Microphysical Analysis of Maritime and Continental Aerosols: Determination of Hygroscopic Growth Factors Using OPAC Data and Modeling Approaches
DOI:
https://doi.org/10.56919/usci.2434.002Keywords:
Hygroscopicity, maritime, continental, atmospheric aerosols, OPACAbstract
Study’s Excerpt/Novelty
- This study presents an application of mass-based hygroscopicity models to analyze microphysical properties of atmospheric aerosols from continental and maritime sources using data from the Optical Properties of Aerosols and Clouds (OPAC).
- By examining hygroscopic growth factors and effective radii at eight different relative humidities, the research highlights the significant variation in growth factors between maritime and continental aerosols, with maritime clean aerosols exhibiting a substantially higher growth factor at 99% RH.
- The study's robust statistical analysis, confirmed by R² values greater than 90% and significance levels below 0.05, demonstrates the model's efficacy for atmospheric modeling and remote sensing applications.
Full Abstract
The interplay of marine and continental sources governed the atmospheric aerosols over coastal areas. The transport of aerosols from continental sources into sea surfaces through deposition or diffusion is what causes the fast reduction of continental aerosols. A mass based based hygroscopicity models were applied to the data extracted from the Optical Properties of Aerosols and Clouds (OPAC). The microphysical properties obtained were radii, density, refractive index, mass, volume, and sphericity of the atmospheric aerosols of continental and maritime aerosols at eight different relative humidity of 0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%. Using the microphysical properties, hygroscopic growth factors, and effective radii of the mixtures, mass growth factor Gm and diameter growth factor DG were determined, and also the parameter Km for mass based of the aerosols were determined using multiple regression analysis with SPSS 16.0 at each relative humidity. The results show that Gm for maritime clean is higher than other aerosols, with a value of 34.46 at 99% RH, while the lowest value is for continental average, with a value of 5.03 at 99% RH. Also, R2 for the model is greater than 90%. The significance and P-values are less than 0.05; therefore, the model is good for atmospheric modeling and remote sensing.
References
Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., P. Forster, Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S. K., Sherwood S., Stevens B. and Zhang X. Y., in Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2013, pp. 571–657.
Carrico, C. M., Petters, M. D., Kreidenweis, S. M., Sullivan, A. P., McMeeking, G. R., Levin, E. J. T., Engling, G., Malm, W. C., and Collett Jr., J. L.(2010): Water uptake and chemical composition of fresh aerosols generated in open burning of biomass, Atmos. Chem. Phys., 10, 5165–5178. https://doi.org/10.5194/acp-10-5165-2010
Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Bal- tensperger, U.:(2011) Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11, 1155– 1165. https://doi.org/10.5194/acp-11-1155-2011
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Poschl, U.(2009): Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009
Gysel, M., Weingartner, E., and Baltensperger, U. (2002) Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols, Environ. Sci. Technol., 36, 63–68, https://doi.org/10.1021/es010055g
Gysel, M., Weingartner, E., Nyeki, S., Paulsen, D., Baltensperger, U., Galambos, I., and Kiss, G.: Hygroscopic properties of watersoluble matter and humic-like organics in atmospheric fine aerosol, Atmos. Chem. Phys., 4, 35–50, https://doi.org/10.5194/acp-4-35-2004
Hess M., Koepke P., and Schult I (May 1998), Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Met. Soc. 79, 5, p831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
IPCC: Climate Change (2007): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, .
Koepke, P., Gasteiger, J., and Hess, M(2015).: Technical Note: Optical properties of desert aerosol with non-spherical mineral particles:data incorporated to OPAC, Atmos. Chem. Phys., 15, 5947–5956. https://doi.org/10.5194/acp-15-5947-2015
Kohler, H (1936) The nucleus and growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152–1161. https://doi.org/10.1039/TF9363201152
Kramer, L., Poschl, U., and Niessner, R.(2000): Microstructural rearrangement of sodium chloride condensation aerosol particles on interaction with water vapor, J. Aerosol. Sci., 31, 673–685, https://doi.org/10.1016/S0021-8502(99)00551-0
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Prevot, A.S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., Hallquist, M., Baltensperger, U., and Ristovski, Z.D. (2009): Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. Atmospheric. Chemistry and Physics, 9, 721–732, https://doi.org/10.5194/acp-9-721-2009
Mikhailov E, Vlasenko S, Martin ST, Koop T, Poschl U (2009) Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos Chem Phys 9: 9491-9522. https://doi.org/10.5194/acp-9-9491-2009
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and P¨oschl, U.:(2009) Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, At- mos. Chem. Phys., 9, 9491–9522. https://doi.org/10.5194/acp-9-9491-2009
Oliver R. Michael J., Grgory D., Nicole L., Ruth S. (2023): Hygroscopic growth of single atmospheric sea salt aerosol particles from mass measurement in an optical trap, Environ. Sci.: Atmos., 2023,3, 695-707. https://doi.org/10.1039/D2EA00129B
Petters, M. D. and Kreidenweis, S. M.(2007): A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971. https://doi.org/10.5194/acp-7-1961-2007
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P. J., Collett, J. L., and Moosuller, H.:(2009) Cloud condensation nucleation activity of biomass burning aerosol, J. Geo- phys. Res., 114, D22205. https://doi.org/10.1029/2009JD012353
Pruppacher, H. R. and Klett, J. D.:(2000) Microphysics of clouds and precipitation, Kluwer Academic Publishers, Dordrecht.
