Exploring the Thermodynamic Characteristics of Isoelectronic Diatomic Interstellar Molecular Species: Oxygen and Sulfur Containing Specie
DOI:
https://doi.org/10.56919/usci.2432.016Keywords:
Interstellar medium (ISM), Atoms-ISM, Isoelectronic molecules, Laws of thermodynamics, AstrochemistryAbstract
Study’s Excerpt/Novelty
- This study provides a comprehensive computational analysis of the thermodynamic properties of isoelectronic diatomic interstellar molecular species containing oxygen and sulfur atoms, spanning a wide range of interstellar temperatures.
- By investigating entropy, free energy, heat capacity, and internal energy, the research reveals unique trends, such as the earlier responsiveness of sulfur-containing molecules to temperature changes and the significant impact of molecular size on thermodynamic properties.
- These insights into the isoelectronic effects and thermodynamic behaviors of specific molecules across extreme temperature ranges enhance our understanding of the role of oxygen and sulfur in complex interstellar molecular systems, offering a foundation for future astrophysical research.
Full Abstract
Interstellar molecular species, particularly isoelectronic diatomic molecules, exhibit distinct thermodynamic traits, setting them apart from other molecular species. This study investigates the thermodynamic properties of isoelectronic diatomic interstellar molecular species containing oxygen and sulfur atoms, employing computational methods to analyze entropy, free energy, heat capacity, and internal energy across a spectrum of interstellar temperatures. Graphical representations highlight intriguing trends, revealing Oxygen and sulfur-containing molecules' earlier responsiveness to temperature changes compared to oxygen counterparts. Notably, molecule size emerges as a key determinant, with larger mass molecules exhibiting higher entropy, free energy, and heat capacity. We showed the isoelectronic effect of these Sulfur and Oxygen containing molecular species (OH, SN, CO, CS, SiO, SiS, FeO, FeS, PO, PS O2, OS, ZnO, ZnS, TiO, TiS) on several interstellar molecules at temperatures ranging from to (i.e., from the coldest place in the universe to the mean temperature of the interstellar medium). These findings offer valuable insights into the thermodynamic behavior of interstellar molecular species, paving the way for future research on the role of oxygen and sulfur atoms in complex molecular systems.
References
Adkins, C. J. (1979). Thermodynamics and statistical mechanics. In Nature. https://doi.org/10.1038/282887a0
Agúndez, M., Cabezas, C., Tercero, B., Marcelino, N., Gallego, J. D., de Vicente, P., & Cernicharo, J. (2021). Discovery of the propargyl radical (CH 2 CCH) in TMC-1: One of the most abundant radicals ever found and a key species for cyclization to benzene in cold dark clouds. Astronomy & Astrophysics, 647, L10. https://doi.org/10.1051/0004-6361/202140553
Bipin K. Agarwal, & Eisner, M. (1989). Statistical mechanics. John Wiley & Sons, Inc.
Booth, A. S., Ilee, J. D., Walsh, C., Kama, M., Keyte, L., van Dishoeck, E. F., & Nomura, H. (2023). Sulfur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk. Astronomy & Astrophysics, 669, A53. https://doi.org/10.1051/0004-6361/202244472
Cabezas, C., Agúndez, M., Marcelino, N., Tercero, B., Endo, Y., Fuentetaja, R., Pardo, J. R., De Vicente, P., & Cernicharo, J. (2022). Discovery of the elusive thioketenylium, HCCS+, in TMC-1. Astronomy & Astrophysics, 657, L4. https://doi.org/10.1051/0004-6361/202142815
Cernicharo, J., Agúndez, M., Cabezas, C., Tercero, B., Marcelino, N., Fuentetaja, R., Pardo, J. R., & de Vicente, P. (2021). Discovery of HCCCO and C 5 O in TMC-1 with the QUIJOTE line survey. Astronomy & Astrophysics, 656, L21. https://doi.org/10.1051/0004-6361/202142634
Cernicharo, J., Cabezas, C., Agúndez, M., Tercero, B., Pardo, J. R., Marcelino, N., Gallego, J. D., Tercero, F., López-Pérez, J. A., & de Vicente, P. (2021). TMC-1, the starless core sulfur factory: Discovery of NCS, HCCS, H 2 CCS, H 2 CCCS, and C 4 S and detection of C 5 S. Astronomy & Astrophysics, 648, L3. https://doi.org/10.1051/0004-6361/202140642
