediction with Aid of Optimal Neural Network in Spatial Data Mining: New Approaches. International Journal of Information & Computation Technology, 28.
Abhinav, S., Arpit, J., Prateek, G., & Vinay, C. (2021). Machine Learning Applications for Precision. International for Electrical and Electronics Engineer, 4845-4847.
Aditya, S., Sanjay, H. A., & Bhanusree, E. (2017). Prediction of Crop Yield Using Regression Techniques. International Journal for Soft Computing, 96.
Anitha, A. (2017). A Predictive Modeling Approach for improving Paddy Crop Productivity using Data Mining Techniques. Turkish Journal of Electrical Engineering & Computer Sciences, 4777. https://doi.org/10.3906/elk-1612-361
Deepak, G., Deepika, J., Dharshini, M., & Vanathi, B. (2020). Crop Yield Prediction Based on Ensemble Model Using Historical Data. International Journal of Advance Research and Innovative Ideas in Education (IJARIIE), 670.
Dilli, P., Hendrik, B., Allard, D. W., Sander, J., Sjoukje, O., Christos, P., & Joannis, N. A. (2020, December 4). Machine Learning for Large-scale Crop Yield Forecasting. Agricultural Systems , p. 2.
Guoyong, L., & Jim, H. W. (2020). Predicting Spatial and Temporal Variability in Crop Yields: An Inter-comparison of Machine Learning, Regression and Process-based Models. Environmental Research (p. 2). China: Institute of Geographic Sciences and Natural Resources Research.
Kalaiarasi, E., & Anbarasi, A. (2021). Crop yield prediction using multi-parametric deep neural networks. INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 131. https://doi.org/10.17485/IJST/v14i2.2115
Karthikeya, H. K., Sudarshan, K., & Disha, S. S. (2020). Prediction of Agricultural Crops using KNN Algorithm. International Journal of Innovative Science and Research Technology ISSN No:-2456-2165, 1422.
Kodimalar, P., & Chellammal, S. (2019). An Approach for Prediction of Crop Yield Using Machine Learning and Big Data Techniques. International Journal of Computer Engineering and Technology (IJCET) Volume 10, Issue 03, 110. https://doi.org/10.34218/IJCET.10.3.2019.013
Kuldeep, S., Sunila, & Sanjeev, K. (2020). Crop Yield Prediction Techniques using Remote Sensing Data. International Journal of Engineering and Advanced Technology (IJEAT), 3683. https://doi.org/10.35940/ijeat.C6217.029320
Mamunur, R., Bifta, S. B., Yusri, Y., Mohamad, A. K., & Nuzhat, K. (2021). A Comprehensive Review of Crop Yield Prediction using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. Institute of Electrical and Electronics Engineers, 63409.
Manoj, G. S., Prajwal, G. S., Ashoka, U. R., Prashant, K., & Anitha, P. (2020). Prediction and Analysis of Crop Yield using Machine Learning Techniques. International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181, 19.
Manjula, E., & Djodiltachoumy, S. (2017). A Model for Prediction of Crop Yield. International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, 298-300.
Mayank, C., Darpan, C., Chaitanya, C., & Mansing, R. (2020). Crop Yield Prediction Using Machine Learning. International Journal of Science and Research (IJSR), 645.
Mohsen, S., & Guiping, H. (2020). Machine Learning Models for Corn Yield Prediction: A Survey of Literature. International Journal of Environmental Sciences & Natural Resources, 80.
Priya, P., Muthaiah, U., & Balamurugan, M. (2018). Predicting yield of the Crop using Machine Learning Algorithm. International Journal of engineering Sciences & Research Technology, 1.
Ramesh, M. A., Vijay, R. S., & Anand, A. M. (2019). Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning. International Journal for Intelligent Systems and Applications, 13.
Rohit, K. R., Ankit, P., Mitalee, P., Pooja, S., Suresh, R., & Avinash, D. (2017). Crop Recommendation System to Maximize Crop Yield using Machine Learning Technique. International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 12, 950.
Rushika, G., Juilee, K., Pooja, M., Sachee, N., & Priya , R. L. (2018). Prediction of Crop Yield using Machine Learning . International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056, 2237.
Saeed, K., & Lizhi, W. (2019). Crop Yield Predictions using Deep Neural Network. United States of America: Frontiers in Plant Science.
Sangeeta, & Shruthi, G. (2020). Design and Implementation of Crop Yield Prediction Model in Agriculture. International Journal of Scientific & Technology Research , 544.
Saranya, C. P., Guru, M. B., Karuppasamy, M., Sunmathi, M., & Shree, S. K. (2020). A Survey on Crop Yield Prediction using Machine Learning Algorithms. International Journal of Research and Analytical Reviews (IJRAR), 494.
Shivam, B., Rajat, B., Ankit, S. C., Akshay, K. D., & Indu, C. (2020). Fuzzy Logic based Crop Yield Prediction using Temperature and Rainfall Parameters Predicted through ARMA, SARIMA, and ARMAX models. Research Gate Conference Paper (p. 978). India: Department of CSE & IT.
Shreya, S. B., Kalyani, A. B., Aarti, G. D., & Bhagyashree, R. G. (2016). Crop and Yield Prediction Model. International Journal of Advance Scientific Research and engineering trends, 23.
Sivanandhini, P., & Prakash, J. (2020). Comparative Analysis of Machine Learning Techniques for Crop Yield Prediction. International Journal of Advanced Research in Computer and Communication Engineering, 289.
Sivanandhini, P., & Prakash, J. (2020). Crop Yield Prediction Analysis using Feed Forward and Recurrent Neural Network. International Journal of Innovative Science and Research Technology, 1092.
Surya, P., & Laurence, A. I. (2018). Crop Yield Prediction in Agriculture using Data Mining Predictive Analytic Techniques. International Journal of Research and Analytical Reviews, 787.
Thomas, V. K., Ayalew, K., & Cagatay, C. (2021). Crop Yield Prediction using Machine Learning: A systematic literature review. Computers and Electronics in Agriculture, 2.
Vaishali, P., Haneet, K., Surjeet, S., Jatinder, M., & Vinod, S. (2020). Performance Evaluation of Machine Learning Techniques for Mustard Crop Yield Prediction from Soil Analysis. Journal of Scientific Research, 394. https://doi.org/10.37398/JSR.2020.640254
Wu, Y., Li, S., Li, L., Li, M., Li, M., Arvanitis, K. G., . . . Sigrimis, N. (2018). Smart Sensors from Ground to Cloud and Web Intelligence. International Federation of Automatic Control Conference Paper (p. 32). China: Elsevier.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.