Qin T.F, Plattner D., Tignor G.K., Allen M., Boschung S.K, , Nauels J., Xia A., , Bex Y., and Midgley, B.M. (Eds.) Cambridge University Press, United Kingdom and NewYork, NY, USA.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., Poschl, U. (2008) Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008
Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehne B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y.,Andreae, M. O., and P¨ oschl, U.(2011): Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles, Atmos. Chem. Phys., 11, 2817–2836, https://doi.org/10.5194/acp-11-2817-2011
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M., and Poschl, U.(2010): Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China- Part 1: Size-resolved measurements and implications for the modelling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365-3383. https://doi.org/10.5194/acp-10-3365-2010
Saadu, B., Tanimu, A.,(2020): Comparative Analysis Of Mass And Volume Based Hygroscopicities Parameter Interaction Models For Atmospheric Aerosols: Journal of the Nigerian Association of Mathematical Physics Volume 54 (January 2020 Issue), pp165 – 172
Sjogren S, Gysel M, Weingartner E, Baltensperger U, Cubison, et al. (2007) Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulphate, adipic and humic acid mixtures. J Aerosol Sci 38: 157-171. https://doi.org/10.1016/j.jaerosci.2006.11.005
Stock M., Y. F. Cheng, W. Birmili, A. Massling, B. Wehner, T.Muller, S. Leinert, N. Kalivitis,N. Mihalopoulos, and A. Wiedensohler, (2011). Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions. Atmospheric Chemistry and Physics., 11, 4251–4271. https://doi.org/10.5194/acp-11-4251-2011
Stokes, R. H. and Robinson, R. A. (1966). Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. Journal of Physical Chemistry, 70, 2126–2130. https://doi.org/10.1021/j100879a010
Sun, W.Y., Yang, K.J.S. and Lin, N.H., (2013). Numerical simulations of asian dust-aerosols and regional impacts on weather and climate- Part II: PRCM-dust model simulation. Aerosol and Air Quality Research, 13: 1641–1654. https://doi.org/10.4209/aaqr.2013.06.0208
Swietlicki, E., Hansson, H.-C., H¨ ameri, K., Svenningsson, B.,Massling, A., McFiggans, G., McMurry, P. H., Pet¨ aj ¨ a, T.,Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala,M.( 2008): Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: a review, Tellus B, 60,432–469. https://doi.org/10.1111/j.1600-0889.2008.00350.x
Tijjani B.I., Uba S. Koki F.S., Galadanci G.S.M., Nura A.M., Adamu I.D., Saleh M. and Abubakar A.I (2015),The effect of Kelvin effect on the equilibrium effective radii and hygroscopic growth of atmospheric aerosols.Journal of Natural Sciences Research. 5,96-111.
Twomey, S.(1977): Atmospheric Aerosols, Developments in Atmospheric Science,ElsevieNew York, USA,.
Verma, S., Prakash, D., Srivastava, A.K. and Payra, S. (2017). Radiative forcing estimation of aerosols at an urban site near the thar desert using ground-based remote sensing measurements. Aerosol Air Qual. Res. 17:1294–1304. https://doi.org/10.4209/aaqr.2016.09.0424
Wang, Z., King, S. M., Freney, E., Rosenoern, T., Smith, M. L., Chen, Q., Kuwata, M., Lewis, E. R., P¨oschl, U., Wang, W., Buseck, P. R., and Martin, S. T.: The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate, Aerosol Sci. Technol., 44, 939–953, https://doi.org/10.1080/02786826.2010.503204
Zieger P., Fierz-Schmidhauser R., Weingartner E. and Baltensperger U., Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 2013, 13, 10609–10631. https://doi.org/10.5194/acp-13-10609-2013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bello Sa'adu, S Abdulfatah, A I Khalil
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.