Cernicharo, J., Cabezas, C., Endo, Y., Agúndez, M., Tercero, B., Pardo, J. R., Marcelino, N., & De Vicente, P. (2021). The Sulfur saga in TMC-1: Discovery of HCSCN and HCSCCH. Astronomy and Astrophysics, 650, L14. https://doi.org/10.1051/0004-6361/202141297
Chiang, Y.-K., Makiya, R., Ménard, B., & Komatsu, E. (2020). The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography. The Astrophysical Journal, 902(1), 56. https://doi.org/10.3847/1538-4357/abb403
D. Alahira, J. P. Shinggu, B. Bako. Quantum chemical and molecular docking studies of luteolin and naringerin found in tigernut: A study of their anti-cancer properties. Journal of Medicinal and Nanomaterials Chemistry, 2024, 6(1), 64-80. https://doi.org/10.48309/JMNC.2024.1.6
Donald, A. M., & John, D. S. (1999). Molecular thermodynamics. In Journal of Molecular Structure (Vol. 63, Issue 2). University Science Books. https://books.google.com.ng/books/about/Molecular_Thermodynamics.html?id=TqAIJ27C2isC&redir_esc=y
Emmanuel Etim (PhD). (2023). Benchmark Studies on the Isomerization Enthalpies for Interstellar Molecular Species. Journal of the Nigerian Society of Physical Sciences, 527. https://doi.org/10.46481/jnsps.2023.527
Etim, E. E., Asuquo, J. E., Ngana, O.C., and Ogofotha, G.O. (2022). Investigation on the thermochemistry, molecular spectroscopy and structural parameters of pyrrole and its isomers: a quantum chemistry approach. J. Chem. Soc. Nigeria, 47(1):129 - 138. https://doi.org/10.46602/jcsn.v47i1.704
Etim, E. E. (2017). Quantum Chemical Calculations on Silicon Monoxide (SiO) and its Protonated Analogues. Tropical Journal of Applied Natural Sciences, 2(1), 61–68. https://doi.org/10.25240/TJANS.2017.2.1.10
Etim, E. E., Adelagun, R. O. A., Andrew, C., & Enock Oluwole, O. (2021). Optimizing the searches for interstellar heterocycles. Advances in Space Research, 68(8), 3508–3520. https://doi.org/10.1016/j.asr.2021.06.003
Etim, E. E., & Arunan, E. (2016). Interstellar isomeric species: Energy, stability and abundance relationship. European Physical Journal Plus, 131(12), 448. https://doi.org/10.1140/epjp/i2016-16448-0
Etim, E. E., & Arunan, E. (2017). Partition function and astronomical observation of interstellar isomers: Is there a link? Advances in Space Research, 59(4), 1161–1171. https://doi.org/10.1016/j.asr.2016.11.021
Etim, E. E., Gorai, P., Das, A., & Arunan, E. (2017a). C5H9N isomers: pointers to possible branched chain interstellar molecules. The European Physical Journal D, 71(4), 86. https://doi.org/10.1140/epjd/e2017-70611-3
Etim, E. E., Gorai, P., Das, A., & Arunan, E. (2017b). Interstellar protonated molecular species. Advances in Space Research, 60(3), 709–721. https://doi.org/10.1016/j.asr.2017.04.003
Etim, E. E., Gorai, P., Das, A., & Arunan, E. (2018). Theoretical investigation of interstellar C–C–O and C–O–C bonding backbone molecules. Astrophysics and Space Science, 363(1), 6. https://doi.org/10.1007/s10509-017-3226-5
Etim, E. E., Inyang, E. J., Ushie, O. A., Mbakara, I. E., Andrew, C., Lawal., U. (2017). Is ESA Relationship the tool for searching for Interstellar Heterocycles? FUW Trends in Science and Technology Journal, 2(2): 665-678.
Etim, E. E., Lawal, U., Andrew, C., Udegbunam, I. S. (2018). Computational Studies on C3H4N2 Isomers. International Journal of Advanced Research in Chemical Science (IJARCS) 5 (1) 29-40. DOI: http://dx.doi.org/10.20431/2349-0403.0501005
Etim, E.E. , Mbakara, I.E., Inyang, E.J., Ushie, O.A., Lawal, U., Andrew, C. (2017). Spectroscopy of Linear Interstellar Carbon Chain Isotopologues: Meeting Experimental Accuracy. Trop. J. Appl. Nat. Sci., 2(1): 11-16. Doi: https://doi.org/10.25240/TJANS.2017.2.1.03
Etim, E. E., Oko, G. E., Onen, A. I., Ushie, O. A., Andrew, C., Lawal., U, Khanal, G. P, (2018). Computational Studies of Sulfur Trioxide (SO3) and its Protonated Analogues. J. Chem Soc. Nigeria, 43 (2): 10 – 17
Etim, E. E., Onen, A.I, Andrew,C., Lawal, U., Udegbunam, I. S., Ushie, O. A., Computational Studies of C5H5N Isomers. J. Chem Soc. Nigeria, 2018, 43(2):1 – 9.
Etim, E.E., and Arunan, E. (2017). Accurate Rotational Constants for linear Interstellar Carbon Chains: Achieving Experimental Accuracy. Astrophysics and Space Science, 362, 4.DOI 10.1007/s10509-016-2979-6
Etim, E. E., Mbakara, I. E., Khanal, G. P., Inyang, E. J., Ukafia, O. P., Sambo, I. F,. (2017). Coupled Cluster Predictions of Spectroscopic Parameters for (Potential) Interstellar Protonated Species. Elixir Computational Chemistry, 111: 48818-48822.
Etim, E.E., and Arunan, E. (2017). Partition Function and Astronomical Observation of Interstellar Isomers: Is there a link? Advances in Space Research, 59(4)1161-1171. https://doi.org/10.1016/j.asr.2016.11.021
Etim, E. E., Gorai, P., Das, A., Chakrabarti, S. K., & Arunan, E. (2018). Interstellar hydrogen bonding. Advances in Space Research, 61(11), 2870–2880. https://doi.org/10.1016/j.asr.2018.03.003
Franz, S. (2014). Statistical Mechanics. In Springer Monographs in Mathematics (2nd ed., pp. 1–589). Springer Berlin Heidelberg.
Frisch, P. C., Dorschner, J. M., Geiss, J., Greenberg, J. M., Grun, E., Landgraf, M., Hoppe, P., Jones, A. P., Kratschmer, W., Linde, T. J., Morfill, G. E., Reach, W., Slavin, J. D., Svestka, J., Witt, A. N., & Zank, G. P. (1999). Dust in the Local Interstellar Wind. The Astrophysical Journal, 525(1), 492–516. https://doi.org/10.1086/307869
Gallavotti, G. (1999). Statistical Mechanics: A Short Treatise. In European Journal of Mechanics BFluids (Vol. 19, Issue 3, p. 339). Springer Science & Business Media.
Garanin, D. (2017). Statistical Thermodynamics. http://www.lehman.edu/faculty/dgaranin/Statistical_Thermodynamics/Statistical_physics.pdf
Goldsmith, D. W., Habing, H. J., & Field, G. B. (1969). Thermal Properties of Interstellar Gas Heated by Cosmic Rays. The Astrophysical Journal, 158(September 1969), 173. https://doi.org/10.1086/150181
Gosachinskij, I. V., & Morozova, V. V. (1996). Statistical properties of interstellar HI clouds. Astronomical & Astrophysical Transactions, 11(3–4), 215–223. https://doi.org/10.1080/10556799608205468
Hashimoto, A., & Nakano, Y. (2023). Sulfuric acid as a corrosive cryofluid and oxygen isotope reservoir in planetesimals. Icarus, 398, 115535. https://doi.org/10.1016/j.icarus.2023.115535
Heays, A. N., Bosman, A. V., & Van Dishoeck, E. F. (2017). Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astronomy & Astrophysics, 602, A105. https://doi.org/10.1051/0004-6361/201628742
Matus, M., Banks, T., & Banks, T. (2019). Quantum Statistical Mechanics. In Quantum Mech. An Introd. https://doi.org/10.1201/9780429438424-12
McQuarrie, D. A. (Donald A., & Simon, J. D. (John D. (1999). Molecular thermodynamics. University Science Books. https://cir.nii.ac.jp/crid/1130282268797115264.bib?lang=en
Mondal, S. K., Gorai, P., Sil, M., Ghosh, R., Etim, E. E., Chakrabarti, S. K., Shimonishi, T., Nakatani, N., Furuya, K., Tan, J. C., & Das, A. (2021). Is There Any Linkage between Interstellar Aldehyde and Alcohol? The Astrophysical Journal, 922(2), 194. https://doi.org/10.3847/1538-4357/ac1f31
Nammas, F. S. (2018). Thermodynamic properties of two electrons quantum dot with harmonic interaction. Physica A: Statistical Mechanics and Its Applications, 508, 187–198. https://doi.org/10.1016/j.physa.2018.05.116
Ochterski, J. W., & Ph, D. (2000). Thermochemistry in Gaussian. Gaussian Inc Pittsburgh PA, 264(1), 1–19. https://doi.org/10.1016/j.ijms.2007.04.005
Pathria, R. K., & Beale, P. D. (2011). Statistical Mechanics. Statistical Mechanics. https://doi.org/10.1016/C2009-0-62310-2
Pathria, R. K., & Paul, B. D. (2011). Statistical Mechanics. In Elsevier Ltd (3rd ed.). Elsevier Ltd. www.elsevierdirect.com
Penrose, O. (1979). Foundations of statistical mechanics. In Reports on Progress in Physics (Vol. 42, Issue 12, pp. 1937–2006). https://doi.org/10.1088/0034-4885/42/12/002
Rudoy, Y. G., & Oladimeji, E. O. (2017). About One Interesting and Important Model in Quantum Mechanics II. Thermodynamic Description. Physics in Higher Education, 23(2), 11–23. http://arxiv.org/abs/1904.09830
Samuel, H. S., E. E. Etim, U. Nweke-Maraizu. (2023). Approaches for Special Characteristics of Chalcogen Bonding: A mini Review. J. Appl. Organomet. Chem. 3(3), 199-212. https://doi.org/10.22034/jaoc.2023.405432.1089
Samuel, H. S., Etim, E. E., Nweke-Maraizu, U., and Andrew, C. (2023). Computational Electrochemistry Techniques Used In Corrosion Inhibition Studies. FUW Trends in Science & Technology Journal, 8(3), 033-039 https://www.ftstjournal.com/uploads/docs/83%20Article%207.pdf
Samuel, H. S., Etim, E. E., Oladimeji E.O., Shinggu J.P., and Bako B. (2023). Machine Learning in Characterizing Dipole-Dipole Interactions. FUW Trends in Science & Technology Journal, 8(3), 070-082
Samuel, H.S., Etim, E.E., Ugo Nweke-Maraizu., Shinggu, J.P., and Bako B (2023). Machine Learning of Rotational Spectra analysis in Interstellar medium. Communication in Physical Sciences, 10(1): 172-203.
Samuel, H. S., U. Nweke-Mariazu, E. E. Etim. (2023). Experimental and Theoretical Approaches for Characterizing Halogen Bonding. J. Appl. Organomet. Chem., 3(3), 169-183. https://doi.org/10.22034/jaoc.2023.405412.1088
Samuel, H.S., Etim, E.E., Ugo Nweke-Maraizu., (2023). Understanding the experimental and computational approach in characterizing intermolecular and intramolecular hydrogen bond, Journal of Chemical Review, https://doi.org/10.48309/JCR.2023.407989.1235
Sears, F. W., & Salinger, G. L. (1982). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. In Addison-Wesley Pubishng Company Inc. Addison-Wesley Pubishng Company Inc.
Seddon, J. M., & Gale, J. D. (2002). Thermodynamics and statistical mechanics. In Journal of Chemical Education. https://doi.org/10.1021/ed079p1075
Shell, M. S. (2015). Thermodynamics and statistical mechanics: An integrated approach. In Thermodynamics and Statistical Mechanics: An Integrated Approach. Wiley. https://doi.org/10.1017/CBO9781139028875
Shinggu, J. P., Etim, E. E., & Onen, A. I. (2023). Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods. In Communication in Physical Sciences (Vol. 2023, Issue 2).
Shinggu, J. P., Etim, E. E., & Onen, A. I. (2023). Protonation-Induced Structural and Spectroscopic Variations in Molecular Species: A Computational Study on N2, H2, CO, CS, and PH3. Communication in Physical Sciences, 9(4).
Sil, M., Gorai, P., Das, A., Bhat, B., Etim, E. E., & Chakrabarti, S. K. (2018). Chemical Modeling for Predicting the Abundances of Certain Aldimines and Amines in Hot Cores. The Astrophysical Journal, 853(2), 139. https://doi.org/10.3847/1538-4357/aa984d
Smirnov, B. M. (2006). Principles of Statistical Physics. In Principles of Statistical Physics. WILEY-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527608089
Stowe, K. (2007). An Introduction to Thermodynamics and Statistical Mechanics. Cambridge University Press. http://www.cambridge.org/9780521865579
The universe is getting hot, hot, hot, a new study suggests: Temperature has increased about 10 times over the last 10 billion years -- ScienceDaily. (n.d.). Retrieved January 30, 2022, from https://www.sciencedaily.com/releases/2020/11/201110133132.htm
Tu, F. Q., Chen, Y. X., & Huang, Q. H. (2019). Thermodynamics in the universe described by the emergence of space and the energy balance relation. Entropy, 21(2), 1–10. https://doi.org/10.3390/e21020167
University, N. (2008). Statistical Mechanics. In Northwestern University. Northwestern University.
Vaz, C. (2004). Thermodynamics and Statistical Mechanics. In University of Cincinnati. University of Cincinnati.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.